Neurosurgery

Total Page:16

File Type:pdf, Size:1020Kb

Neurosurgery KALEIDA HEALTH Name ____________________________________ Date _____________ DELINEATION OF PRIVILEGES - NEUROSURGERY All members of the Department of Neurosurgery at Kaleida Health must have the following credentials: 1. Successful completion of an ACGME accredited Residency, Royal College of Physicians and Surgeons of Canada, or an ACGME equivalent Neurosurgery Residency Program. 2. Members of the clinical service of Neurosurgery must, within five (5) years of appointment to staff, achieve board certification in Neurosurgery. *Maintenance of board certification is mandatory for all providers who have achieved this status* Level 1 (core) privileges are those able to be performed after successful completion of an accredited Neurosurgery Residency program. The removal or restriction of these privileges would require further investigation as to the individual’s overall ability to practice, but there is no need to delineate these privileges individually. PLEASE NOTE: Please check the box for each privilege requested. Do not use an arrow or line to make selections. We will return applications that ignore this directive. LEVEL I (CORE) PRIVILEGES Basic Procedures including: Admission and Follow-Up Repair cranial or dural defect or lesion History and Physical for diagnosis and treatment plan* Seizure Chest tube placement Sterotactic framed localization of lesion Debride wound Sterotactic frameless localization Endotracheal intubation Transsphenoidal surgery of pituitary lesion Excision of foreign body Trauma Insertion of percutaneous arterial catheter* Tumor Lumbar puncture* Vascular decompression Peripheral vein/artery cut down Vascular or revascularization Replacement of tracheostomy tube Endoscopy as an Adjunct Suture laceration Cranial Swan-Ganz insertion and interpretation Peripheral nerve Tracheostomy Spine Vena cava (intervention) Peripheral Nerve Additional Procedures Decompression, avulsion, transposition, or anastomosis peripheral Biopsy, superficial, head or neck nerve Brain death determination Exploration and repair C1-2 tap* Excision peripheral nerve tumor and biopsy, implantation Epidural injection of medication* stimulator, block External cranial fixation Surgery of extracranial and vertebral arteries including Halo application endarterectomy and grafting procedures ICP monitor insertion Spinal Procedures Insertion of lumbar spinal drain* Axial Fusion Myelography* Cervical with instrumentation Puncture ventricular shunt* Decompression - all levels Ventricular puncture with/without drain insertion For treatment excision or repair of: Biopsy congenital CNS and peripheral nerve degenerative Dural infectious Muscle intradural and/or extradural Vascular traumatic Craniotomy/Craniectomy/Burr Hole neoplastic Abscess/infection vascular Approach and treatment of skull base lesion Implantable pump or stimulator Cyst Stabilization - all levels Developmental anomaly Thoracolumbar with instrumentation Insertion or revision of CSF or cyst shunt Neurectomy Neurosurgery DOP 9-2021 Neurosurgery Name:____________________________________________________ Page 2 LEVEL I-A CORE PRIVILEGES These procedures generally do not involve surgery and are limited to consultations and minor procedures. Physicians must have satisfactorily completed an ACGME approved Neurosurgery Residency Program or equivalent. History and Physical for diagnosis and Insertion of lumbar spinal drain Myelography treatment plan Insertion of percutaneous arterial Puncture ventricular shunt C1-2 tap catheter Epidural injection of medication Lumbar puncture Request Granted Not Granted Granted with following The above Core privileges are those able to be performed after requirements: successful completion of an accredited training program in that core specialty. The removal or restriction of these privileges would require further investigation as to the individual’s overall ability to practice, but there is no need to delineate these privileges individually. Level I – A CORE PRIVILEGES LEVEL II PRIVILEGES – ADULT With Following Initial Request: PHYSICIAN Not Requirements** Requires successful completion of a Neurosurgery REQUEST Granted Granted* (Provide Details) Residency/Fellowship and a letter from the program director attesting to proficiency or experience (case list from primary hospital covering past two (2) years) At Reappointment: Past two (2) years case list required. Use intraoperative laser CO2/Yag/KTP – Requires 1.) Completion of approved training program in Laser Surgery of Cent /Peripheral Nervous System that addresses: principles of operating lasers, clinical applications, risks to patients and staff, safety procedures and care of equipment; didactic and practical training with lasers within last year. Or 2.) four (4) or more unsupervised cases within last year and training program completed w/in last three (3) years. (Attach documentation) Pathology specimens must be obtained as appropriate. Case list required at reappointment. Cortical mapping Cryosurgery Diagnostic Angiography of carotid or vertebral artery Disc Replacement Endoscopy as primary approach brain peripheral spine transnasal Functional/ablative - cordotomy creation lesion brain or spine placement brain electrode rhizotomy/rhizolysis Intra Arterial (IA) Thrombolysis Intravenous (IV) Thrombolysis Kyphoplasty Rhizotomy Vertebroplasty Neurosurgery DOP 9/2021 Neurosurgery Name:____________________________________________________ Page 3 LEVEL II PRIVILEGES – With Following ENDOVASCULAR PROCEDURES PHYSICIAN Not Requirements** Initial Request: REQUEST Granted Granted* (Provide Details) Requires documentation of endovascular experience and training including letter from Residency or Fellowship Program Director attesting to proficiency or certificate from “Hands On” Program within the last two (2) years. Level of initial supervision will be determined. In the absence of above requirements: Letter from the Neurosurgery Chief of Service at primary hospital attesting to proficiency and case list for the past two years. At reappointment: Past two (2) years case list required. Aneurysm Endovascular Occlusion Arterial puncture, insertion of catheters Brachiocephalic Angioplasty Brachiocephalic Stents Carotid Stent Embolization of Arteriovenous Malformation Embolization of Tumor, Extracranial Embolization of Tumor, Intracranial Iliac Stents Intracranial Angioplasty Intracranial Stent Spinal Angiography, Diagnostic Spinal Embolization Test Occlusion/Occlusion of Cranial Vessel Thrombolysis, Intraarterial, acute Stroke or Vessel Occlusion Treatment of Fistula (head, neck, spine) NEUROSURGICAL CRITICAL CARE LEVEL II CORE PRIVILEGES – for the management/treatment of life- threatening disorders and the use of Moderate/conscious sedation, Deep Sedation and Analgesia (pain management). Initial and Reappointment requirements: 1. Successful completion of an ACGME accredited, AOA, Royal College of Physicians and Surgeons of Canada, or an ACGME equivalent Neurosurgical Critical Care fellowship program. 2. Board certification in Neuro Critical Care, if not board certified, applicant will be given two (2) years from date of initial appointment to obtain certification in this specialty. *Maintenance of Board Certification is mandatory for all providers who have achieved this status.* (In the absence of formal training and board certification, it will be at the Chief of Service discretion to waive the aforementioned requirements based on the applicant’s experience.) With Following Requirements PHYSICIAN GRANTED NOT GRANTED* (Provide Details) REQUEST Neurosurgery DOP 9/2021 Neurosurgery Name:____________________________________________________ Page 4 LEVEL II Core PRIVILEGES – PEDIATRIC Requires successful completion of a Pediatric Fellowship training program or In the absence of above requirements: Letter from the Neurosurgery Chief of Service at primary hospital attesting to proficiency and Pediatric cases list for the past two (2) years. Cranial Procedures (<16 years) Cerebrospinal fluid diversion Craniotomy/Craniectomy for tumor, Stereotactic approach for biopsy in (ventriculostomy, spinal reservoir, trauma, abscess, cyst, vascular lesion, conjunction with other procedure shunting procedure) Chiari malformation or decompression Subdural tap through burr hole or fontanelle Frameless stereotaxy ventricular puncture through burr hole or Intracranial endoscopy fontanelle Peripheral Nerve Procedures (<16 years) Excision of peripheral nerve Exploration and repair, decompression, trans- position, or anastomosis of peripheral nerve Spinal Procedures (<16 years) Application of orthotic, traction or halo Laminectomy for treatment of syringomyelia Spinal endoscopy in conjunction with any of Excision of intervertebral disc, anterior Laminectomy or laminotomy for spinal tumor, disc, these privileges approach, with or without fusion abscess, cyst, decompression Spinal infusion, anterior Insertion of epidural or intrathecal Lumbar spinal fluid shunt Spinal infusion, posterior Repair of myelomeningocele Use of spinal stereotaxis in conjunction with infusion pump any of the above Level II Core Privileges - Pediatric Request Granted Not Granted* With Following Requirements** (provide Details) Level II Privilege Laser Procedures (<16 years) Use of laser in conjunction with any of the above listed Level II Core Privileges - Pediatric procedures Requirements: 1.) Completion of approved training program in Laser Surgery of Cent /Peripheral Nervous System that addresses: principles of operating Lasers, clinical applications, risks to patients
Recommended publications
  • Core Neurosurgery
    BAYLOR SCOTT & WHITE TEXAS SPINE & JOINT HOSPITAL NEUROLOGICAL SURGERY CLINICAL PRIVILEGES NAME: ________________________________ Initial appointment Reappointment All new applicants must meet the following requirements as approved by the governing body. To be eligible to apply for core privileges in neurological surgery, the initial applicant must meet the following criteria: Successful completion of ACGME or American Osteopathic Association accredited residency in neurological surgery. Required previous experience: Applicants for initial appointment must be able to demonstrate the performance of at least 50 neurological surgical procedures, reflective of the scope of privileges requested, during the last 12 months or demonstrate successful completion of residency or fellowship within the past 12 months. Reappointment requirements: To be eligible to renew core privileges in Neurological Surgery, the applicant must meet the following maintenance of privilege criteria: Current demonstrated competence and an adequate volume of neurological surgery procedures with acceptable results, reflective of the scope of privileges requested, for the past 24 months based on results of ongoing professional practice evaluation and outcomes. Evidence of current ability to perform privileges requested is required of all applicants for renewal of privileges NEUROLOGICAL SURGERY CORE PRIVILEGES Requested: Admit, evaluate, diagnose, consult and provide nonoperative and pre-, intran, and postoperative care to patients of all ages presenting with injuries
    [Show full text]
  • Hydrocephalus and Shunts
    Hydrocephalus and Shunts Information for patients 2 What is hydrocephalus? The brain is surrounded by fluid, called CSF - Cerebrospinal fluid. The CSF provides some protection for the brain. The brain makes CSF in special fluid-filled spaces called ventricles. The ventricles link to each other by a system of channels through which the CSF flows and eventually leaves to surround the whole brain and spinal cord. The CSF is then taken back into the blood-stream by special channels beside the major veins on the inside of the skull. These are called arachnoid granulations. Figure 1 - Diagram of the brain showing normal CSF pathways 3 Hydrocephalus is a condition in which the CSF builds up within the brain. There are a number of causes of this: 1. The fluid pathways may be blocked or narrowed so that fluid cannot flow adequately. The causes of this blockage can include scarring, a variation in the development of the fluid pathways (present from birth) or sometimes by a tumour which blocks the CSF flow. 2. Sometimes the fluid collection channels (arachnoid granulations) can become blocked and stop working - in a similar manner to how leaves can block a drain. This can happen following an infection or a bleed (haemorrhage). As a result of this block in fluid flow, CSF builds up inside the brain, resulting in an increase in pressure. As a result of this patients most commonly report symptoms of headaches, nausea and vomiting, but problems with balance and short term memory have also been reported. There is another group of patients who do not fit into the patterns described above.
    [Show full text]
  • A Systematic Review of Virtual Reality for the Assessment of Technical Skills in Neurosurgery
    NEUROSURGICAL FOCUS Neurosurg Focus 51 (2):E15, 2021 A systematic review of virtual reality for the assessment of technical skills in neurosurgery *Justin Chan, BS,1 Dhiraj J. Pangal, BS,1 Tyler Cardinal, BS,1 Guillaume Kugener, MEng,1 Yichao Zhu, MS,1 Arman Roshannai,1 Nicholas Markarian, BS,1 Aditya Sinha, BS,1 Anima Anandkumar, PhD,2 Andrew Hung, MD,3 Gabriel Zada, MD, MS,1 and Daniel A. Donoho, MD4 1USC Department of Neurosurgery, Keck School of Medicine of the University of Southern California, Los Angeles, California; 2Computing + Mathematical Sciences, California Institute of Technology, Pasadena, California; 3USC Department of Urology, Keck School of Medicine of the University of Southern California, Los Angeles, California; and 4Texas Children’s Hospital, Baylor College of Medicine, Houston, Texas OBJECTIVE Virtual reality (VR) and augmented reality (AR) systems are increasingly available to neurosurgeons. These systems may provide opportunities for technical rehearsal and assessments of surgeon performance. The assessment of neurosurgeon skill in VR and AR environments and the validity of VR and AR feedback has not been systematically reviewed. METHODS A systematic review following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines was conducted through MEDLINE and PubMed. Studies published in English between January 1990 and February 2021 describing the use of VR or AR to quantify surgical technical performance of neurosurgeons without the use of human raters were included. The types and categories of automated performance metrics (APMs) from each of these studies were recorded. RESULTS Thirty-three VR studies were included in the review; no AR studies met inclusion criteria.
    [Show full text]
  • ICD~10~PCS Complete Code Set Procedural Coding System Sample
    ICD~10~PCS Complete Code Set Procedural Coding System Sample Table.of.Contents Preface....................................................................................00 Mouth and Throat ............................................................................. 00 Introducton...........................................................................00 Gastrointestinal System .................................................................. 00 Hepatobiliary System and Pancreas ........................................... 00 What is ICD-10-PCS? ........................................................................ 00 Endocrine System ............................................................................. 00 ICD-10-PCS Code Structure ........................................................... 00 Skin and Breast .................................................................................. 00 ICD-10-PCS Design ........................................................................... 00 Subcutaneous Tissue and Fascia ................................................. 00 ICD-10-PCS Additional Characteristics ...................................... 00 Muscles ................................................................................................. 00 ICD-10-PCS Applications ................................................................ 00 Tendons ................................................................................................ 00 Understandng.Root.Operatons..........................................00
    [Show full text]
  • Neurosurgery
    March 10, 2017 St Elizabeth Healthcare 9:02 am Privileges for: Neurosurgery Request ST. ELIZABETH - EDGEWOOD ST. ELIZABETH - FLORENCE ST. ELIZABETH - FT. THOMAS ST. ELIZABETH - GRANT CO. (Surgical & other invasive procedures requiring general anesthetic are not offered) MEC Approval: August 27, 2009; Rev. November 15, 2012, February 27, 2014 Board Approval: September 14, 2009; Rev. January 7, 2013, May 5, 2014 DEPARTMENT APPROVAL ________Approved ________Disapproved ___________________________________________ ________________ Department/Section Chair Signature Date MINIMUM REQUIREMENTS Degree required: MD or DO Successful completion of an ACGME or AOA accredited residency in neurosurgery. Note: For Practitoners (excluding AHPs) who apply for membership after March 2, 2009 be and remain (with a lapse of no longer than one year) board certified in their principal practice specialty, or become and remain (with a lapse of no longer than one year) board certified within six years of completion of their post-graduate medical training. Only those boards recognized by the American Board of Medical Specialties or the American Osteopathic Association are acceptable. This board certification requirement does not apply to applicants who on March 2, 2009 were members in good standing on the medical staff of the St. Luke Hospitals or St. Elizabeth Medical Center. PRIVILEGES REQUESTED Pursuant to Bylaws Section 6.1.4, practitioners may exercise the privileges requested and awarded below only at facilities where St. Elizabeth Healthcare offers those services. I. Core Privileges: Core privileges in neurosurgery include the care, treatment or services listed immediately below. I specifically acknowledge that board certification alone does not necessarily qualify me to perform all core privileges or assure competence in all clinical areas.
    [Show full text]
  • CSW Dysnatremia Pathway
    Dysnatremia v2.2: Table of Contents Approval & Citation Summary of Version Changes Explanation of Evidence Ratings Patients At Risk for High or Low Sodium Postop Neurosurgery At Risk for Hyponatremia Periop Neurosurgery At Risk for Diabetes Insipidus Postop Neurosurgery At Risk for Diabetes Insipidus Patients with Diabetes Insipidus Periop Known Diabetes Insipidus ED or Acute Care Known Diabetes Insipidus Background How Dysnatremia Occurs For questions concerning this pathway, Last Updated: May 2021 contact: [email protected] Next Expected Review: October 2023 © 2021 Seattle Children’s Hospital, all rights reserved, Medical Disclaimer Dysnatremia v2.2: Postop Neurosurgery At Risk for Hyponatremia Approval & Citation Summary of Version Changes Explanation of Evidence Ratings Return to Table of Contents Monitoring Procedures at High Risk Orders for Low Sodium • Serum sodium and serum osmolality qam x 3 days Inclusion Criteria • Daily weight • Craniotomy • Patients with procedure • Strict intake and output • Craniosynostosis repair/ at high risk for low • If no void over 8 hours, bladder scan or ask patient to cranial vault expansion/frontal sodium void orbital advancement Call Contact Provider for • Hemispherectomy/lobectomy Exclusion Criteria • Placement of Grid and strip • Sodium <135 • Age <1 year • Tumor resection/biopsy • Endoscopic 3rd ventriculostomy • Intake and output positive > 40 ml/kg over 8 hours (ETV) • Insertion of lumbar drain • Urine output <0.5 ml/kg/hr or no void over 8 hours • Laser ablation • Subgaleal
    [Show full text]
  • Aesculap® Neuroendoscopy
    Aesculap® Neuroendoscopy Intraventricular, Endoscope-Assisted, Transnasal/Transsphenoidal Neuroendoscopic Equipment With comments from international experts in the field of neuroendoscopy and minimally-invasive neurosurgery. Aesculap Neurosurgery Aesculap Neuroendoscopy Michael Fritsch Jeremy Greenlee André Grotenhuis Nikolai Hopf Neubrandenburg, Germany Iowa City, USA Nijmegen, Netherlands Stuttgart, Germany 2 Aesculap Neurosurgery Intraventricular „ In 1924, the famous general and neurological achieve deep seated regions without approach surgeon William Halsted expressed his belief “… related traumatization of sensitive neurovascular that the tendency will always be in the direction structures. of exercising greater care and refinement in oper- The endoscopic image allows illumination and ating”. Today, within the third millennium this fun- inspection of angles in hidden parts of the surgical damental philosophy of minimally invasive therapy field with the and clear depiction of anatomical should be emphasized more than ever before, details. In addition, due to the enormous optical operating with a minimum of iatrogenic trauma depth of field of modern endoscopes, endoscopes while achieving maximum surgical efficiency. provide a three dimensional aspect of anatomic Recent improvements in preoperative imaging and structures. Recently, the intraoperative use of full surgical instrumentation allow neurosurgeons to high definition (HD) image quality offers a new treat more complex pathologies through custom- area in endoscopic neurosurgery
    [Show full text]
  • Perioperative Management of Adult Patients with External Ventricular
    SPECIAL ARTICLE Perioperative Management of Adult Patients With External Ventricular and Lumbar Drains: Guidelines From the Society for Neuroscience in Anesthesiology and Critical Care Abhijit V. Lele, MBBS, MD, MS,* Amie L. Hoefnagel, MD,w Nina Schloemerkemper, MD, Dr. med., FRCA,z David A. Wyler, MD,y Nophanan Chaikittisilpa, MD,8 Monica S. Vavilala, MD,z Bhiken I. Naik, MBBCh,# James H. Williams, MD, PhD,** Lakshmikumar Venkat Raghavan, MBBS, MD, FRCA, FRCPC,ww and Ines P. Koerner, MD, PhD,zz Representing SNACC Task Force for Developing Guidelines for Perioperative Management of External Ventricular and Lumbar Drains Key Words: external ventricular drain, ventriculostomy, lumbar Abstract: External ventricular drains and lumbar drains are drain, guidelines, perioperative, management, leveling, trans- commonly used to divert cerebrospinal fluid and to measure port, checklist, competency cerebrospinal fluid pressure. Although commonly encountered in the perioperative setting and critical for the care of neuro- (J Neurosurg Anesthesiol 2017;29:191–210) surgical patients, there are no guidelines regarding their man- agement in the perioperative period. To address this gap in the literature, The Society for Neuroscience in Anesthesiology & xternal ventricular drains (EVDs) and lumbar drains Critical Care tasked an expert group to generate evidence-based E(LDs) are temporary devices placed into the lateral guidelines. The document generated targets clinicians involved ventricles of the brain and lumbar subarachnoid space, in perioperative care
    [Show full text]
  • Perioperative Management of External Ventricular and Lumbar Drain
    Perioperative Management of External Ventricular (EVD) and Lumbar Drain (LD) Educational Document from the Society of Neuroscience in Anesthesiology & Critical Care (SNACC) SNACC Task Force for Perioperative Management of EVD & LD EVD & LD Identification Pre-op Transporting Intraoperative Introduction EVD & LD Assessment EVD & LD Management Device Set Up Indications Troubleshooting Patient Leveling and Complications Preparation Zeroing Perioperative Checklist This Presentation is Free of Commercial Bias SNACC does not endorse any particular EVD or LD system manufacturer Perioperative Management of External Ventricular and Lumbar Drain EVD & LD Identification Pre-op Transporting Intraoperative Introduction EVD & LD Assessment EVD & LD Management Device Set Up Indications Troubleshooting Patient Leveling and Complications Preparation Zeroing Perioperative Checklist Common Indications for Introduction to EVD & LD placement of EVD Acute symptomatic hydrocephalus Aneurysmal Subarachnoid Hemorrhage (SAH) Intracerebral and Intraventricular Hemorrhage with decreased level of consciousness Acute ischemic cerebellar stroke in concurrence with decompressive craniectomy ICP monitoring in Traumatic Brain Injury (TBI) TBI with post resuscitation GCS of 3-8, and abnormal computed tomography (CT) scan defined as one with hematomas, contusions, swelling, herniation or compressed basal cisterns Severe TBI with a normal CT scan if two or more of the following features are noted on admission (age over 40 yrs., unilateral or bilateral motor posturing, or SBP
    [Show full text]
  • BMJ Open Is Committed to Open Peer Review. As Part of This Commitment We Make the Peer Review History of Every Article We Publish Publicly Available
    BMJ Open: first published as 10.1136/bmjopen-2020-044493 on 19 January 2021. Downloaded from BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available. When an article is published we post the peer reviewers’ comments and the authors’ responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to. The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript. BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (http://bmjopen.bmj.com). If you have any questions on BMJ Open’s open peer review process please email [email protected] http://bmjopen.bmj.com/ on September 24, 2021 by guest. Protected copyright. BMJ Open BMJ Open: first published as 10.1136/bmjopen-2020-044493 on 19 January 2021. Downloaded from Persistent opioid use and opioid-related harm after hospital admissions for surgery and trauma in New Zealand: A Population-based Cohort Study ForJournal: peerBMJ Open review only Manuscript ID bmjopen-2020-044493 Article Type: Protocol Date Submitted by the 04-Sep-2020 Author: Complete List of Authors:
    [Show full text]
  • Fact Sheet: Endoscopic Third Ventriculostomy
    Fact Sheet: Endoscopic Third Ventriculostomy In endoscopic third ventriculostomy, a small perforation is made in the thinned floor of the third ventricle, allowing movement of cerebrospinal fluid (CSF) out of the blocked ventricular system and into the interpenducular cistern (a normal CSF space). Cerebrospinal fluid within the ven- tricle is thus diverted elsewhere in an attempt to bypass an obstruction in the aqueduct of Sylvius and thereby relieve pressure. The objective of this procedure, called an “intracranial CSF diver- sion,” is to normalize pressure on the brain without using a shunt. Endoscopic third ventriculos- tomy is not a cure for hydrocephalus, but rather an alternate treatment. Although open ventriculostomies were performed as early as 1922, they became a less common method of treating hydrocephalus in the 1960s, with the advent of shunt systems. Despite recent advances in shunt technology and surgical techniques, however, shunts remain inadequate in many cases. Specifically, extracranial shunts are subject to complications such as blockage, infec- tion, and overdrainage, often necessitating repeated surgical revisions. For this reason, in selected cases, a growing number of neurosurgeons are recommending endoscopic third ventriculostomy in place of shunting. The ultimate goal of endoscopic third ventriculostomy is to render a shunt unnecessary. Although endoscopic third ventriculostomy is ideally a one-time procedure, evidence suggests that some patients will require more than one surgery to maintain adequate opening and drainage. New Technologies The revived interest in ventriculostomy as a viable alternative treatment approach is largely due to the development of a new technology called neuroendoscopy, or simply endoscopy. Neuro- endoscopy involves passing a tiny viewing scope into the third ventricle, allowing images to be projected onto a monitor located next to the operating table.
    [Show full text]
  • Icd-9-Cm (2010)
    ICD-9-CM (2010) PROCEDURE CODE LONG DESCRIPTION SHORT DESCRIPTION 0001 Therapeutic ultrasound of vessels of head and neck Ther ult head & neck ves 0002 Therapeutic ultrasound of heart Ther ultrasound of heart 0003 Therapeutic ultrasound of peripheral vascular vessels Ther ult peripheral ves 0009 Other therapeutic ultrasound Other therapeutic ultsnd 0010 Implantation of chemotherapeutic agent Implant chemothera agent 0011 Infusion of drotrecogin alfa (activated) Infus drotrecogin alfa 0012 Administration of inhaled nitric oxide Adm inhal nitric oxide 0013 Injection or infusion of nesiritide Inject/infus nesiritide 0014 Injection or infusion of oxazolidinone class of antibiotics Injection oxazolidinone 0015 High-dose infusion interleukin-2 [IL-2] High-dose infusion IL-2 0016 Pressurized treatment of venous bypass graft [conduit] with pharmaceutical substance Pressurized treat graft 0017 Infusion of vasopressor agent Infusion of vasopressor 0018 Infusion of immunosuppressive antibody therapy Infus immunosup antibody 0019 Disruption of blood brain barrier via infusion [BBBD] BBBD via infusion 0021 Intravascular imaging of extracranial cerebral vessels IVUS extracran cereb ves 0022 Intravascular imaging of intrathoracic vessels IVUS intrathoracic ves 0023 Intravascular imaging of peripheral vessels IVUS peripheral vessels 0024 Intravascular imaging of coronary vessels IVUS coronary vessels 0025 Intravascular imaging of renal vessels IVUS renal vessels 0028 Intravascular imaging, other specified vessel(s) Intravascul imaging NEC 0029 Intravascular
    [Show full text]