Black Holes in N = 2 Supergravity Harold Erbin

Total Page:16

File Type:pdf, Size:1020Kb

Black Holes in N = 2 Supergravity Harold Erbin Black holes in N = 2 supergravity Harold Erbin To cite this version: Harold Erbin. Black holes in N = 2 supergravity. High Energy Physics - Theory [hep-th]. Université Pierre et Marie Curie - Paris VI, 2015. English. NNT : 2015PA066367. tel-01269849 HAL Id: tel-01269849 https://tel.archives-ouvertes.fr/tel-01269849 Submitted on 5 Feb 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Thèse de doctorat réalisée au Laboratoire de physique théorique et hautes énergies pour obtenir le grade de Docteur de l’Université Pierre et Marie Curie Spécialité : Physique École doctorale : « Physique en Île-de-France » présentée par Harold Erbin soutenue le 23 septembre 2015 Titre : Trous noirs en supergravité N = 2 Black holes in N = 2 supergravity devant le jury composé de Iosif Bena Membre invité Geoffrey Compère Rapporteur Atish Dabholkar Examinateur Nick Halmagyi Directeur de thèse Giuseppe Policastro Examinateur Henning Samtleben Rapporteur Antoine Van Proeyen Examinateur Contents Abstract.......................................... vii Résumé .......................................... vii Remerciements ...................................... viii Introduction ix 0.1 Background..................................... ix 0.1.1 Quantumgravityandstringtheory. .. ix 0.1.2 Supersymmetryandsupergravity . .. x 0.1.3 Blackholes ................................. xi 0.1.4 BPSsolutionsandadSblackholes . xiii 0.1.5 Taub–NUTspacetime . .. .. .. .. .. .. .. .. .. .. .. xiii 0.2 Motivations ..................................... xiv 0.2.1 Supergravity ................................ xiv 0.2.2 Demiański–Janis–Newmanalgorithm . ... xv 0.3 Content ....................................... xvii 0.3.1 Supergravity ................................ xvii 0.3.2 Demiański–Janis–Newmanalgorithm . ... xix 0.4 Structure ...................................... xx 0.5 Publications..................................... xxi 2I N = supergravity 1 1 Introduction to N = 2 supergravity 2 1.1 Algebraandmultiplets. .. 2 1.2 Lagrangian ..................................... 4 1.3 Electromagneticduality . ... 4 1.4 Scalargeometry................................... 7 1.4.1 Isometries.................................. 7 1.4.2 SpecialKählermanifolds . 8 1.4.3 Quaternionicmanifolds . 9 2 Gauged supergravity 11 2.1 Generalities ..................................... 11 2.2 Gaugings ...................................... 12 2.2.1 Isometries.................................. 12 2.2.2 Fayet–Iliopoulosgauging. .. 14 2.3 Lagrangian ..................................... 15 2.3.1 Generalcase ................................ 15 2.3.2 Fayet-Iliopoulosgaugings . .. 16 2.3.3 Minimalgaugedsugra . .. .. .. .. .. .. .. .. .. .. .. 16 2.4 Supersymmetryvariations . ... 17 2.5 Magneticgaugings ................................. 17 i 2.5.1 Generalities................................. 18 2.5.2 Constraintsfromlocality . 18 2.6 Quaternionicgaugings . .. 19 II Kähler geometries 21 3 Hermitian and Kähler manifolds 22 3.1 Hermitianmanifold................................ 22 3.1.1 Definitionandproperties . 22 3.1.2 Complexcoordinates. 23 3.2 Kählermanifold................................... 24 3.2.1 Definition .................................. 24 3.2.2 Riemanniangeometry . 25 3.2.3 Symmetries ................................. 25 3.2.4 Kähler–Hodgemanifold . 27 4 Special Kähler geometry 29 4.1 Definition ...................................... 29 4.2 Homogeneous coordinates and symplectic structure . .......... 30 4.2.1 Vectors ................................... 30 4.2.2 MetricandKählerpotential. 31 4.2.3 Covariantholomorphicfields . 31 4.2.4 Prepotentialproperties . 32 4.3 Homogeneousmatrices.. .. .. .. .. .. .. .. .. .. .. .. .. 32 4.3.1 Hessianmatrix ............................... 32 4.3.2 Periodmatrix................................ 33 4.4 Symplecticmatrices ............................... 33 4.5 Structurecoefficients. .. .. .. .. .. .. .. .. .. .. .. .. .. 35 4.6 Riemanniangeometry ............................... 36 4.6.1 Generalproperties . .. .. .. .. .. .. .. .. .. .. .. .. 36 4.6.2 Symmetricspace .............................. 37 5 Symplectic transformations and invariants 38 5.1 Symplectictransformations . .... 38 5.1.1 Holomorphicsection . 38 5.1.2 Sectionandcoordinates . 39 5.2 Symplecticinvariants. ... 40 5.3 Dualityinvariants................................ .. 41 5.3.1 Generaldefinition ............................. 41 5.3.2 Quarticinvariant.............................. 42 5.3.3 Invarianttensor............................... 42 5.3.4 Freudenthalduality .. .. .. .. .. .. .. .. .. .. .. .. 43 5.4 Non-symmetricspaces .. .. .. .. .. .. .. .. .. .. .. .. .. 43 6 Special Kähler classification. Quadratic and cubic prepotentials 44 6.1 Classificationofspaces. .. ... 44 6.1.1 Symmetricspaces.............................. 44 6.1.2 Homogeneousspaces .. .. .. .. .. .. .. .. .. .. .. .. 45 6.2 Quadraticprepotential. ... 45 6.2.1 Generalformulas .............................. 46 6.2.2 Quarticandquadraticinvariants . ... 47 6.3 Cubicprepotential ................................ 48 6.3.1 Generalcase ................................ 48 ii 6.3.2 Genericsymmetricmodels. 49 6.3.3 Jordanalgebrasandquarticinvariant . .... 49 6.3.4 Non-symmetricspaces . 50 7 Special Kähler isometries 51 7.1 Generalcase..................................... 51 7.2 Cubicprepotential ................................ 52 7.2.1 Parameters ................................. 53 7.2.2 Liederivative................................ 53 7.2.3 Algebra ................................... 53 7.3 Quadraticprepotential. ... 54 7.3.1 Parameters ................................. 54 7.3.2 Liederivative................................ 54 8 Quaternionic geometry 55 8.1 Definitions...................................... 55 8.2 Geometry ...................................... 57 8.2.1 Vielbein................................... 57 8.2.2 Curvature.................................. 58 8.3 Symmetries ..................................... 58 8.4 Classificationofspaces. .. ... 60 8.5 Specialquaternionicmanifolds . ..... 61 8.5.1 Quaternionicmetricfromthec-map . .. 61 8.5.2 BasespecialKählermanifold . 61 8.5.3 Geometricalstructures. 62 9 Quaternionic isometries 63 9.1 Killingvectors ................................... 63 9.1.1 Dualitysymmetries. 63 9.1.2 Extrasymmetries.............................. 64 9.1.3 Hiddenvectors ............................... 65 9.1.4 Summary .................................. 67 9.2 Algebra ....................................... 68 9.3 Compensators.................................... 69 9.3.1 Dualitysymmetries. 70 9.3.2 Hiddensymmetries. .. .. .. .. .. .. .. .. .. .. .. .. 70 9.4 Prepotentials .................................... 71 III BPS equations for black holes 72 10 Generalities on AdS–NUT black holes 73 10.1Ansatz........................................ 73 10.2 Motivation: constant scalar black holes . ......... 73 10.2.1 Solution................................... 73 10.2.2 Rootstructureandsupersymmetry . ... 74 10.3 RootstructureandIRgeometry . ... 75 11 Static BPS equations 77 11.1Ansatz........................................ 77 11.2Equations ...................................... 78 11.3 Symplecticextension . ... 79 11.4 Symmetric withFIgaugings ......................... 80 Mv iii 12 Static BPS solutions 82 12.1 N = 2adS4 ..................................... 82 12.2 Near-horizon adS2 Σg . ............................. 85 12.3Generalsolution .................................× . 87 12.4Examples ...................................... 88 12.4.1 V5,2 . .................................... 89 12.4.2 SO(5) gauged supergravity on M3 . ................... 90 13 BPS AdS–NUT black holes 92 13.1Ansatz........................................ 92 13.2BPSequations ................................... 93 13.3 Symmetric v withFIgaugings ......................... 94 13.4Solutions ......................................M 95 13.4.1 Pairofdoubleroots .. .. .. .. .. .. .. .. .. .. .. .. 95 13.4.2 Singledoubleroot . .. .. .. .. .. .. .. .. .. .. .. .. 96 13.4.3 Fourindependentroots . 98 13.5Examples ...................................... 99 13.5.1 T 3 model .................................. 99 13.5.2 Constantscalarsolution . .. 100 13.5.3 F = X0X1 . ............................... 100 − IV Demiański–Janis–Newman algorithm 101 14 Janis–Newman algorithm 102 14.1 Originalprescription . .... 102 14.2 Giampieri’sprescription . ..... 104 14.3Validity ....................................... 106 14.4Gaugefield ..................................... 106 14.4.1 Giampieri’sprescription . ... 106 14.4.2 Newman’sprescription. 107 14.4.3 Keane’sprescription . 107 14.5Examples ...................................... 107 14.5.1 Flatspace.................................. 107 14.5.2 Kerr–Newmanblackhole . 108 15 Extended algorithm 110 15.1 Settinguptheansatz. .. .. .. .. .. .. .. .. .. .. .. ... .. 111 15.2 Demiański–Janis–Newmanalgorithm . ...... 112 15.2.1 Janis–Newmantransformation . .. 112 15.2.2 Metric.................................... 113 15.2.3 Gaugefield ................................
Recommended publications
  • Renormalization Group Flows from Holography; Supersymmetry and a C-Theorem
    © 1999 International Press Adv. Theor. Math. Phys. 3 (1999) 363-417 Renormalization Group Flows from Holography; Supersymmetry and a c-Theorem D. Z. Freedmana, S. S. Gubser6, K. Pilchc and N. P. Warnerd aDepartment of Mathematics and Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA 02139 b Department of Physics, Harvard University, Cambridge, MA 02138, USA c Department of Physics and Astronomy, University of Southern California, Los Angeles, CA 90089-0484, USA d Theory Division, CERN, CH-1211 Geneva 23, Switzerland Abstract We obtain first order equations that determine a super symmetric kink solution in five-dimensional Af = 8 gauged supergravity. The kink interpo- lates between an exterior anti-de Sitter region with maximal supersymme- try and an interior anti-de Sitter region with one quarter of the maximal supersymmetry. One eighth of supersymmetry is preserved by the kink as a whole. We interpret it as describing the renormalization group flow in J\f = 4 super-Yang-Mills theory broken to an Af = 1 theory by the addition of a mass term for one of the three adjoint chiral superfields. A detailed cor- respondence is obtained between fields of bulk supergravity in the interior anti-de Sitter region and composite operators of the infrared field theory. We also point out that the truncation used to find the reduced symmetry critical point can be extended to obtain a new Af = 4 gauged supergravity theory holographically dual to a sector of Af = 2 gauge theories based on quiver diagrams. e-print archive: http.y/xxx.lanl.gov/abs/hep-th/9904017 *On leave from Department of Physics and Astronomy, USC, Los Angeles, CA 90089 364 RENORMALIZATION GROUP FLOWS We consider more general kink geometries and construct a c-function that is positive and monotonic if a weak energy condition holds in the bulk gravity theory.
    [Show full text]
  • Limits on New Physics from Black Holes Arxiv:1309.0530V1
    Limits on New Physics from Black Holes Clifford Cheung and Stefan Leichenauer California Institute of Technology, Pasadena, CA 91125 Abstract Black holes emit high energy particles which induce a finite density potential for any scalar field φ coupling to the emitted quanta. Due to energetic considerations, φ evolves locally to minimize the effective masses of the outgoing states. In theories where φ resides at a metastable minimum, this effect can drive φ over its potential barrier and classically catalyze the decay of the vacuum. Because this is not a tunneling process, the decay rate is not exponentially suppressed and a single black hole in our past light cone may be sufficient to activate the decay. Moreover, decaying black holes radiate at ever higher temperatures, so they eventually probe the full spectrum of particles coupling to φ. We present a detailed analysis of vacuum decay catalyzed by a single particle, as well as by a black hole. The former is possible provided large couplings or a weak potential barrier. In contrast, the latter occurs much more easily and places new stringent limits on theories with hierarchical spectra. Finally, we comment on how these constraints apply to the standard model and its extensions, e.g. metastable supersymmetry breaking. arXiv:1309.0530v1 [hep-ph] 2 Sep 2013 1 Contents 1 Introduction3 2 Finite Density Potential4 2.1 Hawking Radiation Distribution . .4 2.2 Classical Derivation . .6 2.3 Quantum Derivation . .8 3 Catalyzed Vacuum Decay9 3.1 Scalar Potential . .9 3.2 Point Particle Instability . 10 3.3 Black Hole Instability . 11 3.3.1 Tadpole Instability .
    [Show full text]
  • Solutions and Democratic Formulation of Supergravity Theories in Four Dimensions
    Universidad Consejo Superior Aut´onoma de Madrid de Investigaciones Cient´ıficas Facultad de Ciencias Instituto de F´ısica Te´orica Departamento de F´ısica Te´orica IFT–UAM/CSIC Solutions and Democratic Formulation of Supergravity Theories in Four Dimensions Mechthild Hubscher¨ Madrid, May 2009 Copyright c 2009 Mechthild Hubscher.¨ Universidad Consejo Superior Aut´onoma de Madrid de Investigaciones Cient´ıficas Facultad de Ciencias Instituto de F´ısica Te´orica Departamento de F´ısica Te´orica IFT–UAM/CSIC Soluciones y Formulaci´on Democr´atica de Teor´ıas de Supergravedad en Cuatro Dimensiones Memoria de Tesis Doctoral realizada por Da Mechthild Hubscher,¨ presentada ante el Departamento de F´ısica Te´orica de la Universidad Aut´onoma de Madrid para la obtenci´on del t´ıtulo de Doctora en Ciencias. Tesis Doctoral dirigida por Dr. D. Tom´as Ort´ın Miguel, Investigador Cient´ıfico del Consejo Superior de Investigaciones Cient´ıficas, y Dr. D. Patrick Meessen, Investigador Contratado por el Consejo Superior de Investigaciones Cient´ıficas. Madrid, Mayo de 2009 Contents 1 Introduction 1 1.1 Supersymmetry, Supergravity and Superstring Theory . ....... 1 1.2 Gauged Supergravity and the p-formhierarchy . 10 1.3 Supersymmetric configurations and solutions of Supergravity ..... 18 1.4 Outlineofthisthesis............................ 23 2 Ungauged N =1, 2 Supergravity in four dimensions 25 2.1 Ungauged matter coupled N =1Supergravity. 25 2.1.1 Perturbative symmetries of the ungauged theory . ... 27 2.1.2 Non-perturbative symmetries of the ungauged theory . ..... 33 2.2 Ungauged matter coupled N =2Supergravity. 35 2.2.1 N = 2, d =4SupergravityfromStringTheory . 42 3 Gauging Supergravity and the four-dimensional tensor hierarchy 49 3.1 Theembeddingtensorformalism .
    [Show full text]
  • Spacetime Geometry from Graviton Condensation: a New Perspective on Black Holes
    Spacetime Geometry from Graviton Condensation: A new Perspective on Black Holes Sophia Zielinski née Müller München 2015 Spacetime Geometry from Graviton Condensation: A new Perspective on Black Holes Sophia Zielinski née Müller Dissertation an der Fakultät für Physik der Ludwig–Maximilians–Universität München vorgelegt von Sophia Zielinski geb. Müller aus Stuttgart München, den 18. Dezember 2015 Erstgutachter: Prof. Dr. Stefan Hofmann Zweitgutachter: Prof. Dr. Georgi Dvali Tag der mündlichen Prüfung: 13. April 2016 Contents Zusammenfassung ix Abstract xi Introduction 1 Naturalness problems . .1 The hierarchy problem . .1 The strong CP problem . .2 The cosmological constant problem . .3 Problems of gravity ... .3 ... in the UV . .4 ... in the IR and in general . .5 Outline . .7 I The classical description of spacetime geometry 9 1 The problem of singularities 11 1.1 Singularities in GR vs. other gauge theories . 11 1.2 Defining spacetime singularities . 12 1.3 On the singularity theorems . 13 1.3.1 Energy conditions and the Raychaudhuri equation . 13 1.3.2 Causality conditions . 15 1.3.3 Initial and boundary conditions . 16 1.3.4 Outlining the proof of the Hawking-Penrose theorem . 16 1.3.5 Discussion on the Hawking-Penrose theorem . 17 1.4 Limitations of singularity forecasts . 17 2 Towards a quantum theoretical probing of classical black holes 19 2.1 Defining quantum mechanical singularities . 19 2.1.1 Checking for quantum mechanical singularities in an example spacetime . 21 2.2 Extending the singularity analysis to quantum field theory . 22 2.2.1 Schrödinger representation of quantum field theory . 23 2.2.2 Quantum field probes of black hole singularities .
    [Show full text]
  • Black Hole Production and Graviton Emission in Models with Large Extra Dimensions
    Black hole production and graviton emission in models with large extra dimensions Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften vorgelegt beim Fachbereich Physik der Johann Wolfgang Goethe–Universit¨at in Frankfurt am Main von Benjamin Koch aus N¨ordlingen Frankfurt am Main 2007 (D 30) vom Fachbereich Physik der Johann Wolfgang Goethe–Universit¨at als Dissertation angenommen Dekan ........................................ Gutachter ........................................ Datum der Disputation ................................ ........ Zusammenfassung In dieser Arbeit wird die m¨ogliche Produktion von mikroskopisch kleinen Schwarzen L¨ochern und die Emission von Gravitationsstrahlung in Modellen mit großen Extra-Dimensionen untersucht. Zun¨achst werden der theoretisch-physikalische Hintergrund und die speziel- len Modelle des behandelten Themas skizziert. Anschließend wird auf die durchgefuhrten¨ Untersuchungen zur Erzeugung und zum Zerfall mikrosko- pisch kleiner Schwarzer L¨ocher in modernen Beschleunigerexperimenten ein- gegangen und die wichtigsten Ergebnisse zusammengefasst. Im Anschluss daran wird die Produktion von Gravitationsstrahlung durch Teilchenkollisio- nen diskutiert. Die daraus resultierenden analytischen Ergebnisse werden auf hochenergetische kosmische Strahlung angewandt. Die Suche nach einer einheitlichen Theorie der Naturkr¨afte Eines der großen Ziele der theoretischen Physik seit Einstein ist es, eine einheitliche und m¨oglichst einfache Theorie zu entwickeln, die alle bekannten Naturkr¨afte beschreibt.
    [Show full text]
  • Black Holes and Qubits
    Subnuclear Physics: Past, Present and Future Pontifical Academy of Sciences, Scripta Varia 119, Vatican City 2014 www.pas.va/content/dam/accademia/pdf/sv119/sv119-duff.pdf Black Holes and Qubits MICHAEL J. D UFF Blackett Labo ratory, Imperial C ollege London Abstract Quantum entanglement lies at the heart of quantum information theory, with applications to quantum computing, teleportation, cryptography and communication. In the apparently separate world of quantum gravity, the Hawking effect of radiating black holes has also occupied centre stage. Despite their apparent differences, it turns out that there is a correspondence between the two. Introduction Whenever two very different areas of theoretical physics are found to share the same mathematics, it frequently leads to new insights on both sides. Here we describe how knowledge of string theory and M-theory leads to new discoveries about Quantum Information Theory (QIT) and vice-versa (Duff 2007; Kallosh and Linde 2006; Levay 2006). Bekenstein-Hawking entropy Every object, such as a star, has a critical size determined by its mass, which is called the Schwarzschild radius. A black hole is any object smaller than this. Once something falls inside the Schwarzschild radius, it can never escape. This boundary in spacetime is called the event horizon. So the classical picture of a black hole is that of a compact object whose gravitational field is so strong that nothing, not even light, can escape. Yet in 1974 Stephen Hawking showed that quantum black holes are not entirely black but may radiate energy, due to quantum mechanical effects in curved spacetime. In that case, they must possess the thermodynamic quantity called entropy.
    [Show full text]
  • UNIVERSITY of CALIFORNIA Los Angeles Conformal Defects In
    UNIVERSITY OF CALIFORNIA Los Angeles Conformal Defects in Gauged Supergravity A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Physics by Matteo Vicino 2020 c Copyright by Matteo Vicino 2020 ABSTRACT OF THE DISSERTATION Conformal Defects in Gauged Supergravity by Matteo Vicino Doctor of Philosophy in Physics University of California, Los Angeles, 2020 Professor Michael Gutperle, Chair In this dissertation, we explore 1/2-BPS conformal defects that are holographically realized as a warped product of anti-de Sitter spacetime and a circle in gauged supergravity. These solutions can be obtained as the double analytic continuation of BPS black holes with hy- perbolic horizons. Observables including the expectation value of the defect and one-point functions of fields in the presence of the defect are calculated. In Chapter 1, we present a brief review of the AdS/CFT correspondence and its super- gravity approximation together with an introduction to conformal defects. In Chapter 2, we construct a singular spacetime in pure D = 4;N = 2 gauged supergravity dual to a 1/2-BPS conformal line defect. In Chapter 3, we show that the coupling of vector multiplets to the previous solution is capable of removing the singularity and present several examples. In Chapter 4, we construct solutions in D = 5;N = 4 gauged supergravity dual to 1/2-BPS surface operators in N = 2 superconformal field theories. ii The dissertation of Matteo Vicino is approved. Thomas Dumitrescu Eric D'Hoker Per Kraus Michael Gutperle, Committee Chair University of California, Los Angeles 2020 iii Table of Contents 1 Introduction :::::::::::::::::::::::::::::::::::::: 1 1.1 The AdS/CFT Correspondence .
    [Show full text]
  • Introduction to Black Hole Entropy and Supersymmetry
    Introduction to black hole entropy and supersymmetry Bernard de Wit∗ Yukawa Institute for Theoretical Physics, Kyoto University, Japan Institute for Theoretical Physics & Spinoza Institute, Utrecht University, The Netherlands Abstract In these lectures we introduce some of the principles and techniques that are relevant for the determination of the entropy of extremal black holes by either string theory or supergravity. We consider such black holes with N =2andN =4 supersymmetry, explaining how agreement is obtained for both the terms that are leading and those that are subleading in the limit of large charges. We discuss the relevance of these results in the context of the more recent developments. 1. Introduction The aim of these lectures is to present a pedagogical introduction to re- cent developments in string theory and supergravity with regard to black hole entropy. In the last decade there have been many advances which have thoroughly changed our thinking about black hole entropy. Supersymmetry has been an indispensable ingredient in all of this, not just because it is an integral part of the theories we consider, but also because it serves as a tool to keep the calculations tractable. Comparisons between the macroscopic and the microscopic entropy, where the latter is defined as the logarithm of the degeneracy of microstates of a certain brane or string configuration, were first carried out in the limit of large charges, assuming the Bekenstein- Hawking area law on the macroscopic (supergravity) side. Later on also subleading corrections could be evaluated on both sides and were shown to be in agreement, although the area law ceases to hold.
    [Show full text]
  • Spin Rate of Black Holes Pinned Down
    IN FOCUS NEWS 449–451; 2013) that used data from NASA’s NuSTAR mission, which was launched last year (see Nature 483, 255; 2012). Study leader Guido Risaliti, an astronomer at the Harvard-Smith- JPL-CALTECH/NASA sonian Center for Astrophysics in Cambridge, Massachusetts, says that NuSTAR provides access to higher-energy X-rays, which has allowed researchers to clarify the influence of the black hole’s gravity on the iron line. These rays are less susceptible than lower-energy X-rays to absorption by clouds of gas between the black hole and Earth, which some had speculated was the real cause of the distortion. In the latest study, astronomers calculated spin more directly (C. Done et al. Mon. Not. R. Astron. Soc. http://doi.org/nc2; 2013). They found a black hole some 150 million parsecs away with a mass 10 million times that of the Sun. Using the European Space Agency’s X-rays emitted by swirling disks of matter hint at the speed at which a supermassive black hole spins. XMM-Newton satellite, they focused not on the iron line but on fainter, lower-energy ASTROPHYSICS X-rays emitted directly from the accretion disk. The spectral shape of these X-rays offers indirect information about the temperature of the innermost part of the disk — and the Spin rate of black temperature of this material is, in turn, related to the distance from the event horizon and the speed at which the black hole is spinning. The calculations suggest that, at most, the black holes pinned down hole is spinning at 86% of the speed of light.
    [Show full text]
  • Kaluza-Klein Theory, Ads/CFT Correspondence and Black Hole Entropy
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CERN Document Server IFIC–01–37 Kaluza-Klein theory, AdS/CFT correspondence and black hole entropy J.M. Izquierdoa1, J. Navarro-Salasb1 and P. Navarrob 1 a Departamento de F´ısica Te´orica, Universidad de Valladolid E{47011 Valladolid, Spain b Departamento de F´ısica Te´orica, Universidad de Valencia and IFIC, Centro Mixto Universidad de Valencia{CSIC E{46100 Burjassot (Valencia), Spain Abstract The asymptotic symmetries of the near-horizon geometry of a lifted (near-extremal) Reissner-Nordstrom black hole, obtained by inverting the Kaluza-Klein reduction, explain the deviation of the Bekenstein- Hawking entropy from extremality. We point out the fact that the extra dimension allows us to justify the use of a Virasoro mode decom- position along the time-like boundary of the near-horizon geometry, AdS Sn, of the lower-dimensional (Reissner-Nordstrom) spacetime. 2× 1e-mails: [email protected], [email protected]fic.uv.es, [email protected]fic.uv.es 1 1 Introduction The universality of the Bekenstein-Hawking area law of black holes could be explained if the density of the microscopic states is controlled by the con- formal symmetry [1]. A nice example of this philosophy is provided by the BTZ black holes [2]. The Bekenstein-Hawking entropy can be derived [3], via Cardy’s formula, from the two-dimensional conformal symmetry arising at spatial infinity of three-dimensional gravity with a negative cosmological constant [4]. Moreover, one can look directly at the black hole horizon and treat it as a boundary.
    [Show full text]
  • Introduction to Supergravity
    Introduction to Supergravity Lectures presented by Henning Samtleben at the 13th Saalburg School on Fundamentals and New Methods in Theoretical Physics, September 3 { 14, 2007 typed by Martin Ammon and Cornelius Schmidt-Colinet ||| 1 Contents 1 Introduction 3 2 N = 1 supergravity in D = 4 dimensions 4 2.1 General aspects . 4 2.2 Gauging a global symmetry . 5 2.3 The vielbein formalism . 6 2.4 The Palatini action . 9 2.5 The supersymmetric action . 9 2.6 Results . 14 3 Extended supergravity in D = 4 dimensions 16 3.1 Matter couplings in N = 1 supergravity . 16 3.2 Extended supergravity in D = 4 dimensions . 17 4 Extended supergravity in higher Dimensions 18 4.1 Spinors in higher dimensions . 18 4.2 Eleven-dimensional supergravity . 20 4.3 Kaluza-Klein supergravity . 22 4.4 N = 8 supergravity in D = 4 dimensions . 26 A Variation of the Palatini action 27 2 1 Introduction There are several reasons to consider the combination of supersymmetry and gravitation. The foremost is that if supersymmetry turns out to be realized at all in nature, then it must eventually appear in the context of gravity. As is characteristic for supersymmetry, its presence is likely to improve the quantum behavior of the theory, particularly interesting in the context of gravity, a notoriously non-renormalizable theory. Indeed, in supergravity divergences are typically delayed to higher loop orders, and to date it is still not ruled out that the maximally supersymmetric extension of four-dimensional Einstein gravity might eventually be a finite theory of quantum gravity | only recently very tempting indications in this direction have been unvealed.
    [Show full text]
  • Black Holes and String Theory
    Black Holes and String Theory Hussain Ali Termezy Submitted in partial fulfilment of the requirements for the degree of Master of Science of Imperial College London September 2012 Contents 1 Black Holes in General Relativity 2 1.1 Black Hole Solutions . 2 1.2 Black Hole Thermodynamics . 5 2 String Theory Background 19 2.1 Strings . 19 2.2 Supergravity . 23 3 Type IIB and Dp-brane solutions 25 4 Black Holes in String Theory 33 4.1 Entropy Counting . 33 Introduction The study of black holes has been an intense area of research for many decades now, as they are a very useful theoretical construct where theories of quantum gravity become relevant. There are many curiosities associated with black holes, and the resolution of some of the more pertinent problems seem to require a quantum theory of gravity to resolve. With the advent of string theory, which purports to be a unified quantum theory of gravity, attention has naturally turned to these questions, and have remarkably shown signs of progress. In this project we will first review black hole solutions in GR, and then look at how a thermodynamic description of black holes is made possible. We then turn to introduce string theory and in particular review the black Dp-brane solutions of type IIB supergravity. Lastly we see how to compute a microscopic account of the Bekenstein entropy is given in string theory. 1 Chapter 1 Black Holes in General Relativity 1.1 Black Hole Solutions We begin by reviewing some the basics of black holes as they arise in the study of general relativity.
    [Show full text]