S Largest Toothed Pterosaur, NHMUK R481, an Incomplete Rostrum of Coloborhynchus Capito (Seeley, 1870) from the Cambridge Greensand of England

Total Page:16

File Type:pdf, Size:1020Kb

S Largest Toothed Pterosaur, NHMUK R481, an Incomplete Rostrum of Coloborhynchus Capito (Seeley, 1870) from the Cambridge Greensand of England Cretaceous Research 34 (2012) 1e9 Contents lists available at SciVerse ScienceDirect Cretaceous Research journal homepage: www.elsevier.com/locate/CretRes The world’s largest toothed pterosaur, NHMUK R481, an incomplete rostrum of Coloborhynchus capito (Seeley, 1870) from the Cambridge Greensand of England David M. Martill a,*, David M. Unwin b a Palaeobiology Research Group, School of Earth and Environmental Sciences, University of Portsmouth, Portsmouth PO1 3QL, UK b School of Museum Studies, University of Leicester, 19 University Road, Leicester LE1 7RF, UK article info abstract Article history: The assignment of a fragment of the anterior tip of a pterosaur rostrum from the Cenomanian Cambridge Received 1 June 2011 Greensand of eastern England to the ornithocheirid Coloborhynchus capito (Seeley, 1870) is confirmed. Accepted in revised form 6 September 2011 The fragment represents partial left and right fused premaxillae and retains broken teeth within alveoli. Available online 29 September 2011 A width across the palate of 57.4 mm, a height at the anterior rostrum in excess of 95 mm and a tooth with a diameter of 13 mm at the base of the crown indicates a remarkably large individual, tentatively Keywords: estimated to have had a skull length in excess of 0.75 m and a wing span of up to 7 m. This fragment Pterosauria represents the largest toothed pterosaur yet reported. This find, and several other large postcranial Coloborhynchus Cretaceous fragments from the Cambridge Greensand, suggest that ornithocheirids, toothed ornithocheiroids known e England from the earliest Early to early Late Cretaceous (Valanginian Cenomanian) achieved very large, but not Evolution giant size. Pteranodontids, edentulous ornithocheiroids currently known only from the mid Upper Gigantism Cretaceous (Coniacianeearly Campanian), reached similar dimensions, up to 7.25 m in wing span. Contrary to popular myth, however, ornithocheiroids did not attain the giant sizes (wing spans of 10 m or more) achieved by azhdarchids in the late Late Cretaceous (CampanianeMaastrichtian). Ó 2011 Elsevier Ltd. All rights reserved. 1. Introduction undertaken by Hooley (1914) and, more recently, the entire pterosaur assemblage was revised by Unwin (1991, 2001) who The Cretaceous Cambridge Greensand of eastern England was confirmed the presence of the ornithocheirids Anhanguera, excavated from the mid to late 19th century as a source of phos- Coloborhynchus and Ornithocheirus, as well as the lonchodectid phate for agricultural fertiliser (Grove, 1976), during which period Lonchodectes and the indeterminate edentulous pterosaur it yielded many fossils including vertebrates (Seeley, 1969). These Ornithostoma. almost exclusively fragmentary remains were derived from Despite the fragmentary nature of the Cambridge Greensand underlying Albian strata based on the associated derived pterosaur fossils, Owen recognised that some fragments repre- (reworked) invertebrate assemblage (Unwin, 2001). Among the sented individuals of considerable size and, for one taxon, “Pter- various fossils collected, which represent fish, ichthyosaurs, odactylus” [¼Coloborhynchus] sedgwickii, he estimated a wing span plesiosaurs, crocodiles, turtles and dinosaurs (including birds), of 22 ft (w6.55 m) (Owen, 1859a). Here we describe NHMUK R481, were many hundreds of bone fragments of pterosaurs. These a fragmentary pterosaur rostrum with teeth from the Cambridge pterosaur remains were first described by Owen (1859a, b, 1860, Greensand in the collections of the Natural History Museum, 1861) and later by Seeley in more than 20 publications spanning London. The specimen, which was first mentioned, but not figured the interval 1864 to 1901 (listed in Unwin, 2001). The most or described, by Unwin (2001), is incomplete and highly damaged: important among these were the “Index” published in 1869 and a combination of ancient reworking and recent phosphate digging. “The Ornithosauria”, which appeared in 1870. Owen erected four None the less it is noteworthy because it represents the largest new species and Seeley added many more, most of which have ornithocheirid found to date and indicates a possible upper limit to proved invalid for various reasons (see Unwin, 2001; Table 1). A the size achieved by toothed pterosaurs, thereby adding to our detailed review of the Cambridge Greensand pterosaurs was understanding of pterosaur evolution in the Cretaceous. The following collection abbreviations are used: CAMSM, Sedgwick * Corresponding author. Museum of Earth Sciences, Cambridge, UK; CSRLV, Centro Studi e E-mail address: [email protected] (D.M. Martill). Ricerche Ligabue, Venice, Italy; IMCF, Iwaki Museum of Coal and 0195-6671/$ e see front matter Ó 2011 Elsevier Ltd. All rights reserved. doi:10.1016/j.cretres.2011.09.003 2 D.M. Martill, D.M. Unwin / Cretaceous Research 34 (2012) 1e9 Table 1 3. Systematic palaeontology Metric data (in millimetres) for Coloborhynchus robustus (NSM-PV 19892, RGM 401 880) and Coloborhynchus capito (NHMUK R481, CAMSM B 54625). Abbreviations: HL, Pterosauria Kaup, 1834 humerus length; RD, depth of anterior rostral facia; RW, width of anterior rostral facia; SL, skull length; TD, maximum diameter of tooth in dental alveolus # 2; WS, Pterodactyloidea Plieninger, 1901 wing span. Data from Unwin (1991), Kellner and Tomida (2000) and Veldmeijer Ornithocheiroidea Seeley, 1891 (2003). Estimate based on restoration in Fig. 4 shown in parentheses. Ornithocheiridae Seeley, 1870 RW RD TD SL HL WS Genus Coloborhynchus Owen, 1874 NHMUK R481 57.4 (60) 56 13.6 eee CAMSM B 54625 48 44 13.0 eee Junior synonyms. Amblydectes Hooley, 1914; Siroccopteryx Mader NSM-PV 19892 25 21 8.5 616 257 4700 and Kellner, 1999; Tropeognathus (partim) Wellnhofer, 1987; a RGM 401 880 36 35 9.6 712 290 5300e5800 Uktenadactylus Rodrigues and Kellner, 2008. a Estimate based on comparison with NSM-PV 19892 (Kellner and Tomida, 2000) and SMNK 1132PAL (Frey and Martill, 1994). Type species. Coloborhynchus clavirostris Owen, 1874. Fossils, Iwaki, Japan; NHMUK, Natural History Museum, Temporal range. Valanginian to Late Albian (Fastnacht, 2001). London, UK; NSM, National Science Museum, Tokyo, Japan; RGM, National Natuurhistorisch Museum, Leiden, Netherlands; SMNK, Staatliches Museum für Naturkunde, Karlsruhe, Germany; YORM, Yorkshire Museum, York, UK. 2. Locality and stratigraphy The Cambridge Greensand is a thin (w0.6 m) remané deposit occurring at the base of the Chalk Formation in eastern England around the City of Cambridge (Fig. 1). It was extensively excavated between Barrington and Horningsea, Cambridgeshire in the 19th century (Grove,1976) but, with the exception of Barrington Chalk Pit (Mortimore et al., 2001), there are few exposures of this horizon available today. Although the deposit itself is generally considered to be of late Cretaceous, Cenomanian age, its macrofossil assemblage is thought to be derived largely from the underlying early Cretaceous, Albian, Gault Formation, on the basis of derived ammonites asso- ciated with the vertebrate fossils (e.g. Spath, 1923e1943; Owen, 1979; Morter and Wood, 1983). An early Cenomanian age for deposition of the Cambridge Greensand is based on an apparently autochthonous foraminiferan assemblage (Hart, 1973), but Morter and Wood (1983) could not rule out the possibility of a very late Albian age due to the presence of the bivalve Aucinella. The age of the derived vertebrates is now considered to be no older than the Cal- lihoplites auritus ammonite subzone and most likely no younger than upper Stoliczkaia dispar Zone (Cooper and Kennedy, 1977), and they are thus of late Albian age (Unwin, 2001; Fig. 2). Fig. 2. Stratigraphic column for the AlbianeCenomanian (Early/Late Cretaceous) of Fig. 1. Outcrop map of the Gault Clay and Upper Greensand in Eastern England. The Eastern England (modified from Unwin, 2001). Cambridge Greensand Member fossils vertebrate-bearing Cambridge Greensand occurs only in the narrow region between come from hiatus phosphate horizons (indicated by pebble stipple) within the Cen- the arrows. CGS, Cambridge Greensand Member. Based on Mortimore et al. (2001). omanian, but are of Albian age. ?, uncertainty of zonal boundary. D.M. Martill, D.M. Unwin / Cretaceous Research 34 (2012) 1e9 3 Geographic range. England, Texas, Brazil, North Africa, and perhaps As preserved NHMUK R481 is 95 mm high, and 38 mm long Mongolia (Owen, 1874; Lee, 1994; Mader and Kellner, 1999; Unwin with a width of 57.4 mm (Fig. 3AeG). The restored width across the and Bakhurina, 2000; Fastnacht, 2001; Veldmeijer, 2003; Rodrigues anterior palate is approximately 60 mm (Fig. 4). In anterior aspect and Kellner, 2008). the specimen comprises a pair of fused premaxillae with a rounded triangular, boss-like termination within which are located alveoli Coloborhynchus capito Seeley, 1870. for the first pair of teeth. The rostral boss is composed of the dorsally reflected palate (“anterior rostral facies” of Fastnacht, Synonym. Coloborhynchus sp. indet. Martill, 2010, p. 307, fig. 14. 2001) and is approximately 56 mm high with an estimated width of 60 mm at its base. The right alveolus of the first tooth pair Description. The specimen described here is a highly worn fragment of contains a broken tooth with a circular cross-section and a diam- anterior rostrum with broken teeth and is deposited in the collection eter at the crown root junction of w8 mm. The left alveolus is of the Natural History Museum, London, specimen number NHMUK empty with highly abraded margins, but appears to have
Recommended publications
  • SG125 035-140 Veldmeijer 16-01-2007 07:46 Pagina 35
    SG125 035-140 veldmeijer 16-01-2007 07:46 Pagina 35 Description of Coloborhynchus spielbergi sp. nov. (Pterodactyloidea) from the Albian (Lower Cretaceous) of Brazil. André J. Veldmeijer Veldmeijer, A.J. Coloborhynchus spielbergi sp. nov. (Pterodactyloidea) from the Albian (Lower Cretaceous) of Brazil. Scripta Geologica 125: 35-139, 22 figs., 16 pls; Leiden, May 2003. André J. Veldmeijer, Mezquitalaan 23, 1064 NS Amsterdam, The Netherlands ([email protected]). A new species of pterosaur, Coloborhynchus spielbergi sp. nov. (Pterodactyloidea), from the Romualdo Member (Albian) of the Santana Formation is described. The type consists of the skull, mandible and many of the post-cranial bones. The specimen displays a high degree of co-ossification indicating that the animal was an adult and likely quite old when it died. The wingspan is reconstructed at nearly 6 m. Among the characteristic features are a large anteriorly positioned premaxillary sagittal crest and a smaller, also anteriorly positioned dentary sagittal crest, a flat anterior aspect of the skull from which two teeth project and a ventrally fused pelvis. Comments on Brazilian pterosaurs are made in connec- tion with the classificiation of the Leiden specimen. Keywords –– Pterosaur, Coloborhynchus, Santana Formation, Lower Cretaceous, Brazil. Contents Introduction ..................................................................................................................................................... 35 Material .............................................................................................................................................................
    [Show full text]
  • Chapter 2 Physical Characteristics of the Study Area
    CHAPTER 2 PHYSICAL CHARACTERISTICS OF THE STUDY AREA 2.1. Location of study area The study area incorporates part of north Hertfordshire, south and mid- Bedfordshire as well as the southwest corner of Cambridgeshire and lies approximately 40 km north of London (Figure 1.1). Coverage of the area by British Geological Survey (BGS) 1:50,000 map sheets is shown in Figure 2.1. 2.2. Bedrock geology The strikes of the solid geological formations are approximately northeast- southwest across the study area (Figure 2.2). The solid geological succession is shown in Table 2.1. To the northwest of the Chiltern Hills the Gault Clay forms a rich agricultural landscape, representing a continuation of the Vale of Aylesbury. Beyond this, running approximately from Bow Brickhill (SP915343) to Gamlingay (TL234525) is a discontinuous ridge formed by the Woburn Sands Formation, part of the Lower Greensand. This prominent ‘Greensand Ridge’, rising to 170 m O.D. at Bow Brickhill, separates the Cretaceous clays from the Jurassic Oxford and Ampthill Clays to the northwest. The oldest formation is recorded in a borehole (TL23NE1) at Ashwell (TL286390), where Devonian strata were reached at a depth of 186.54 m, i.e. 93 m below O.D. (Smith, 1992). Lying just beyond the northern boundary of the present study area, north of the River Ouse, a borehole (TL15NE2) at Wyboston (TL175572) penetrated Ordovician rocks of Tremadoc age at a depth of approximately 230 m (Moorlock et al ., 2003). The Oxford Clay of the Upper Jurassic represents the oldest formation outcropping within the study area.
    [Show full text]
  • Review of the Pterodactyloid Pterosaur Coloborhynchus 219
    Zitteliana An International Journal of Palaeontology and Geobiology Series B/Reihe B Abhandlungen der Bayerischen Staatssammlung für Pa lä on to lo gie und Geologie B28 DAVID W. E. HONE & ERIC BUFFETAUT (Eds) Flugsaurier: pterosaur papers in honour of Peter Wellnhofer CONTENTS/INHALT Dedication 3 PETER WELLNHOFER A short history of pterosaur research 7 KEVIN PADIAN Were pterosaur ancestors bipedal or quadrupedal?: Morphometric, functional, and phylogenetic considerations 21 DAVID W. E. HONE & MICHAEL J. BENTON Contrasting supertree and total-evidence methods: the origin of the pterosaurs 35 PAUL M. BARRETT, RICHARD J. BUTLER, NICHOLAS P. EDWARDS & ANDREW R. MILNER Pterosaur distribution in time and space: an atlas 61 LORNA STEEL The palaeohistology of pterosaur bone: an overview 109 S. CHRISTOPHER BENNETT Morphological evolution of the wing of pterosaurs: myology and function 127 MARK P. WITTON A new approach to determining pterosaur body mass and its implications for pterosaur fl ight 143 MICHAEL B. HABIB Comparative evidence for quadrupedal launch in pterosaurs 159 ROSS A. ELGIN, CARLOS A. GRAU, COLIN PALMER, DAVID W. E. HONE, DOUGLAS GREENWELL & MICHAEL J. BENTON Aerodynamic characters of the cranial crest in Pteranodon 167 DAVID M. MARTILL & MARK P. WITTON Catastrophic failure in a pterosaur skull from the Cretaceous Santana Formation of Brazil 175 MARTIN LOCKLEY, JERALD D. HARRIS & LAURA MITCHELL A global overview of pterosaur ichnology: tracksite distribution in space and time 185 DAVID M. UNWIN & D. CHARLES DEEMING Pterosaur eggshell structure and its implications for pterosaur reproductive biology 199 DAVID M. MARTILL, MARK P. WITTON & ANDREW GALE Possible azhdarchoid pterosaur remains from the Coniacian (Late Cretaceous) of England 209 TAISSA RODRIGUES & ALEXANDER W.
    [Show full text]
  • New Information on the Tapejaridae (Pterosauria, Pterodactyloidea) and Discussion of the Relationships of This Clade
    AMEGHINIANA (Rev. Asoc. Paleontol. Argent.) - 41 (4): 521-534. Buenos Aires, 30-12-2004 ISSN 0002-7014 New information on the Tapejaridae (Pterosauria, Pterodactyloidea) and discussion of the relationships of this clade Alexander Wilhelm Armin KELLNER1 Abstract. A phylogenetic analysis indicates that the Tapejaridae is a monophyletic group of pterodactyloid pterosaurs, diagnosed by the following synapomorphies: premaxillary sagittal crest that starts at the anterior tip of the premaxilla and extends posteriorly after the occipital region, large nasoantorbital fenestra that reaches over 45% of the length between premaxilla and squamosal, lacrimal process of the jugal thin, distinct small pear- shaped orbit with lower portion narrow, and broad tubercle at the ventroposterior margin of the coracoid. Several cranial and postcranial characters indicate that the Tapejaridae are well nested within the Tapejaroidea, in sister group relationship with the Azhdarchidae. A preliminary study of the ingroup relationships within the Tapejaridae shows that Tupuxuara is more closely related to Thalassodromeus relative to Tapejara. At present tape- jarid remains have been found in the following deposits: Crato and Romualdo members of the Santana Formation (Aptian-Albian), Araripe Basin, Brazil; Jiufotang Formation (Aptian), Jehol Group of western Liaoning, China; and in the redbeds (Cenomanian) of the Kem Kem region, Morocco. An incomplete skull found in the Javelina Formation (Maastrichtian), Texas also shows several tapejarid features and might be a member of this clade. Although information is still limited, the present distribution of the Tapejaridae indicates that this clade of pterosaurs was not exclusive of Gondwana, and was more widespread than previously known. Resumen. NUEVA INFORMACIÓN SOBRE LOS TAPEJARIDAE (PTEROSAURIA, PTERODACTYLOIDEA) Y DISCUSIÓN SOBRE LAS RELACIONES DE ESTE CLADO.
    [Show full text]
  • A New Species of Coloborhynchus (Pterosauria, Ornithocheiridae) from the Mid- Cretaceous of North Africa
    Accepted Manuscript A new species of Coloborhynchus (Pterosauria, Ornithocheiridae) from the mid- Cretaceous of North Africa Megan L. Jacobs, David M. Martill, Nizar Ibrahim, Nick Longrich PII: S0195-6671(18)30354-9 DOI: https://doi.org/10.1016/j.cretres.2018.10.018 Reference: YCRES 3995 To appear in: Cretaceous Research Received Date: 28 August 2018 Revised Date: 18 October 2018 Accepted Date: 21 October 2018 Please cite this article as: Jacobs, M.L., Martill, D.M., Ibrahim, N., Longrich, N., A new species of Coloborhynchus (Pterosauria, Ornithocheiridae) from the mid-Cretaceous of North Africa, Cretaceous Research (2018), doi: https://doi.org/10.1016/j.cretres.2018.10.018. This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. 1 ACCEPTED MANUSCRIPT 1 A new species of Coloborhynchus (Pterosauria, Ornithocheiridae) 2 from the mid-Cretaceous of North Africa 3 Megan L. Jacobs a* , David M. Martill a, Nizar Ibrahim a** , Nick Longrich b 4 a School of Earth and Environmental Sciences, University of Portsmouth, Portsmouth PO1 3QL, UK 5 b Department of Biology and Biochemistry and Milner Centre for Evolution, University of Bath, Bath 6 BA2 7AY, UK 7 *Corresponding author. Email address : [email protected] (M.L.
    [Show full text]
  • Taxonomy of the Lonchodectidae (Pterosauria, Pterodactyloidea)
    Proceedings of the Zoological Institute RAS Vol. 324, No. 1, 2020, pp. 41–55 10.31610/trudyzin/2020.324.1.41 УДК 568.182 Taxonomy of the Lonchodectidae (Pterosauria, Pterodactyloidea) A.O. Averianov Zoological Institute of the Russian Academy of Sciences, Universitetskaya Emb. 1, 199034 Saint Petersburg, Russia; e-mail: [email protected], [email protected] ABSTRACT The pterodactyloid family Lonchodectidae includes three genera, Lonchodectes Hooley, 1914, Lonchodraco Rodrigues et Kellner, 2013, and Ikrandraco Wang et al., 2014, and four species, Lonchodectes compressirostris (Owen, 1851), Lonchodraco giganteus (Bowerbank, 1846), Ikrandraco avatar Wang et al., 2014, and Ikrandraco machaerorhynchus (Seeley, 1870) comb. nov. [=Ornithocheirus microdon Seeley, 1870 syn. nov.]. The holotype of Lonchodectes compressirostris (NHMUK PV 39410) consists of two fragments of the anterior rostrum, not the mandibular and rostrum fragments as was supposed previously. The difference between Lonchodectes and Ikrandraco is not clear and the taxa could be synonyms. The diagnostic characters for the Lonchodectidae are the presence of the palatal ridge, elevated alveolar margin of the upper and lower jaws, small teeth that are not varying in size, and a prominent mandibular crest (unknown for Lonchodectes). The family includes taxa with long and low rostrum and prominent mandibular crest (Ikrandraco and, possibly, Lonchodectes), or with both premaxil­ lary and mandibular crests (Lonchodraco). Various phylogenetic analyses place the Lonchodectidae within the Ornithocheiroidea, frequently as a sister taxon to the Anhangueria. The family is known from the mid­Cretaceous (Albian­Turonian) of England (Lonchodectes compressirostris, Lonchodraco giganteus, Ikrandraco machaero- rhynchus), the Lower Cretaceous (Aptian) of China (Ikrandraco avatar), and the Late Cretaceous (Cenomanian) of European Russia (Lonchodraco (?) sp.).
    [Show full text]
  • On the Osteology of Tapejara Wellnhoferi KELLNER 1989 and the first Occurrence of a Multiple Specimen Assemblage from the Santana Formation, Araripe Basin, NE-Brazil
    Swiss J Palaeontol (2011) 130:277–296 DOI 10.1007/s13358-011-0024-5 On the osteology of Tapejara wellnhoferi KELLNER 1989 and the first occurrence of a multiple specimen assemblage from the Santana Formation, Araripe Basin, NE-Brazil Kristina Eck • Ross A. Elgin • Eberhard Frey Received: 28 May 2011 / Accepted: 9 August 2011 / Published online: 26 August 2011 Ó Akademie der Naturwissenschaften Schweiz (SCNAT) 2011 Abstract The postcranial elements of two similar sized ocular lobes indicate that Tapejara possessed both excel- and juvenile individuals, along with a partial skull, are lent balancing and visual systems as a consequence of its attributed to the Early Cretaceous pterosaur Tapejara aerial lifestyle. wellnhoferi. The remains, recovered from a single con- cretion of the Romualdo Member, Santana Formation, Keywords Brazil Á Lower Cretaceous Á Santana NE-Brazil, represent the first account of multiple specimens Formation Á Pterosauria Á Tapejaridae Á Osteology having settled together and allow for a complete review of postcranial osteology in tapejarid pterosaurs. A comparison Abbreviations of long bone morphometrics indicates that all specimens BSP Bayerische Staatammlung fu¨r Pala¨ontologie und attributed to the Tapejaridae for which these elements are historische Geologie, Munich, Germany known (i.e. Huaxiapterus, Sinopterus, Tapejara) display D Dalian Natural History Museum, Dalian, China similar bivariate ratios, suggesting that Chinese and Bra- IMNH Iwaki City Museum of Coal and Fossils, Iwaki, zilian taxa must have exhibited similar growth patterns. An Japan unusual pneumatic configuration, whereby the humerus is IVPP Institute for Vertebrate Palaeontology and pierced by both dorsally and ventrally located foramina, is Palaeoanthropology Beijing, P.
    [Show full text]
  • New Azhdarchoid Pterosaur (Pterosauria
    Anais da Academia Brasileira de Ciências (2017) 89(3 Suppl.): 2003-2012 (Annals of the Brazilian Academy of Sciences) Printed version ISSN 0001-3765 / Online version ISSN 1678-2690 http://dx.doi.org/10.1590/0001-3765201720170478 www.scielo.br/aabc | www.fb.com/aabcjournal New azhdarchoid pterosaur (Pterosauria, Pterodactyloidea) with an unusual lower jaw from the Portezuelo Formation (Upper Cretaceous), Neuquén Group, Patagonia, Argentina ALEXANDER W.A. KELLNER1 and JORGE O. CALVO2 1Laboratório de Sistemática e Tafonomia de Vertebrados Fósseis, Departamento de Geologia e Paleontologia, Museu Nacional/ Universidade Federal do Rio de Janeiro, Quinta da Boa Vista, São Cristóvão, 20940-040 Rio de Janeiro, RJ, Brazil 2Grupo de Transferencia Proyecto Dino, Universidad Nacional del Comahue, Parque Natural Geo- Paleontológico Proyecto Dino, Ruta Provincial 51, Km 65, Neuquén, Argentina Manuscript received on June 22, 2017; accepted for publication on September 4, 2017 ABSTRACT A new azhdarchoid pterosaur from the Upper Cretaceous of Patagonia is described. The material consists of an incomplete edentulous lower jaw that was collected from the upper portion of the Portezuelo Formation (Turonian-Early Coniacian) at the Futalognko site, northwest of Neuquén city, Argentina. The overall morphology of Argentinadraco barrealensis gen. et sp. nov. indicates that it belongs to the Azhdarchoidea and probable represents an azhdarchid species. The occlusal surface of the anterior portion is laterally compressed and shows blunt lateral margins with a medial sulcus that are followed by two well- developed mandibular ridges, which in turn are bordered laterally by a sulcus. The posterior end of the symphysis is deeper than in any other azhdarchoid.
    [Show full text]
  • Pterosaurs from the Santana Formation (Cretaceous; Aptian–Albian) of Northeastern Brazil
    Toothed pterosaurs from the Santana Formation (Cretaceous; Aptian–Albian) of northeastern Brazil. A reappraisal on the basis of newly described material André J. Veldmeijer Courtesy of the BSP, Munich (photographs by A. ‘t Hooft) Toothed pterosaurs from the Santana Formation (Cretaceous; Aptian-Albian) of northeastern Brazil. A reappraisal on the basis of newly described material Tand-pterosauriërs uit de Santana Formatie (Krijt; Aptian-Albian) van noordoost Brazilië. Een herwaardering op basis van nieuw beschreven materiaal (met een samenvatting in het Nederlands) Proefschrift ter verkrijging van de graad van doctor aan de Universiteit Utrecht op gezag van de Rector Magnificus, Prof. dr. W.H. Gispen, ingevolge het besluit van het College voor Promoties in het openbaar het verdedigen op maandag 30 januari 2006 des middags te 2.30 uur door André Jacques Veldmeijer geboren op 13 april 1969 te Vlissingen promoter: Prof. dr. J.W.F. Reumer Faculty of Geosciences, Utrecht University Utrecht, The Netherlands & Natuurhistorisch Museum Rotterdam Rotterdam, The Netherlands co-promotor: Dr. J. de Vos Conservator Fossiele Macrovertebraten Nationaal Natuurhistorisch Museum – Naturalis Leiden, The Netherlands In honour of my parents: Antje Veldmeijer-Wagt (1940-1988) Marten Veldmeijer Veldmeijer Cretaceous, toothed pterosaurs from Brazil. A reappraisal Contents 1. Introduction 10 1.1. Appendix 154 1.1.1. Figures and plates 154 2. Description of Coloborhynchus spielbergi sp. nov. (Pterodactyloidea) from the Albian (Lower Cretaceous) of Brazil 12 2.1. Introduction 12 2.2. Material 12 2.2.1. Description of nodules 13 2.2.2. Description of the preservation after preparation 13 2.3. Abbreviations 15 2.3.1. Institutions 15 2.3.2.
    [Show full text]
  • A Taxonomic and Phylogenetic Review of the Anhanguerid Pterosaur Group Coloborhynchinae and the New Clade Tropeognathinae
    A taxonomic and phylogenetic review of the anhanguerid pterosaur group Coloborhynchinae and the new clade Tropeognathinae BORJA HOLGADO and RODRIGO V. PÊGAS Holgado, B. And Pêgas, R.V. 2020. A taxonomic and phylogenetic review of the anhanguerid pterosaur group Colo­ borhynchinae and the new clade Tropeognathinae. Acta Palaeontologica Polonica 65 (4): 743–761. Anhanguerids are a particular group of pterodactyloid pterosaurs, characterized mainly by their rostral sagittal crests, well laterally expanded jaw tips and enlarged anterior teeth. Due to the fragmentary nature of most known specimens, including holotypes, the taxonomy of the group has proved particularly difficult and controversial. Coloborhynchinae is a recently proposed clade within the Anhangueridae, and was defined as the most inclusive clade containing Coloborhynchus clavirostris but not Anhanguera or Ludodactylus. Coloborhynchinae was originally thought to include Coloborhynchus, Uktenadactylus, and Siroccopteryx. Here we present a reassessment of the taxonomy and phylogeny of all proposed members of the Coloborhynchinae and Coloborhynchus complex, with new anatomical comparisons and a novel phylo­ genetic analysis. Several features allow us to establish that coloborhynchines were much more diverse than previously thought, englobing four genera and seven species: Aerodraco sedgwickii gen. et comb. nov., Coloborhynchus claviros- tris, Nicorhynchus capito gen. et comb. nov., Nicorhynchus fluviferox gen. et comb. nov., Uktenadactylus rodriguesae sp. nov., and Uktenadactylus wadleighi. Nicorhynchus and Uktenadactylus are considered sister taxa, being distinct on the basis of several rostral characters. Although with a homoplastic flat rostrum surface, Siroccopteryx was recovered out of the Coloborhynchinae, as sister taxon of Tropeognathus, due to similarities on the palatal ridge (which is broad and deep, and starting at the same level) and the relatively stout teeth compared to other anhanguerids.
    [Show full text]
  • Thalassodromeus Sebesensis, an out of Place and out of Time Gondwanan Tapejarid Pterosaur”, Grellet-Tinner and Codrea (Online July 2014 DOI 10.1016/J.Gr.2014.06.002)
    Gondwana Research 27 (2015) 1680–1682 Contents lists available at ScienceDirect Gondwana Research journal homepage: www.elsevier.com/locate/gr Thalassodromeus sebesensis — A new name for an old turtle. Comment on “Thalassodromeus sebesensis, an out of place and out of time Gondwanan tapejarid pterosaur”, Grellet-Tinner and Codrea (online July 2014 DOI 10.1016/j.gr.2014.06.002) Gareth Dykea,b,⁎, Mátyás Vremirc, Stephen L. Brusatted,G.S.Bevere,j, Eric Buffetautf, Sandra Chapmang, Zoltán Csiki-Savah, Alexander Kellneri, Elizabeth Martina,DarrenNaisha, Mark Norellj, Attila Ősik, Felipe L. Pinheirol, Edina Prondvaik, Márton Rabim, Taissa Rodriguesn,LornaSteelg, Haiyan Tongo, Bruno C. Vila Novap, Mark Wittonq a Ocean and Earth Science, University of Southampton, National Oceanography Centre, Southampton, University of Southampton, Southampton SO14 3ZH, UK b MTA-DE “Lendület” Behavioural Ecology Research Group, Department of Evolutionary Zoology and Human Biology, University of Debrecen, Egyetem tér 1., H-4032 Debrecen,Hungary c Department of Natural Sciences, Transylvanian Museum Society, Cluj-Napoca, Romania d School of GeoSciences, University of Edinburgh, Grant Institute, King's Buildings, West Mains Road, Edinburgh EH9 3JW, UK e Department of Anatomy, New York Institute of Anatomy College of Osteopathic Medicine, Old Westbury, NY 11568, USA f Laboratoire de Géologie de l'Ecole Normale Supérieure, 24 rue Lhomond, 75231 Paris Cedex 05, France g Department of Earth Sciences, Natural History Museum, Cromwell Road, London, SW7 5BD, UK h Laboratory
    [Show full text]
  • Page Numbers in Italic, Eg 153, Refer to Figures
    Index Page numbers in italic, e.g. 153, refer to figures. Page numbers in bold, e.g. 321, signify entries in tables. Aetosaurus ferratus 26 brachiopatagium Agadirichnus elegans 321,322-323 Azhdarchidae (indet.) 249-250 air diverticulae see pneumatization Crato Formation 250 Angustinaripterus 144, 177 Rhamphorhynchus muensteri 238,240-246 Anhanguera 123-124 Solnhofen Lithographic Limestone 234, 235-346 pectoral girdle 191-215 thermoregulation 256-259 inferred myology 201-208 Brazil osteological correlates 193-197 Crato Formation 56, 65-72, 234-235,247-250 Anhanguera blittersdorffi, skull 153 Nova Olinda Member 56-63 Anhanguera piscator 122-123 Santana Formation 234-235 Anhanguera santanae, skull 251 bone histovariability 335-342 Anhangueridae 123 Breviquartossa, definition, content, synapomorphies scapulocoracoid 73-77 155-156 ankle and pes, Triassic genera 37-39 Anurognathidae 107-111,176 Caelidracones, definition, content, synapomorphies Anurognathus ammoni 152-153, 176 152-153 phalanges 176 Campylognathoides 115-116 Ap6n Formation, Venezuela, Early Cretaceous 73-77 caudal vertebrae 18 "Araripesaurus" 178 jugal 9 Araripesaurus castilhoi 145 pectoral girdle 191-215 Archaeopterodactyloidea, definition, content, inferred myology 198-201,203-208 synapomorphies 117-119 osteologicai correlates 197 Araripe Basin, Brazil, Santana Formation 234-235 Campylognathoides liasicus Arizona, Morrison Formation 45-46 skull 152 Asiaticognathidae 107, 111-112 wing ratios 19 astragalus 37 Campylognathoididae 176 Austria, Tyrol, Eudimorphodon cf. ranzii 5-22
    [Show full text]