University Microfilms, Inc., Ann Arbor, Michigan MONOMERIC ORGANOSILICON COMPOUNDS

Total Page:16

File Type:pdf, Size:1020Kb

University Microfilms, Inc., Ann Arbor, Michigan MONOMERIC ORGANOSILICON COMPOUNDS This dissertation has been . micro&hned exactly as received 66-3860 CHAPMAN, Dwain R, 1929- MONOMERIC ORGANOSnJCON COMPOUNDS WITH POLYFUNCTIONAL GROUPS. Iowa State University of Science and Technology Ph.D., 1965 Chemistry, organic University Microfilms, Inc., Ann Arbor, Michigan MONOMERIC ORGANOSILICON COMPOUNDS . WITH POLYPUNCTIONAL GROUPS by Dwain R Chapman A Dissertation Submitted to the Graduate Faculty in Partial Fulfillment of The Requirements for the Degree of DOCTOR OF PHILOSOPHY Major Subject: Organic Chemistry Approved Signature was redacted for privacy. In Chai^ge of Major Work Signature was redacted for privacy. Head of Major Department Signature was redacted for privacy. Iowa State University Of Science and Technology Ames, Iowa 1965 11 TABLE OP CONTENTS' Page INTRODUCTION , 1 NOMENCLATURE 3• HISTORICAL 5 Cyclosilanes 5 Reactions of Cyclosilanes 6 Reactions of the Silicon-Silicon Bond 12 The Ultraviolet Absorption Properties 21 of Polysilanes Heterocyclic Polysilanes 23 . EXPERIMENTAL 28 Preparation of Cyclosilanes 30 Octaphenylcyclotetrasilane. 30 Decaphenylcyclopentasilane (Ila) 31 Dodecamethylcyclohexasilane 32 % Reactions of Octaphenylcyclotetrasilane 33 Octaphenylcyclotetrasilane with 33 , . phosphorus pentachloride In benzene 33 Tn xylene 33 Octaphenylcyclotetrasilane with 34 phosphorus trichloride (attempted). Octaphenylcyclotetrasilane with . 34 chlorine In carbon tetrachloride 34 In ether 34 In petroleum ether (b.p. 60-70 C) 36 In n-pentane 36 In ether containing hydroquinone ' 36 Ill Octaphenylcyclotetrasllane with anhydrous hydrogen chloride Octaphenylcyclotetrasllane with p,0'-dlchlorodlethyl ether Octaphenylcyclotetrasllane with a hexachlorocyclohexane Octaphenylcyclotetrasllane with ^-butyl chloride In xylene In decalln Dehydrohalogenatlon of t-butyl chloride In decalln (attempted) In £-dlchlorobenzene Octaphenylcyclotetrasllane with 2-chlorobutane Octaphenylcyclotetrasllane with n-butyl chloride (attempted) In xylene In £-dlchlorobenzene Octaphenylcyclotetrasllane with jb-butyl bromide Octaphenylcyclotetrasllane and nitrobenzene a,u)-Octaphenyltetrasilane Derivatives IH,4-Bromooctaphenyltetrasllane and t^butyl bromide 1,1,2,2,3,3,4,4-Octaphenyltetrasilan-lol IH,4-Methyloctaphenyltetrasllane 1,4-Dlpropoxyoctaphenyltetrasilane (attempted) IH,4-Propoxyoctaphenyltetrasilane iy • Condensation of 1,1,2,2,3,3,4,4- octaphenyltetrasilan-l-ol • In 900 formic acid (attempted) In 980 formic acid (attempted) IH,4-Chlorooctàphenyltetrasllane with phenyllithiiam In tetrahydrofuran at room temperature Q In tetrahydrofuran at -30 C In tetrahydrofuran at -70°C 1H,4-Chlorooctaphenyltetrasilane and phenylmagnesium bromide (attempted) lH,4-Chlorooctaphenyltetrasilane and phenylmagnesium iodide (attempted) Reactions of Decaphenylcyclopentasilane Decaphenylcyclopentasilane with phosphorus pentachloride In benzene in a 1:2 molar ratio (attempted) In benzene in a 1:5 molar ratio In 1,1,2,2-tetraohloroethane In carbon tetrachloride Decaphenylcyclopentasilane and 1,1,2,2-tetrachloroethané Decaphenylcyclopentasilane with chlorine In ether Decaphenylcyclopentasilane with hydrogen halides (attempted) Decaphenylcyclopentasilane with organic halides (attempted) . Decaphenylcyclopentasilane with hydrogen chloride at high pressure , Page Decaphenylcyclopentasilane and 63 nitrobenzene Dodecaphenylcyclohexasilane and 65 nitrobenzene (attempted) Hexaphenyldisilane and nitro- 65 benzene (attempted) l,5-Dihydroxydecaphenylpenta8llane 65 1,5-Di-n-Propoxydecaphenylpentasilane 66 1,3-Diallyloxyd e caphenylcyclopentasilane 66 Dodecaphenylpentasilane 67 1,5-Dibromodecaphenylpentasilane with 68 phenylmagnesium bromide Reactions of Dodecamethylcyclohexasilane 69 Dodecamethylcyclohexasilane with 69 hydrogen chloride In benzene (attempted) 69 In petroleum ether (b.p, 60-70°C) 69 (attempted) In chloroform (attempted) 70 In carbon tetrachloride 70 (attempted) In £-dichlorobenzene 70 In xylene 72 In dichloromethane 75 Dodecamethylcyclohexasilane and 76 hydrogen chloride at high pressures In a 1:3 molar ratio 76 In a 1:2 molar ratio 78 In a 1:4 molar ratio . 79 Dodecamethylcyclohexasilane and 83 _t-butyl chloride A 1:4 molar ratio pressure reaction 83 At atmospheric pressure 84 In o-dichlorobenzene 84 vi a,uj-Substituted Polydimethylsilanes 1.4-Dichlorooctamethyltetrasilane with Jb-butyl chloride The characterization of new compounds in the Cl-fSiMeg)^-? series 1-Chloro-lJ1,2,2-tetramethyldi8ilane 1-Chloro-l,1,2,2,3J 3-hexamethyltrisilane 1-Chloro-1,1,2,2,3,3,4,4-0ctamethylt etra- silane l-Chloro-l,l,2,2,3,3,4,4,5,5-decamethyl- pentasilane l-Chloro-l,l,2,2,3,3,4,4,5,5,6,6-dodeca- methylhexasilane 1.5-Dichloro-l,l,2,2,3,3,4,4,5,5- decamethylpentasilane Diphenyl derivatives 1,1,2,2,3,3,4,4-Octamethyltetrasilane 1,1,2,2,3,3,4,4,5,5-Decamethylpenta- . silane Preparations and Reactions of Heterocyclic Polysilanes Octaphenyloxatetrasilacyclopentane Octaphenyloxatetrasilacyclopentane with phosphorus pentachloride In 1,1,2,2-tetrachloroethane In benzene Octaphenyloxat etrasila cyclopentane with chlorine Hydrolysis of l-chloro-3-(chlorodiphenyl- siloxy)-l,1,2,2,3,3-hexaphenyltrisilane (XII) vii Octaphenyl-1,3- and 1,4-dloxaoota- phenyltetrasllacyclohexane l-Chloro-5-(chlorodiphenylsilyl)- 96 1,1,3,3,5,5-hexaphenyltrlsiloxane 1.6-Dlchloro-l,l,3,3,4,4,6,6-octaphenyl- 96 2.5-dioxa-l,3,4,5-tetrasllahexane In petroleum ether 96 In n-pentane 97 In carbon tetrachloride- 98 petroleum ether Hydrolysis of l-chloro-5-(chlorodiphenyl- 99 8llyl)-l,l,3,3,5,5-hexaphenyltrisiloxane (Xltl) At 30-40°C qq At 98°C 99 Hydrolysis of l-(diphenylpropoxysilyl)- 101 1,1,3,3,5,5-hexaphenyl-5-propoxytri- siloxane (XVI) The pyrolysis of l-(diphenylpropoxysilyl)- 102 1,1,3,3,5,5-hexaphenyl-5-propoxytri- 8iloxane (XVI) Hydrolysis of l,6-dichloro-l,l,3,3,4,4- 102 6.6-octaphenyl-2,5-dioxa-l,3,4,6- tetrasilahexane (XIV) With hydrogen chloride 103 1.7-Dichloro-l,1,3,3,5,5,7,7-octaphenyl- 104 tetrasiloxane In carbon tetrachloride-petroleura 104 ether In petroleum ether 104 Octaphenylcyclotetrasiloxane 105 Octaphenyloxatetrasilacyclopentane (iVa) 106 with nitrobenzene 0ctaphenyl-l,3-dioxa-2,4,5,6-tetrasila- 108 cyclohexane with nitrobenzene viii Octaphenyl-1,4-dioxa-2,3,5,6-tetra- silacyclohexane with nitrobenzene DISCUSSION The Chlorination of Perphenylated Cyclosilanes The Chlorination of Heterocyclic Polysilanes The Oxidation of Polysilanes with Nitrobenzene The Hydrohalogenation of Octaphenyl- cyclotetrasilane The Hydrohalogenation of Decaphenyl- cy cl op ent a s il an e The Hydrohalogenation of Dodecamethyl- cyclohexasilane Some Observations on a,u)-Polydiphenyl- silane Derivatives Suggestions for Further Research SUrmRY LITERATURE CITED ACKNOWLEDGEMENTS INTRODUCTION Previous interest in organosllicon chemistry has been largely dominated by certain polymeric compounds containing alternate silicon atoms such as the so-called silicones. Studies of the chemistry of silicon have dealt with relatively few compounds containing more than two silicon atoms bonded to each other. However, in recent years technical skills have enabled investigators to prepare and characterize an in­ creasing number of polysilanes of chain lengths seemingly limited only to the present skill and modes available. At the time this investigation was begun several organic substituted cyclosilanes had been characterized and were readily available. Some investigations had been made in the use of these compounds as precursors to formerly unavailable organosllicon compounds. Only a few heterocyclic compounds containing silicon-silicon bonds had been prepared and little or no study had been made of the reactions of these compounds. It had been observed that the presence of a silicon atom in a cyclic compound gave a reactivity to that compound unlike analogous linear compounds. It had also been demonstrated that the reactivity with certain reagents was dependent on ring size. The present investigation was begun to make use of some readily available cyclosilanes and heterocyclic polysllane compounds in a further investigation of their reactivity and. 2 if possible, to initiate.studies of linear polysilanes con­ taining various functional groups by heretofore unused or unknown routes. Such new compounds afford the opportunity of expanding- the present knowledge of the physical properties as well as contributing to the spectrographic studies of organ- opolysilane compounds. Attention was directed toward the ultraviolet and infrared properties of compounds containing the silicon-silicon bond. 3 NOMENCLATURE^ In naming organosilicon compounds having silicon chains, the rules of nomenclature recommended by the Commission of Nomenclature of Organic Chemistry of the I.U.P.A.C., and adopted by The American Chemical Society (l), will be used. However, Rule 70.15 of the so-called Amsterdam report, which, enables us to give the compound Cl-SiPhgSiPhg-O-SiPhgSiPhg-Cl the name 1,5-dichlbro-l,1,2,2,4,4,5^5-octaphenyl-3-oxapenta- silane, also carries the footnote "This rule is subject to the possible extensions of the oxa-aza convention which are* now being considered by the commission". The I.U.P.A.C. Commissions on Nomenclature of Organic Chemistry and of Inorganic Chemistry held joint sessions in 1962 and 1963 and it was tentatively decided that the names of all structures should be based on the name of the corre­ sponding hydrocarbon even when there is little or no carbon present. Following this change, the name for the above com­ pound would be 1,5-dichloro-l,1,2,2,4,4,5^5-octaphenyl-3-oxa- 1,2,4,5-tetrasilapentane. ^The author is
Recommended publications
  • Addition of a Grignard Reagent to an Ester: Formation of a Tertiary Alcohol
    Addition of a Grignard Reagent to an Ester: Formation of a Tertiary Alcohol Introduction: Grignard reagents are important and versatile reagents in organic chemistry. In this experiment, you will prepare a Grignard reagent and react it with an ester to prepare a tertiary alcohol. Specifically, in this reaction you will prepare phenyl magnesium bromide from bromobenzene and magnesium metal and then react it with methyl benzoate to prepare triphenylmethanol (Figure 1). In this reaction, two equivalents of phenylmagnesium bromide add to methyl benzoate. Note: Grignard reagents are sensitive to water. ALL glassware must be completely clean and dry. Reagents have been stored over molecular sieves to keep them dry in storage, but you should also keep containers closed as much as possible. Finally, water in the air can also react with the Grignard reagents over time. To successfully prepare triphenylmethanol in this experiment, you will need to be well organized and not take too much time between steps. Figure 1. O 1) Me O OH Br Mg MgBr THF + 2) H3O triphenylmethanol Mechanism: The formation of Grignard reagents from aryl halides is a complex mechanism, which takes place on the surface of the magnesium metal. You do not need to concern yourself with the details of this step of the mechanism. Figure 2. MgBr O Bu MgBr Bu MgBr O + OH O Bu MgBr O H3O Me OEt Bu Me OEt Me Bu Me Bu Me –EtOMgBr Bu Bu The mechanism of the reaction of a Grignard reagent with an ester is shown in Figure 2 (using methyl propionate and butylmagnesium bromide).
    [Show full text]
  • Copper(I) Complexes of P‐Stereogenic Josiphos and Related Ligands
    Full Papers doi.org/10.1002/ejoc.202100146 Copper(I) Complexes of P-Stereogenic Josiphos and Related Ligands Ross A. Arthurs,[a] Alice C. Dean,[a] David L. Hughes,[a] and Christopher J. Richards*[a] Starting from (R)-Ugi’s amine, diastereoselective lithiation avoiding the isolation of air-sensitive phosphine intermediates. followed by Ar’PCl2 and then Ar’’MgBr led to the generation, as This protection methodology was also applied to the synthesis single diastereoisomers, of (R,Sp,Sphos) [Ar’=Ph, Ar’’=o-Tol] and of Josiphos/CuCl complexes derived from PCl3. In addition, (R,Sp,Rphos) [Ar’=o-Tol, Ar’’= Ph] PPFA ligand derivatives. Amine related bulky cobalt-sandwich complex-based derivatives were substitution of both with HPCy2 gave P-stereogenic Josiphos also obtained. Preliminary investigation revealed isolated CuCl ligands, and then addition of CuCl, the corresponding copper(I) complexes as competent catalyst precursors for enantioselec- complexes. The latter were also generated by using borane P tive conjugate addition reactions. and N protecting groups and in situ Cu(I) complexation, Introduction Although many ligands have been developed for application in asymmetric synthesis, relatively few have found widespread use. Of these so-called ‘privileged’ ligands,[1] one of the most successful class are the ferrocene-based Josiphos ligands A.[2] Numerous derivatives are known, obtained by varying the identity of R’ and R’’, and many are commercially available. This has aided the incorporation of A into many ligand screening exercises, often leading to a successful outcome.[3] In particular, in situ generated Josiphos-copper complexes have been applied Scheme 1.
    [Show full text]
  • The Ozonolysis of Phenyl Grignard Reagent
    University of Montana ScholarWorks at University of Montana Graduate Student Theses, Dissertations, & Professional Papers Graduate School 1971 The ozonolysis of phenyl Grignard reagent Gale Manning Sherrodd The University of Montana Follow this and additional works at: https://scholarworks.umt.edu/etd Let us know how access to this document benefits ou.y Recommended Citation Sherrodd, Gale Manning, "The ozonolysis of phenyl Grignard reagent" (1971). Graduate Student Theses, Dissertations, & Professional Papers. 8297. https://scholarworks.umt.edu/etd/8297 This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. THE OZONOLYSIS OF PHENYL GRIGNARD REAGENT By Gale M. Sherrodd B.S., Rocky Mountain College, I969 Presented in partial fulfillment of the requirements for the degree of Master of Arts for Teachers UNIVERSITY OF MONTANA 1971 Approved by: Chairman, Board of Examiners De^ , Graduate *School / n ? / Date Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. UMI Number: EP39098 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. UMT DiMMtstion PuWiahing UMI EP39098 Published by ProQuest LLC (2013). Copyright in the Dissertation held by the Author.
    [Show full text]
  • CF 7.4 V2.Indd
    2007 VOLUME 7 NUMBER 4 Product Directory Grignard and Organozinc Reagents RIEKE® HIGHLY REACTIVE METALS GRIGNARD REAGENTS ORGANOZINC HALIDES DIALKYLMAGNESIUM AND DIALKYZINC REAGENTS 2-Pyridylzinc bromide: a shelf-stable 2-pyridyl anion equivalent; an important motif in many pharmacologically active molecules. sigma-aldrich.com 2 Table of Contents Sigma-Aldrich is committed to providing the most extensive portfolio of high-quality Grignard, organozinc, and other organometallic reagents, and we continually expand our product listing. Within each section of this directory, products are listed by increasing carbon content. Rieke® Highly Reactive Metals If viewing the electronic version simply select Grignard Reagents a category to jump to that section or activate Alkyl Alkenyl Alkynyl Aryl Heteroaryl your Adobe Bookmarks. You may also search by name, product number, molecular formula, Organozinc Halides or CAS registry number simply by using the “find” feature in Adobe (Ctrl+F in Windows or Alkyl Alkenyl Aryl Heteroaryl Introduction Command+F in a Mac environment). Dialkylmagnesium and Dialkylzinc Reagents If you are unable to find a reagent for your research “Please Bother Us” at [email protected], or contact your local Sigma-Aldrich office (see back cover). Foreword Reuben D. Rieke President and CEO, Rieke Metals, Inc. Professor Emeritus, University of Nebraska Lincoln, NE In the last 35 years, considerable research has been done in the area of generating reactive metals that can be used to synthesize novel organometallic reagents. In 1972, we reported a general approach for preparing highly reactive metal powders, relying on the reduction of metal salts with alkali metals in ethereal or hydrocarbon solvents.
    [Show full text]
  • Synthesis and Consecutive Reactions of Α-Azido Ketones: a Review
    Molecules 2015, 20, 14699-14745; doi:10.3390/molecules200814699 OPEN ACCESS molecules ISSN 1420-3049 www.mdpi.com/journal/molecules Review Synthesis and Consecutive Reactions of α-Azido Ketones: A Review Sadia Faiz 1,†, Ameer Fawad Zahoor 1,*, Nasir Rasool 1,†, Muhammad Yousaf 1,†, Asim Mansha 1,†, Muhammad Zia-Ul-Haq 2,† and Hawa Z. E. Jaafar 3,* 1 Department of Chemistry, Government College University Faisalabad, Faisalabad-38000, Pakistan, E-Mails: [email protected] (S.F.); [email protected] (N.R.); [email protected] (M.Y.); [email protected] (A.M.) 2 Office of Research, Innovation and Commercialization, Lahore College for Women University, Lahore-54600, Pakistan; E-Mail: [email protected] 3 Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, Serdang-43400, Selangor, Malaysia † These authors contributed equally to this work. * Authors to whom correspondence should be addressed; E-Mails: [email protected] (A.F.Z.); [email protected] (H.Z.E.J.); Tel.: +92-333-6729186 (A.F.Z.); Fax: +92-41-9201032 (A.F.Z.). Academic Editors: Richard A. Bunce, Philippe Belmont and Wim Dehaen Received: 20 April 2015 / Accepted: 3 June 2015 / Published: 13 August 2015 Abstract: This review paper covers the major synthetic approaches attempted towards the synthesis of α-azido ketones, as well as the synthetic applications/consecutive reactions of α-azido ketones. Keywords: α-azido ketones; synthetic applications; heterocycles; click reactions; drugs; azides 1. Introduction α-Azido ketones are very versatile and valuable synthetic intermediates, known for their wide variety of applications, such as in amine, imine, oxazole, pyrazole, triazole, pyrimidine, pyrazine, and amide alkaloid formation, etc.
    [Show full text]
  • Experiment 12 Grignard Reaction; Preparation of Triphenylcarbinol
    Experiment 12 Grignard Reaction; Preparation of Triphenylcarbinol In this experiment we will perform a Grignard addition to an ester. First we will form the Grignard reagent from magnesium and bromobenzene and then we will add it to methyl benzoate to produce triphenylcarbinol (also called triphenylmethanol). The overall sequence is shown in Figure 12.1 and the mechanism for the addition is shown in Figure 12.2. Figure 12.1 Grignard Addition to Methyl benzoate Br MgBr + Mg THF warm bromobenzene phenylmagnesium bromide O OMgBr OH C MgBr C C HCl OCH + MgBr(OH) 2 + 3 H2O methyl benzoate Triphenylcarbinol Since we are using an ester as our electrophile in this reaction, the nucleophilic Grignard reagent, prepared from the bromobenzene and magnesium, will add to the carbonyl two times to give the triphenyl adduct that on treatment with aqueous acid gives the free alcohol. Note that we have a ketone intermediate. This is even more reactive than the starting ester (why?) and reacts again with the Grignard reagent. Figure 12.2 Mechanism for Grignard Addition MgBr+ O O O OCH3 C C BrMg C OCH + -OCH 3 + 3 MgBr OH OMgBr HCl MgBr(OH) + C C H2O Physical Constants Compound Mol. Wt (g/mol) Density b.p. (°C) m.p. (°C) (g/mL) Bromobenzene 157.02 1.491 156 -31 Methyl benzoate 136.15 1.094 198-199 -12 Magnesium 24.31 1.740 - 648 Triphenylcarbinol 260.34 solid 360 160-163 Tetrahydrofuran (THF) 72.11 0.889 65-67 -108 Procedure: The set-up for this experiment is shown in Figure 12.3.
    [Show full text]
  • Nucl Ear Magnetic Resonance Spectroscopy. the Configurational Stability of Primary Grignard Reagents. Structure and Medium Effec
    // lRepriatcd froo thc Jourad of tbc Aocrtc-' Chonicd Socicty, t?, {878 (1965).1 Nuclear MagneticResonance Spectroscopy. The ConfigurationalStability of Primary GrignardReagents. Structure and Medium Effects GeorgeM. Whitesidesand John D. Roberts IReprinted from the Journal of the American ChemicalSociety, 87,'1873 (196.j).I Copyright l9ti;i by the American Chemical Society and reprinted by permissionof the copyright owner NuclearMagnetic Resonance Spectroscopy. The ConfigurationalStability of Primary Gri-snard Reasents. Structureand Medium Effects' GeorgeM. Whitesidesand John D. Roberts Contribution lVo.3172 from the Gutes and Crellin Laboratories of Chemistry, Culifornia Instituteof Technology,Pasadena, CuliJ'orniu. ReceivedJanuarv 9, 1965 Qualitative and semiquontitative examination of the This observationsuggests that careful examination of lemperaturedependence of the RCH,:-Mg proton n.m.r. the spectrum oi this and related compounds in dif- spectra of several Grignard reagents indicates that the ferent solventsand at different concentrationsmight rate of inversiortat this center is relativel-v*insensitive to provide data pertinent to the mechanismof this in- the structurc of the group R. Secondar),Grignard re- version and to the nature o[ Grignard reagentsin ugentsinvert much more slowlv, if at all. The dependence solution. of the inversion rate of the primary orgonometallic Much of the modern work concernedwith the struc- compoundson solventcharacter and on added salts sug- ture of Grignard reagents has centered around at- gests that inversionproceeds br means of a mcchunism tempts to evaluate the importance of the so-called having kineric order greater than one. Schlenkequilibrium in describingthe Grignard reagent' In several well-known experiments, Dessy and co- workers examined the exchange reaction between Introduction labeledmagnesium bromide and diethyl-{and diphenyl- The precedingpaper2 presentedn.m.r.
    [Show full text]
  • Schlenk Equilibrium in Toluene Solutions of Grignard Reagents
    SCHLENK EQUILIBRIUM IN TOLUENE SOLUTIONS OF GRIGNARD REAGENTS Ants Tuulmets*, Marvi Mikk and Dmitri Panov Institute of Organic Chemistry, University of Tartu, Tartu, EE2400 Estonia Abstract Grignard reagents were prepared from η-butyl chloride, η-butyl bromide and bromobenzene in toluene in the presence of small amounts of diethyl ether. The reagents disproportionate according to the Schlenk equilibrium with the formation of a precipitate rich in magnesium halide. The supernatant solution comprises higly soluble complexes of the stoichiometry xR2Mg.yMgX2.zEt20 (x>y). The extent of side-reactions during the formation of these Grignard reagents increases in the order nBuCI<nBuBr<PhBr. Introduction Organomagnesium compounds can be prepared not only in conventional ethers but also in hydrocarbon media or without any solvent at all [1-5]. For many purposes the replacement of ethers by hydrocarbons of higher boiling point is expedient. The process in hydrocarbons is preferable, since the reaction medium is cheap, nonhygroscopic, and fire hazards are low. The use of unsolvated organomagnesium halides is limited to primary alkyl and aryl compounds. Branched chain primary, secondary, and tertiary alkyl halides, vinyl, allyl, and benzyl halides do not react under these conditions or produce Wurtz-type coupling products [2,6]. In the presence of one molar equivalent of complexing agents, e.g. ethers and tertiary amines, several organomagnesium compounds have been obtained in hydrocarbon media [5,7,8], Furthermore, alkylmagnesium bromide and chloride reagents in toluene containing less than one equivalent of diethyl ether have also been prepared [9-12]. Because the Grignard reagents in donor solvents are complexed at least with two solvent molecules per atom of magnesium, the reagents obtained in the presence of smaller amounts of donors should be considered as partially solvated.
    [Show full text]
  • UNITED STATES PATENT OFFICE 2,677,686 PYRAZINEDERVATIVES and METHO) of PREPARING the SAME Victor K
    Patented May 4, 1954 2,677,686 UNITED STATES PATENT OFFICE 2,677,686 PYRAZINEDERVATIVES AND METHO) OF PREPARING THE SAME Victor K. Smith, Jr., Feari River, and Samuel Kushner, Nanuet, N. Y., assignors to American Cyanamid Company, New York, N. Y., a corpo ration of Maine No Drawing. Application 5uly 22, 1952, Serial No. 300,336 8 Claims. (C. 260-250) 2 This invention relates to mono-substituted ous layer is extracted with a solvent, such as di pyrazine. More particularly, it relates to substi ethyl ether. The ether can be concentrated and tuted-2-carbonyl pyrazine. the desired compound crystallized out Or the The role of vitamins in nutrition is well known ether can be removed and the product distilled. i and assumes greater importance as new informa 5, The reaction of the present invention may be tion is made available concerning the particular carried out at a temperature of -10° to 15° C. function of each. Recently it has been found The reaction is complete in from about a few that folic acid was effective in curing macrocytic ininutes up to about tWO hours. anemias and other blood conditions. Also, Com The process of the present invention is de pounds which are folic acid antagonistS, Such as scribed in greater particularity by the following aninopterin, have been found useful in treating specific examples which are given by way of ill abnormal blood conditions such as leukemia. lustration and not limitation. it is well established that nicotinamide is an im Eacample 1 portant, vitamin of the B complex group and its deficiency is the specific cause of pelagira.
    [Show full text]
  • Standard Thermodynamic Properties of Chemical
    STANDARD THERMODYNAMIC PROPERTIES OF CHEMICAL SUBSTANCES ∆ ° –1 ∆ ° –1 ° –1 –1 –1 –1 Molecular fH /kJ mol fG /kJ mol S /J mol K Cp/J mol K formula Name Crys. Liq. Gas Crys. Liq. Gas Crys. Liq. Gas Crys. Liq. Gas Ac Actinium 0.0 406.0 366.0 56.5 188.1 27.2 20.8 Ag Silver 0.0 284.9 246.0 42.6 173.0 25.4 20.8 AgBr Silver(I) bromide -100.4 -96.9 107.1 52.4 AgBrO3 Silver(I) bromate -10.5 71.3 151.9 AgCl Silver(I) chloride -127.0 -109.8 96.3 50.8 AgClO3 Silver(I) chlorate -30.3 64.5 142.0 AgClO4 Silver(I) perchlorate -31.1 AgF Silver(I) fluoride -204.6 AgF2 Silver(II) fluoride -360.0 AgI Silver(I) iodide -61.8 -66.2 115.5 56.8 AgIO3 Silver(I) iodate -171.1 -93.7 149.4 102.9 AgNO3 Silver(I) nitrate -124.4 -33.4 140.9 93.1 Ag2 Disilver 410.0 358.8 257.1 37.0 Ag2CrO4 Silver(I) chromate -731.7 -641.8 217.6 142.3 Ag2O Silver(I) oxide -31.1 -11.2 121.3 65.9 Ag2O2 Silver(II) oxide -24.3 27.6 117.0 88.0 Ag2O3 Silver(III) oxide 33.9 121.4 100.0 Ag2O4S Silver(I) sulfate -715.9 -618.4 200.4 131.4 Ag2S Silver(I) sulfide (argentite) -32.6 -40.7 144.0 76.5 Al Aluminum 0.0 330.0 289.4 28.3 164.6 24.4 21.4 AlB3H12 Aluminum borohydride -16.3 13.0 145.0 147.0 289.1 379.2 194.6 AlBr Aluminum monobromide -4.0 -42.0 239.5 35.6 AlBr3 Aluminum tribromide -527.2 -425.1 180.2 100.6 AlCl Aluminum monochloride -47.7 -74.1 228.1 35.0 AlCl2 Aluminum dichloride -331.0 AlCl3 Aluminum trichloride -704.2 -583.2 -628.8 109.3 91.1 AlF Aluminum monofluoride -258.2 -283.7 215.0 31.9 AlF3 Aluminum trifluoride -1510.4 -1204.6 -1431.1 -1188.2 66.5 277.1 75.1 62.6 AlF4Na Sodium tetrafluoroaluminate
    [Show full text]
  • Grignard Synthesis of Triphenylmethanol Reactions That Form Carbon-Carbon Bonds Are Among the Most Useful to the Synthetic Organic Chemist
    1 Experiment 12: Grignard Synthesis of Triphenylmethanol Reactions that form carbon-carbon bonds are among the most useful to the synthetic organic chemist. In 1912, Victor Grignard received the Nobel prize in chemistry for his discovery of a new series of reactions that result in the formation of a carbon-carbon bond. A Grignard synthesis first involves the preparation of an organomagnesium reagent via the reaction of an alkyl bromide with magnesium metal: δ– δ+ R Br + Mg R MgBr The resulting “Grignard reagent” acts as both a good nucleophile and a strong base. Its nucleophilic character allows it to react with the electrophilic carbon in a carbonyl group, thus forming the carbon-carbon bond. Its basic property means that it will react with acidic compounds, such as carboxylic acids, phenols, thiols and even alcohols and water; therefore, reaction conditions must be free from acids and strictly anhydrous. Grignard reagents will also react with oxygen to form hydroperoxides, thus they are highly unstable when exposed to the atmosphere and are generally not isolated from solution. For a variety of reasons, anhydrous diethyl ether is the solvent of choice for carrying out a Grignard synthesis. Vapors from the highly volatile solvent help to prevent oxygen from reaching the reaction solution. In addition, evidence suggests that the ether molecules actually coordinate with and help stabilize the Grignard reagent: Et Et O R Mg Br O Et Et The magnesium metal used in the synthesis contains a layer of oxide on the surface that prevents it from reacting with the alkyl bromide. The pieces of metal must be gently scratched while in the ether solution to expose fresh surface area so that the reaction can commence.
    [Show full text]
  • Preparation and Stability of Phenylated Polysilanes Gerald Lee Schwebke Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1964 Preparation and stability of phenylated polysilanes Gerald Lee Schwebke Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Organic Chemistry Commons Recommended Citation Schwebke, Gerald Lee, "Preparation and stability of phenylated polysilanes " (1964). Retrospective Theses and Dissertations. 3008. https://lib.dr.iastate.edu/rtd/3008 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. This dissertation has been 64—9285 microfilmed exactly as received SCHWEBKE, Gerald Lee, 1937- PREPARATION AND STABILITY OF PHENYLATED PO LYSILANES. Iowa State University of Science and Technology Ph.D., 1964 Chemistry, organic University Microfilms, Inc., Ann Arbor, Michigan PREPARATION AND STABILITY OF PHENYLATED POLYSILANES by Gerald Lee Schwebke A Dissertation Submitted to the Graduate Faculty in Partial Fulfillment of The Requirements for the Degree of DOCTOR OF PHILOSOPHY Major Subject: Organic Chemistry Approved: Signature was redacted for privacy. In Change of Major Work Signature was redacted for privacy. Signature was redacted for privacy. Iowa State University Of Science and Technology Ames, Iowa 1964 il TABLE OF CONTENTS INTRODUCTION NOMENCLATURE HISTORICAL Polysilanes Structure and Properties of the Cyclosilanes Chemistry of the Silicon-Silicon Bond Derivatives of Octaphenylcyclotetrasilane Polysilanes Derived from Decaphenylcyclo- pentasilane EXPERIMENTAL Stability of Alkyllithium Compounds in Mixed Solvent Systems Preparation of n-butyllithium in diethyl ether Preparation of n-decyllithium and n-tetradecyllithium in diethyl ether Preparation of n-decyllithium.
    [Show full text]