Effectiveness of Advanced Oxidation Processes with O3 and O3+H2O2

Total Page:16

File Type:pdf, Size:1020Kb

Effectiveness of Advanced Oxidation Processes with O3 and O3+H2O2 IOA Conference and Exhibition Valencia, Spain - October 29 – 31, 2007 Effectiveness of Advanced Oxidation Processes with O 3 and O 3+H 2O2 in Pesticides Degradation Natividad Miguel , María P. Ormad, Munia Lanao, Cristina Ibarz, José L. Ovelleiro Department of Chemical Engineering and Environmental Technologies. University of Zaragoza. Pedro Cerbuna, 12. 50009 Zaragoza (Spain). Tel: +34 976761156 Fax: +34 976762142 email: [email protected] Abstract The aim of this research work is to study the degradation of 44 organic pesticides, which are systematically detected in the Ebro River Basin (Spain), by advanced oxidation processes with O3 and H2O2. The pesticides studied are: alachlor, aldrin, ametryn, atrazine, chlorfenvinfos, chlorpyrifos, pp’ - DDD, op’ - DDE, op’ - DDT. pp’ - DDT, desethylatrazine, 3,4-dichloroaniline, 4,4’- dichlorobenzophenone, dicofol, dieldrin, dimethoate, diuron, a-endosulphan, endosulphan- sulphate, endrin, α-HCH, β-HCH, γ-HCH, δ-HCH, heptachlor, heptachlor epoxide A, heptachlor epoxide B, hexachlorobenzene, isodrin, 4-isopropylaniline, isoproturon, metholachlor, methoxychlor, molinate, parathion methyl, parathion ethyl, prometon, prometryn, propazine, simazine, terbuthylazine, terbutryn, tetradifon and trifluralin. The techniques applied are combinations of ozone and hydrogen peroxide and dosages used are -1 -1 3 mg O 3 L and weigh ratios H 2O2/O 3 (gg ) of 0.1, 0.5 y 2. The treatment with ozone removes 72% of the studied pesticides, whereas applying O 3+H 2O2 treatment, average degradation yields achieved are less. The maximum average degradation of the studied pesticides by O3+H 2O2 treatment is 51%, and it is achieved with the weight ratio -1 H2O2/O 3 (gg ) of.5. This indicates combined treatment don’t improve the degradation of studied pesticides. Key-words : Ozone, hydrogen peroxide, pesticides. Introduction The industrial activity increase and economic and social develop resulting have generate the growth of bid areas. This entails and complicates the supply of one the most essential element to live, water. Moreover, components give for environment and their human use have produced water pollution. Therefore, some parameters of water must to be altered to use it. In the case of human consumption, drinking process is totally necessary, process carried out in drinking water plants. Surface water and groundwater have a natural chemical composition. This composition results of the dissolution of soluble minerals and organic compounds. This natural composition can be modified by four contamination points: domestic water, industrial processes water, uncontrolled wastewaters and diffuse contamination. The last point can be the origin of the presence of pesticides in natural water, substances considered Hazardous Contaminants in accordance with current legislation about water [10,11]. Pesticides are a group of artificially synthesized substances used to fight pests and improve agricultural production. They are, however, generally toxic for living organisms and are difficult to degrade, being toxic agents with persistent bioaccumulative effects [9]. The use of pesticides also constitutes a risk for water quality in agricultural areas due to the fact that these components may 2.4 - 1 pass through the soil and subsoil and pollute surface waters and groundwater. In the Ebro River Basin (Spain), these substances are controlled via a Pesticides Control Network, which systematically analyzes 44 organic pesticides in surface waters. These pesticides were selected in accordance with their appearance in lists of hazardous substances and/or their high level of use in Spanish agriculture. Although the concentration of these substances detected in natural waters is generally very low, the maximum permissible concentration in human drinking waters in Spain is often exceeded [29], which establishes a limit of 0.5 µg/l as the total amount of pesticides and 0.1 µg/l for any single pesticide. Consequently, the treatment used to produce drinking water must guarantee the removal of these types of substances or at least reduce their concentration below the limits established in current legislation. A drinking water process consists of a group of operations more or less complex in accordance with natural water quality. In general, these operations are: sieve and bar system, preoxidation, activated carbon adsorption, coagulation-flocculation, intermediate oxidation, filtration through sand and final disinfection. Pesticides can be removed from water by oxidation and adsorption onto activated carbon steps. However, these techniques have some disadvantages. Activated carbon adsorption doesn’t destroy pesticides, but it a process that transfers contaminants from water to carbon, which generates a new problem of pollution. With respect to oxidation steps, they use to carry out with chlorine or sodium hypochlorite as oxidant agent. The fundamental problem associated with the use of these agents lies in the generation of by-products such as trihalomethanes, substances with proven carcinogenic power [2,4,7,21,23,25]. Due to this problem, some large plants now apply ozone in oxidation steps instead of chlorine or sodium hypochlorite due to the numerous advantages that this presents, in spite of its higher economic cost. Ozone has a high oxidant power and, in principle, does not generate hazardous organohalogenated by-products, such as trihalomethanes (THMs) [30,32]. Moreover, colour, smell, and dissolved iron and manganese can be removed via ozonation and coagulation may be improved [14,22]. The reactivity of organic compounds with ozone is a function of the functional groups present in each molecule. However, in presence of bromides, the ozonation of natural water produces brominated disinfection by-products, which are potentially carcinogenic [20,27]. Ozone may react with the organic matter present in the water via two distinct mechanisms: a direct or molecular reaction (low pH), by which cycleaddiction reactions and eletrophylic and nucleophylic attacks can be produced, and an indirect or radicalary reaction (basic pH). The indirect reaction takes place via chain mechanism by radicals generated in the decomposition of ozone (hydroxyl, superoxide, ozonide and hydroperoxide radicals). It’s proven that a large number of chlorinated pesticides react via the radical pathway [3,15,16,17,18,19]. The chain mechanism is describing next [24]: - ·- · Iniciation: O 3 + OH O 2 + HO 2 · ·- + HO 2 ↔ O 2 + H ·- + · Propagation: O 2 + O 3 + H 2O 2 + OH · + ·- OH + O 3 H + O 2 + O 2 - · · Termination: combinations of O 2 , HO 2 y OH . The ozone decomposition increases with the presence of OH -, hydrogen peroxide, photolysis by ultraviolet radiation and metallic catalysts. These techniques are called advanced oxidation processes, which are based generation of hydroxyl radicals, which are highly reacting, few selective and capable to mineralize contaminants without generate any by-product [5,6]. 2.4 - 2 The direct comparison of the efficiency of these processes is really complicated by their various of factors, such as pH, temperature, auxiliary oxidants or catalysts concentration, substrate nature, etc. [26]. The most of studied pesticides are organic chlorinated compounds, which reactivity with · hydroxyl radicals (OH ) is low, due to C-Cl bounds, on the contrary that C-H bounds, are inert to · ·- these radicals attack. To degrade these compounds, reductive radicals ( HO 2 /O2 ) are needed. Intermediated compounds with more hydrogen are formed and these compounds react faster with hydroxyl radicals, achieving their total degradation [26]. In this particular study, the aim is compare and study the effectiveness of treatments with O 3 (ozonation) and O3/H 2O2 (peroxone) to degrade 44 studied pesticides, which are systematically detected in the Ebro River Basin (Spain). Studied pesticides are shown in table 1. Material and methods Sample The natural water under study comes from the River Ebro, upstream from Zaragoza (Spain). Sampling took place during February, a month in which large amounts of pesticides are not historically registered due to the fact that the periods in which pesticides are applied and the first rains occur is between May and September. Accordingly, the initial concentration of pesticides obtained is very low and uniform for each of these. The Total Organic Carbon (TOC) of water is 2.5 mg C L -1. A single sample of 10 L is divided among several one litre amber glass bottles which are kept under refrigeration at 4 ºC until their subsequent preparation and analysis. Each 1 L sample is fortified with 500 ng L -1 of each of the pesticides under study so as to ensure its presence and to study its possible removal. Thus, the concentration of each pesticide in each sample is the sum of what was artificially added and what the natural water actually contained. These concentrations are shown in Table 1. The pH of the water is 8.2 and the TOC is 37 mg C L -1. Table 1. Studied pesticides and concentration in the studied sample Concentration Concentration Pesticide Pesticide (ng L -1) (ng L -1) Alachlor 500 γ-HCH 521 Aldrin 500 δ-HCH 500 Ametryn 500 Heptachlor 500 Atrazine 551 Heptachlor epoxide A 500 Chlorfenvinfos 500 Heptachlor epoxide B 500 Chlorpyrifos 520 Hexachlorobenzene 500 pp’-DDD 500 Isodrin 516 op’-DDE 500 4-Isopropylaniline 500 op’-DDT 500 Isoproturon 500 pp’-DDT 500 Metholachlor 524 Desethylatrazine 593 Methoxychlor 519 3,4-Dichloroaniline 658 Molinate 551 4,4’-Dichlorobenzophenone 519 Parathion ethyl 500 Dicofol 568 Parathion
Recommended publications
  • 2,4-Dichlorophenoxyacetic Acid
    2,4-Dichlorophenoxyacetic acid 2,4-Dichlorophenoxyacetic acid IUPAC (2,4-dichlorophenoxy)acetic acid name 2,4-D Other hedonal names trinoxol Identifiers CAS [94-75-7] number SMILES OC(COC1=CC=C(Cl)C=C1Cl)=O ChemSpider 1441 ID Properties Molecular C H Cl O formula 8 6 2 3 Molar mass 221.04 g mol−1 Appearance white to yellow powder Melting point 140.5 °C (413.5 K) Boiling 160 °C (0.4 mm Hg) point Solubility in 900 mg/L (25 °C) water Related compounds Related 2,4,5-T, Dichlorprop compounds Except where noted otherwise, data are given for materials in their standard state (at 25 °C, 100 kPa) 2,4-Dichlorophenoxyacetic acid (2,4-D) is a common systemic herbicide used in the control of broadleaf weeds. It is the most widely used herbicide in the world, and the third most commonly used in North America.[1] 2,4-D is also an important synthetic auxin, often used in laboratories for plant research and as a supplement in plant cell culture media such as MS medium. History 2,4-D was developed during World War II by a British team at Rothamsted Experimental Station, under the leadership of Judah Hirsch Quastel, aiming to increase crop yields for a nation at war.[citation needed] When it was commercially released in 1946, it became the first successful selective herbicide and allowed for greatly enhanced weed control in wheat, maize (corn), rice, and similar cereal grass crop, because it only kills dicots, leaving behind monocots. Mechanism of herbicide action 2,4-D is a synthetic auxin, which is a class of plant growth regulators.
    [Show full text]
  • Herbicide Mode of Action Table High Resistance Risk
    Herbicide Mode of Action Table High resistance risk Chemical family Active constituent (first registered trade name) GROUP 1 Inhibition of acetyl co-enzyme A carboxylase (ACC’ase inhibitors) clodinafop (Topik®), cyhalofop (Agixa®*, Barnstorm®), diclofop (Cheetah® Gold* Decision®*, Hoegrass®), Aryloxyphenoxy- fenoxaprop (Cheetah®, Gold*, Wildcat®), fluazifop propionates (FOPs) (Fusilade®), haloxyfop (Verdict®), propaquizafop (Shogun®), quizalofop (Targa®) Cyclohexanediones (DIMs) butroxydim (Factor®*), clethodim (Select®), profoxydim (Aura®), sethoxydim (Cheetah® Gold*, Decision®*), tralkoxydim (Achieve®) Phenylpyrazoles (DENs) pinoxaden (Axial®) GROUP 2 Inhibition of acetolactate synthase (ALS inhibitors), acetohydroxyacid synthase (AHAS) Imidazolinones (IMIs) imazamox (Intervix®*, Raptor®), imazapic (Bobcat I-Maxx®*, Flame®, Midas®*, OnDuty®*), imazapyr (Arsenal Xpress®*, Intervix®*, Lightning®*, Midas®* OnDuty®*), imazethapyr (Lightning®*, Spinnaker®) Pyrimidinyl–thio- bispyribac (Nominee®), pyrithiobac (Staple®) benzoates Sulfonylureas (SUs) azimsulfuron (Gulliver®), bensulfuron (Londax®), chlorsulfuron (Glean®), ethoxysulfuron (Hero®), foramsulfuron (Tribute®), halosulfuron (Sempra®), iodosulfuron (Hussar®), mesosulfuron (Atlantis®), metsulfuron (Ally®, Harmony®* M, Stinger®*, Trounce®*, Ultimate Brushweed®* Herbicide), prosulfuron (Casper®*), rimsulfuron (Titus®), sulfometuron (Oust®, Eucmix Pre Plant®*, Trimac Plus®*), sulfosulfuron (Monza®), thifensulfuron (Harmony®* M), triasulfuron (Logran®, Logran® B-Power®*), tribenuron (Express®),
    [Show full text]
  • 40 CFR Ch. I (7–1–18 Edition) § 455.61
    § 455.61 40 CFR Ch. I (7–1–18 Edition) from: the operation of employee show- § 455.64 Effluent limitations guidelines ers and laundry facilities; the testing representing the degree of effluent of fire protection equipment; the test- reduction attainable by the applica- ing and emergency operation of safety tion of the best available tech- showers and eye washes; or storm nology economically achievable water. (BAT). (d) The provisions of this subpart do Except as provided in 40 CFR 125.30 not apply to wastewater discharges through 125.32, any existing point from the repackaging of microorga- source subject to this subpart must nisms or Group 1 Mixtures, as defined achieve effluent limitations rep- under § 455.10, or non-agricultural pes- resenting the degree of effluent reduc- ticide products. tion attainable by the application of the best available technology economi- § 455.61 Special definitions. cally achievable: There shall be no dis- Process wastewater, for this subpart, charge of process wastewater pollut- means all wastewater except for sani- ants. tary water and those wastewaters ex- § 455.65 New source performance cluded from the applicability of the standards (NSPS). rule in § 455.60. Any new source subject to this sub- § 455.62 Effluent limitations guidelines part which discharges process waste- representing the degree of effluent water pollutants must meet the fol- reduction attainable by the applica- lowing standards: There shall be no dis- tion of the best practicable pollut- charge of process wastewater pollut- ant control technology (BPT). ants. Except as provided in 40 CFR 125.30 through 125.32, any existing point § 455.66 Pretreatment standards for existing sources (PSES).
    [Show full text]
  • Dicamba Emissions Under Field Conditions As Affected by Surface
    Weed Technology Dicamba emissions under field conditions as www.cambridge.org/wet affected by surface condition Thomas C. Mueller1 and Lawrence E. Steckel2 1 2 Research Article Professor, Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA and Professor, Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA Cite this article: Mueller TC and Steckel LE (2021) Dicamba emissions under field Abstract conditions as affected by surface condition. Weed Technol. 35: 188–195. doi: 10.1017/ The evolution and widespread distribution of glyphosate-resistant broadleaf weed species cata- wet.2020.106 lyzed the introduction of dicamba-resistant crops that allow this herbicide to be applied POST to soybean and cotton. Applications of dicamba that are most cited for off-target movement Received: 15 June 2020 have occurred in June and July in many states when weeds are often in high densities and Revised: 13 July 2020 Accepted: 11 September 2020 at least 10 cm or taller at the time of application. For registration purposes, most field studies First published online: 17 September 2020 examining pesticide emissions are conducted using bare ground or very small plants. Research was conducted in Knoxville, TN, in the summer of 2017, 2018, and 2019 to examine the effect of Associate Editor: application surface (tilled soil, dead plants, green plants) on dicamba emissions under field con- Kevin Bradley, University of Missouri ditions. Dicamba emissions after application were affected by the treated surface in all years, Nomenclature: with the order from least to most emissions being dead plants < tilled soil < green plant Dicamba; cotton; Gossypium hirsutum l.; material.
    [Show full text]
  • Herbicidal Composition
    (19) TZZ ¥ ¥_T (11) EP 2 832 223 A1 (12) EUROPEAN PATENT APPLICATION published in accordance with Art. 153(4) EPC (43) Date of publication: (51) Int Cl.: 04.02.2015 Bulletin 2015/06 A01N 47/36 (2006.01) A01N 41/10 (2006.01) A01N 43/10 (2006.01) A01N 43/40 (2006.01) (2006.01) (2006.01) (21) Application number: 13769011.1 A01N 43/70 A01N 43/80 A01N 43/824 (2006.01) A01P 13/00 (2006.01) (22) Date of filing: 29.03.2013 (86) International application number: PCT/JP2013/059673 (87) International publication number: WO 2013/147225 (03.10.2013 Gazette 2013/40) (84) Designated Contracting States: • OKAMOTO, Hiroyuki AL AT BE BG CH CY CZ DE DK EE ES FI FR GB Kusatsu-shi GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO Shiga 525-0025 (JP) PL PT RO RS SE SI SK SM TR • TERADA, Takashi Designated Extension States: Kusatsu-shi BA ME Shiga 525-0025 (JP) (30) Priority: 30.03.2012 JP 2012079935 (74) Representative: Müller-Boré & Partner Patentanwälte PartG mbB (71) Applicant: Ishihara Sangyo Kaisha, Ltd. Friedenheimer Brücke 21 Osaka-shi, Osaka 550-0002 (JP) 80639 München (DE) (72) Inventors: • YAMADA, Ryu Kusatsu-shi Shiga 525-0025 (JP) (54) HERBICIDAL COMPOSITION (57) To provide a high active herbicidal composition at least one 4-hydroxyphenylpyruvate dioxygenase in- having a broad herbicidal spectrum. hibitor selected from the group consisting of sulcotrione, A herbicidal composition comprising, as active in- bicyclopyrone, mesotrione, topramezone and their salts; gredients, (a) nicosulfuron or its salt, (b) terbuthylazine and group C2 is at least one very long chain fatty acid or its salt and (c) compound C (compound C is at least biosynthesis inhibitor selected from the group consisting one herbicidal compound selected from the group con- of dimethenamid-P, flufenacet and their salts).
    [Show full text]
  • Coa F128821.Pdf
    page 1 of 4 Version 1 CERTIFIED REFERENCE MATERIAL Triazine & Urea Pesticide Mixture - 29 components; 100ug/ml each of Atrazine [CAS:1912-24-9] ; Atrazine-desethyl [CAS:6190-65-4] ; Atrazine-desisopropyl [CAS:1007-28-9] ; Metamitron [CAS:41394-05-2] ; Chloridazon [CAS:1698-60-8] ; Metoxuron [CAS:19937-59-8] ; Carbetamide [CAS:16118-49-3] ; Bromacil [CAS:314-40-9] ; Simazine [CAS:122-34-9] ; Cyanazine [CAS:21725-46-2] ; Terbuthylazine-desethyl [CAS:30125-63-4] ; Methabenzthiazuron [CAS:18691-97-9] ; Chlortoluron [CAS:15545-48-9] ; Monolinuron [CAS:1746-81-2] ; Diuron [CAS:330-54-1] ; Isoproturon [CAS:34123-59-6] ; Metobromuron [CAS:3060-89-7] ; Metazachlor [CAS:67129-08-2] ; Propazine [CAS:139-40-2] ; Dimefuron [CAS:34205-21-5] ; Terbuthylazine [CAS:5915-41-3] ; Linuron [CAS:330-55-2] ; Chloroxuron [CAS:1982-47-4] ; Prometryn [CAS:7287-19-6] ; Chlorpropham [CAS:101-21-3] ; Terbutryn [CAS:886-50-0] ; Metolachlor [CAS:51218-45-2] ; Ethofumesate [CAS:26225-79-6] ; Ethidimuron [CAS:30043-49-3] in Acetonitrile Lot N: XXXXXX Ref N: F128821 Certification Date:XXXXXX Barcode: XXXXXXXX Component Certified Value* CAS Chemical Formula and uncertainty [µg/ml] Atrazine 99.71 ± 1.19 1912-24-9 C8H14ClN5 Atrazine-desethyl 99.76 ± 1.88 6190-65-4 C6H10ClN5 Atrazine-desisopropyl 100.08 ± 2.34 1007-28-9 C5H8ClN5 Metamitron 99.93 ± 1.09 41394-05-2 C10H10N4O Chloridazon 99.57 ± 1.26 1698-60-8 C10H8ClN3O Metoxuron 100.01 ± 1.34 19937-59-8 C10H13ClN2O2 Carbetamide 100.00 ± 1.48 16118-49-3 C12H16N2O3 Bromacil 99.70 ± 1.17 314-40-9 C9H13BrN2O2 Simazine 100.09 ±
    [Show full text]
  • Redox Imbalance Caused by Pesticides: a Review of OPENTOX-Related Research
    Marjanović Čermak AM, et al. Redox imbalance caused by pesticides Arh Hig Rada Toksikol 2018;69:126-134 126 Review DOI: 10.2478/aiht-2018-69-3105 Redox imbalance caused by pesticides: a review of OPENTOX-related research Ana Marija Marjanović Čermak, Ivan Pavičić, and Davor Želježić Institute for Medical Research and Occupational Health, Zagreb, Croatia [Received in February 2018; Similarity Check in February 2018; Accepted in May 2018] Pesticides are a highly diverse group of compounds and the most important chemical stressors in the environment. Mechanisms that could explain pesticide toxicity are constantly being studied and their interactions at the cellular level are often observed in well-controlled in vitro studies. Several pesticide groups have been found to impair the redox balance in the cell, but the mechanisms leading to oxidative stress for certain pesticides are only partly understood. As our scientific project “Organic pollutants in environment – markers and biomarkers of toxicity (OPENTOX)” is dedicated to studying toxic effects of selected insecticides and herbicides, this review is focused on reporting the knowledge regarding oxidative stress-related phenomena at the cellular level. We wanted to single out the most important facts relevant to the evaluation of our own findings from studies conducted onin vitro cell models. KEY WORDS: antioxidants; apoptosis; glyphosate; in vitro; neonicotinoids; organophosphates; oxidative stress; pyrethroids; reactive oxygen species Over the years, population growth and changes in food (HrZZ), is dedicated to studying the toxic effects of two consumption patterns have challenged agricultural major pesticide classes with three subgroups each: (A) production to meet the demand for food and quality insecticides (organophosphates, neonicotinoids, and standards.
    [Show full text]
  • 12 Chemical Fact Sheets
    1212 ChemicalChemical factfact sheetssheets A conceptual framework for Introduction implementing the Guidelines (Chapter 1) (Chapter 2) he background docudocu-- ments referred to in FRAMEWORK FOR SAFE DRINKING-WATER SUPPORTING Tments referred to in INFORMATION thisthis chapterchapter (as the princi-princi- Health-based targets Public health context Microbial aspects pal reference for each fact (Chapter 3) and health outcome (Chapters 7 and 11) sheet) may be found on Water safety plans Chemical aspects (Chapter 4) (Chapters 8 and 12) thethe Water, Sanitation, HyHy-- System Management and Radiological Monitoring giene and Health web site assessment communication aspects at http://www.who.int/ (Chapter 9) Acceptability Surveillance water_sanitation_health/ aspects (Chapter 5) dwq/chemicals/en/indewater-quality/guidelines/x. (Chapter 10) htmlchemicals/en/. A complete. A complete list of rlist eferences of references cited citedin this in Application of the Guidelines in specic circumstances chapter,this chapter, including including the (Chapter 6) background documents Climate change, Emergencies, Rainwater harvesting, Desalination forfor each cchemical, hemical, is pro-pro- systems, Travellers, Planes and vided in Annex 22.. ships, etc. 12.1 Chemical contaminants in drinking-water Acrylamide Residual acrylamideacrylamide monomermonomer occursoccurs inin polyacrylamidepolyacrylamide coagulantscoagulants used used in in thethe treattreat-- ment of drinking-water. In general, thethe maximummaximum authorizedauthorized dosedose ofof polymerpolymer isis 11 mg/l. mg/l. At a monomer content of 0.05%, this corresponds to a maximum theoretical concen-- trationtration ofof 0.5 µg/l of the monomer in water.water. Practical concentrations maymay bebe lowerlower byby aa factor factor of 2–3. This applies applies to to thethe anionic anionic and and non-ionic non-ionic polyacrylamides, polyacrylamides, but but residual residual levelslevels fromfrom cationic polyacrylamides maymay bebe higher.higher.
    [Show full text]
  • List of Herbicide Groups
    List of herbicides Group Scientific name Trade name clodinafop (Topik®), cyhalofop (Barnstorm®), diclofop (Cheetah® Gold*, Decision®*, Hoegrass®), fenoxaprop (Cheetah® Gold* , Wildcat®), A Aryloxyphenoxypropionates fluazifop (Fusilade®, Fusion®*), haloxyfop (Verdict®), propaquizafop (Shogun®), quizalofop (Targa®) butroxydim (Falcon®, Fusion®*), clethodim (Select®), profoxydim A Cyclohexanediones (Aura®), sethoxydim (Cheetah® Gold*, Decision®*), tralkoxydim (Achieve®) A Phenylpyrazoles pinoxaden (Axial®) azimsulfuron (Gulliver®), bensulfuron (Londax®), chlorsulfuron (Glean®), ethoxysulfuron (Hero®), foramsulfuron (Tribute®), halosulfuron (Sempra®), iodosulfuron (Hussar®), mesosulfuron (Atlantis®), metsulfuron (Ally®, Harmony®* M, Stinger®*, Trounce®*, B Sulfonylureas Ultimate Brushweed®* Herbicide), prosulfuron (Casper®*), rimsulfuron (Titus®), sulfometuron (Oust®, Eucmix Pre Plant®*), sulfosulfuron (Monza®), thifensulfuron (Harmony®* M), triasulfuron, (Logran®, Logran® B Power®*), tribenuron (Express®), trifloxysulfuron (Envoke®, Krismat®*) florasulam (Paradigm®*, Vortex®*, X-Pand®*), flumetsulam B Triazolopyrimidines (Broadstrike®), metosulam (Eclipse®), pyroxsulam (Crusader®Rexade®*) imazamox (Intervix®*, Raptor®,), imazapic (Bobcat I-Maxx®*, Flame®, Midas®*, OnDuty®*), imazapyr (Arsenal Xpress®*, Intervix®*, B Imidazolinones Lightning®*, Midas®*, OnDuty®*), imazethapyr (Lightning®*, Spinnaker®) B Pyrimidinylthiobenzoates bispyribac (Nominee®), pyrithiobac (Staple®) C Amides: propanil (Stam®) C Benzothiadiazinones: bentazone (Basagran®,
    [Show full text]
  • Journal of Plant Protection Research ISSN 1427-4345
    Journal of Plant Protection Research ISSN 1427-4345 ORIGINAL ARTICLE A study on Sorghum bicolor (L.) Moench response to split application of herbicides Sylwia Kaczmarek* Department of Weed Science and Plant Protection Techniques, Institute of Plant Protection – National Research Institute, Władysława Węgorka 20, 60-318 Poznań, Poland Vol. 57, No. 2: 152–157, 2017 Abstract DOI: 10.1515/jppr-2017-0021 Field experiments to evaluate the split application of mesotrione + s-metolachlor, mesot- rione + terbuthylazine, dicamba + prosulfuron, terbuthylazine + mesotrione + s-metol- Received: March 10, 2017 achlor, and sulcotrione in the cultivation of sorghum var. Rona 1 were carried out in 2012 Accepted: May 24, 2017 and 2013. Th e fi eld tests were conducted at the fi eld experimental station in Winna Góra, Poznań, Poland. Treatments with the herbicides were performed directly aft er sowing (PE) *Corresponding address: and at leaf stage 1–2 (AE1) or at leaf stage 3–4 (AE2) of sorghum. Th e treatments were car- [email protected] ried out in a laid randomized block design with 4 replications. Th e results showed that the tested herbicides applied at split doses were eff ective in weed control. Aft er the herbicide application weed density and weed biomass were signifi cantly reduced compared to the infested control. Th e best results were achieved aft er the application of mesotrione tank mixture with s-metolachlor and terbuthylazine. Application of split doses of herbicides was also correlated with the density, biomass, and height of sorghum. Key words: herbicides, mesotrione, s-metolachlor, sorghum, split doses, terbuthylazine, weed control Introduction Sorghum, the oldest cultivated crop in the world, is a total area of 390,000 ha.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 9.451,767 B2 Nolte Et Al
    US00945.1767B2 (12) United States Patent (10) Patent No.: US 9.451,767 B2 Nolte et al. (45) Date of Patent: Sep. 27, 2016 (54) AQUEOUS COMPOSITION COMPRISING (52) U.S. Cl. DCAMIBA AND A DRIFT CONTROL AGENT CPC ............... A0IN 33/04 (2013.01); A0IN 37/10 (2013.01); A0IN 37/40 (2013.01); A0IN (71) Applicant: BASF SE, Ludwigshafen (DE) 37/44 (2013.01) (58) Field of Classification Search (72) Inventors: Marc Nolte, Mannheim (DE); Wen Xu, CPC ...................................................... AO1N 37/44 Cary, NC (US); Steven Bowe, Apex, USPC .......................................................... 514/564 NC (US); Maarten Staal, Durham, NC See application file for complete search history. (US); Terrance M. Cannan, Raleigh, NC (US) (56) References Cited (73) Assignee: BASF SE, Ludwigshafen (DE) FOREIGN PATENT DOCUMENTS (*) Notice: Subject to any disclaimer, the term of this WO WO O2,34047 5, 2002 patent is extended or adjusted under 35 W. w838g 1239 U.S.C. 154(b) by 101 days. WO WO 2011/O19652 2, 2011 WO WO 2011/O102.11 9, 2011 (21) Appl. No.: 14/408,172 WO WO 2012/076567 6, 2012 (22) PCT Filed: Jun. 11, 2013 OTHER PUBLICATIONS International Search Report dated Jul. 12, 2013, prepared in Inter (86). PCT No.: PCT/EP2013/061962 national Application No. PCT/EP2013/061962. S 371 (c)(1), International Preliminary Report on Patentability dated Jun. 6. (2) Date: Dec. 15, 2014 2014, prepared in International Application No. PCT/EP2013/ O61962. (87) PCT Pub. No.: WO2013/189773 Primary Examiner — Raymond Henley, III PCT Pub. Date: Dec. 27, 2013 (74) Attorney, Agent, or Firm — Brinks Gilson & Lione (65) Prior Publication Data (57) ABSTRACT US 2015/O173354 A1 Jun.
    [Show full text]
  • PESTICIDES Criteria for a Recommended Standard
    CRITERIA FOR A RECOMMENDED STANDARD OCCUPATIONAL EXPOSURE DURING THE MANUFACTURE AND FORMULATION OF PESTICIDES criteria for a recommended standard... OCCUPATIONAL EXPOSURE DURING THE MANUFACTURE AND FORMULATION OF PESTICIDES * U.S. DEPARTMENT OF HEALTH, EDUCATION, AND WELFARE Public Health Service Center for Disease Control National Institute for Occupational Safety and Health July 1978 For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402 DISCLAIMER Mention of company names or products does not constitute endorsement by the National Institute for Occupational Safety and Health. DHEW (NIOSH) Publication No. 78-174 PREFACE The Occupational Safety and Health Act of 1970 emphasizes the need for standards to protect the health and provide for the safety of workers occupationally exposed to an ever-increasing number of potential hazards. The National Institute for Occupational Safety and Health (NIOSH) has implemented a formal system of research, with priorities determined on the basis of specified indices, to provide relevant data from which valid criteria for effective standards can be derived. Recommended standards for occupational exposure, which are the result of this work, are based on the effects of exposure on health. The Secretary of Labor will weigh these recommendations along with other considerations, such as feasibility and means of implementation, in developing regulatory standards. Successive reports will be presented as research and epideiriologic studies are completed and as sampling and analytical methods are developed. Criteria and standards will be reviewed periodically to ensure continuing protection of workers. The contributions to this document on pesticide manufacturing and formulating industries by NIOSH staff members, the review consultants, the reviewer selected by the American Conference of Governmental Industrial Hygienists (ACGIH), other Federal agencies, and by Robert B.
    [Show full text]