<<

IOAConferenceandExhibitionValencia,SpainOctober29–31,2007 EffectivenessofAdvancedOxidationProcesses withO 3 andO 3+H 2O2inPesticidesDegradation NatividadMiguel ,MaríaP.Ormad,MuniaLanao,CristinaIbarz,JoséL.Ovelleiro DepartmentofChemicalEngineeringandEnvironmentalTechnologies. UniversityofZaragoza.PedroCerbuna,12.50009Zaragoza(Spain). Tel:+34976761156Fax:+34976762142email:[email protected] Abstract The aim of this research work is to study the degradation of 44 organic pesticides, which are systematicallydetectedintheEbroRiverBasin(Spain),byadvancedoxidationprocesseswithO3 andH2O2. Thepesticidesstudiedare:,aldrin,ametryn,,chlorfenvinfos,chlorpyrifos,pp’ DDD, op’ DDE, op’ DDT. pp’ DDT, desethylatrazine, 3,4dichloroaniline, 4,4’ dichlorobenzophenone, dicofol, dieldrin, dimethoate, diuron, aendosulphan, endosulphan sulphate, endrin, αHCH, βHCH, γHCH, δHCH, heptachlor, heptachlor epoxide A, heptachlor epoxide B, hexachlorobenzene, isodrin, 4isopropylaniline, isoproturon, metholachlor, methoxychlor, molinate, parathion methyl, parathion ethyl, , prometryn, propazine, ,terbuthylazine,terbutryn,tetradifonand. Thetechniquesappliedarecombinationsofozoneandhydrogenperoxideanddosagesusedare 1 1 3mgO 3L andweighratiosH 2O2/O 3(gg )of0.1,0.5y2. The treatment with ozone removes 72% of the studied pesticides, whereas applying O 3+H 2O2 treatment,averagedegradationyieldsachievedare less.Themaximumaverage degradationof the studied pesticides by O3+H 2O2 treatment is 51%, and it is achieved with the weight ratio 1 H2O2/O 3 (gg )of.5.Thisindicatescombinedtreatmentdon’timprove the degradation of studied pesticides. Keywords :Ozone,hydrogenperoxide,pesticides. Introduction The industrial activity increase and economic and social develop resulting have generate the growthofbidareas.Thisentailsandcomplicatesthesupplyofonethemostessentialelementto live, water. Moreover, components give for environment and their human use have produced waterpollution.Therefore,someparametersofwatermusttobealteredtouseit.Inthecaseof humanconsumption,drinkingprocessistotallynecessary,processcarriedoutindrinkingwater plants. Surfacewaterandgroundwaterhaveanaturalchemicalcomposition.Thiscompositionresultsof the dissolution of soluble minerals and organic compounds. This natural composition can be modified by four contamination points: domestic water, industrial processes water, uncontrolled wastewaters and diffuse contamination. The last point can be the origin of the presence of pesticidesinnaturalwater,substancesconsidered HazardousContaminantsinaccordancewith currentlegislationaboutwater[10,11]. Pesticides are a group of artificially synthesized substances used to fight pests and improve agriculturalproduction.Theyare,however,generallytoxicforlivingorganismsandaredifficultto degrade,beingtoxicagentswithpersistentbioaccumulativeeffects[9].Theuseofpesticidesalso constitutesariskforwaterqualityinagriculturalareasduetothefactthatthesecomponentsmay

2.4 1 passthroughthesoilandsubsoilandpollutesurfacewatersandgroundwater.IntheEbroRiver Basin (Spain), these substances are controlled via a Pesticides Control Network, which systematicallyanalyzes44organicpesticidesinsurfacewaters.Thesepesticideswereselectedin accordancewiththeirappearanceinlistsofhazardoussubstancesand/ortheirhighlevelofusein Spanishagriculture. Althoughtheconcentrationofthesesubstancesdetectedinnaturalwatersisgenerallyverylow, themaximumpermissibleconcentrationinhumandrinkingwatersinSpainisoftenexceeded[29], whichestablishesalimitof0.5g/lasthetotalamountofpesticidesand0.1g/lforanysingle pesticide. Consequently, the treatment used to produce drinking water must guarantee the removal of these types of substances or at least reduce their concentration below the limits establishedincurrentlegislation. Adrinkingwaterprocessconsistsofagroupofoperationsmoreorlesscomplexinaccordance withnaturalwaterquality.Ingeneral,theseoperationsare:sieveandbarsystem,preoxidation, activatedcarbonadsorption,coagulationflocculation,intermediateoxidation,filtrationthroughsand and final disinfection. Pesticides can be removed from water by oxidation and adsorption onto activatedcarbonsteps.However,thesetechniqueshavesomedisadvantages. Activated carbon adsorption doesn’t destroy pesticides, but it a process that transfers contaminantsfromwatertocarbon,whichgeneratesanewproblemofpollution. With respect to oxidation steps, they use to carry out with chlorine or sodium hypochlorite as oxidant agent. The fundamental problem associated with the use of these agents lies in the generationof byproductssuch as trihalomethanes, substances with proven carcinogenic power [2,4,7,21,23,25]. Duetothisproblem,somelargeplantsnowapplyozoneinoxidationstepsinsteadofchlorineor sodium hypochlorite due to the numerous advantages that this presents, in spite of its higher economiccost.Ozonehasahighoxidantpowerand,inprinciple,doesnotgeneratehazardous organohalogenatedbyproducts,suchastrihalomethanes(THMs)[30,32].Moreover,colour,smell, and dissolved iron and manganese can be removed via ozonation and coagulation may be improved[14,22].Thereactivityoforganiccompoundswithozoneisafunctionofthefunctional groups present in each molecule. However, in presence of bromides, the ozonation of natural waterproducesbrominateddisinfectionbyproducts,whicharepotentiallycarcinogenic[20,27]. Ozonemayreactwiththeorganicmatterpresentinthewaterviatwodistinctmechanisms:adirect ormolecularreaction(lowpH),bywhichcycleaddictionreactionsandeletrophylicandnucleophylic attackscanbeproduced,andanindirectorradicalaryreaction(basicpH).Theindirectreaction takesplaceviachainmechanismbyradicalsgeneratedinthedecompositionofozone(hydroxyl, superoxide, ozonide and hydroperoxide radicals). It’s proven that a large number of chlorinated pesticides react via the radical pathway [3,15,16,17,18,19]. The chain mechanism is describing next[24]: Iniciation:O 3+OH O 2 + HO 2 + HO 2↔O 2 +H + Propagation:O 2 +O 3+H 2O 2+OH + OH +O 3 H +O 2 +O 2 Termination:combinationsofO 2 , HO 2yOH . TheozonedecompositionincreaseswiththepresenceofOH ,hydrogenperoxide,photolysisby ultraviolet radiation and metallic catalysts. These techniques are called advanced oxidation processes, which are based generation of hydroxyl radicals, which are highly reacting, few selectiveandcapabletomineralizecontaminantswithoutgenerateanybyproduct[5,6].

2.4 2 Thedirectcomparisonoftheefficiencyoftheseprocessesisreallycomplicatedbytheirvariousof factors,suchaspH,temperature,auxiliaryoxidantsorcatalystsconcentration,substratenature, etc.[26].Themostofstudiedpesticidesareorganicchlorinatedcompounds,whichreactivitywith hydroxylradicals(OH )islow,duetoCClbounds,onthecontrarythatCHbounds,areinertto theseradicalsattack.Todegradethesecompounds, reductive radicals ( HO 2 /O2 ) are needed. Intermediatedcompoundswithmorehydrogenareformedandthesecompoundsreactfasterwith hydroxylradicals,achievingtheirtotaldegradation[26]. In this particular study, the aim is compare and study the effectiveness of treatments with O 3 (ozonation) and O3/H 2O2 (peroxone) to degrade 44 studied pesticides, which are systematically detectedintheEbroRiverBasin(Spain).Studiedpesticidesareshownintable1. Materialandmethods Sample The natural water under study comes from the River Ebro, upstream from Zaragoza (Spain). Sampling took place during February, a month in which large amounts of pesticides are not historicallyregisteredduetothefactthattheperiodsinwhichpesticidesareappliedandthefirst rains occur is between May and September. Accordingly, the initial concentration of pesticides obtainedisverylowanduniformforeachofthese.TheTotalOrganicCarbon(TOC)ofwateris2.5 mgCL 1. Asinglesampleof10Lisdividedamongseveralone litre amber glass bottleswhich are kept underrefrigerationat4ºCuntiltheirsubsequent preparationandanalysis.Each1Lsampleis fortifiedwith500ngL 1ofeachofthepesticidesunderstudysoastoensureitspresenceandto studyitspossibleremoval.Thus,theconcentrationofeachpesticideineachsampleisthesumof whatwasartificiallyaddedandwhatthenaturalwateractuallycontained.Theseconcentrationsare showninTable1.ThepHofthewateris8.2andtheTOCis37mgCL 1. Table 1. Studied pesticides and concentration in the studied sample Concentration Concentration Pesticide Pesticide (ngL 1) (ngL 1) Alachlor 500 γHCH 521 Aldrin 500 δHCH 500 Ametryn 500 Heptachlor 500 Atrazine 551 HeptachlorepoxideA 500 Chlorfenvinfos 500 HeptachlorepoxideB 500 Chlorpyrifos 520 Hexachlorobenzene 500 pp’DDD 500 Isodrin 516 op’DDE 500 4Isopropylaniline 500 op’DDT 500 Isoproturon 500 pp’DDT 500 Metholachlor 524 Desethylatrazine 593 Methoxychlor 519 3,4Dichloroaniline 658 Molinate 551 4,4’Dichlorobenzophenone 519 Parathionethyl 500 Dicofol 568 Parathionmethyl 500 Dieldrin 500 Prometon 500 Dimethoathe 608 Prometryn 500 Diuron 500 Propazine 500 aEndosulphan 500 Simazine 554 Endosulphansulphate 500 Terbuthylazine 524 Endrin 500 Terbutryn 500 αHCH 500 Tetradifon 500 βHCH 500 Trifluralin 566

2.4 3 Analysisofpesticides Water samples undergo a solidliquid extraction prior to their analysis by GC/MS (Gas Chromatography/MassSpectrometry). Solidliquid extraction consists of the retention of organic compounds in a solid phase and subsequent elution with an organic solvent [12]. This extraction is carried out using an AUTOTRACEWorkStationautomaticextractor(Zymark).Beforeextraction,100ngL 1ofsurrogate compoundsusedtocontroltheextractionprocess(simazineD5, atrazineD5 and prometrynD6 (Dr. Erhernstofer) are added to the water sample. During solidliquid extraction, 900 mL of the sampleispassedthroughcartridgescontainingasolid ENV+ filter (polystyrene divinyl benzene copolymer) (ISOLUTE cartridges, 200 mg 6 mL 1). The pesticides contained in the sample are retainedinthesolidphaseanddriedunderN 2for10minutes.Theyarethenelutedbypassing10 mLofethylacetate(SDS,forpesticideanalysis)throughthecartridge,thusfacilitatingthepassage of these compounds from the water phase to an organic phase. The extracts so obtained are concentratedunderaN 2flowuntilanapproximatevolumeof1mLisobtained,afterwhich3mLof isooctaneisadded(SDS,forpesticideanalysis)inordertocarryoutachangeofsolvent.The extract is then concentrated until obtaining an approximate volume of 0.5 mL. Anthracene deuterate (D10) (SUPELCO) is added to each extract as an internal standard for subsequent quantificationofthepesticidespresentinthesamples.TheseextractsareanalysedbyGC/MS. The chromatographic conditions employed and results of the validation of pesticides analysis methodologyareshownintable2and3respectively. Table 2. Conditions to analysis of pesticides GasChromatographerTRACEGC2000(TermoFinnigan) Column DB5MS(J&W,30m,0,25mm,0,25m) 90ºC(1min)20ºCmin 1180ºC(1min)2ºCmin 1 Programoftemperature 240ºC(1min)20ºCmin 1310ºC(10min) Temperatureofinjector 250ºC Volumeofinjection 1L,splitless0,8min Carriergas He(N55),1mLmin 1 MassEspectrometerPOLARIS(ThermoFinnigan) Energyofionization 70eV Modeofacquisition Fullscan Rangeofmasses 50450amu Velocityofscreened 1scans 1 Timeofacquisition 32,5min Libraryofreference Nist Appliedtreatments VarioustreatmentswithO 3andH 2O2aretestedtostudythebehaviourofthepesticidessubjected tothesetreatments.Thevariousoperationsstudiedwerecarriedouttwiceandasfollows: TreatmentbyO 3: Ozonationiscarriedoutusingacoronadischargegenerator(Fisher500).Thegeneratorproduces 1 1 1195mgO 3 h ,whichismovedthrough1Lofsamplefor13sec.Therefore4.3mgO 3L are applied.Noconsumedandremovedingasphaseozone(O 3gnoconsumed )isabsorbedintwoserial gaswashingbottleswhichcontain2%KI.O 3gnoconsumed iscalculatedbyvaluateofIK,resulting1.3 1 ® mgO 3 L .ThewastedissolvedozoneismeasuredwithaTestofOzoneSpectroquant (MERCK) 1 1 resulting0.01mgO 3 L .Thereforetheconsumedozoneis3mgO 3 L ,dosageusuallyusedin drinkingwaterplantsinSpain.Thisvalueiscalculatedaccordingtothenextformula: O3consumed = O 3applied – O 3g-noconsumed – O 3waste-dissolved

2.4 4 Table 3. Results of the validation of pesticides analysis methodology Cuantificationlimit(gL 1) Calibration Validity Pesticide interval interval Instrumentalstep Fullmethod 1 1 (gL ) (gL ) Isoproturon 20 0,030 20500 0,030300 Diuron 20 0,030 20500 0,030300 3,4Dichloroaniline 20 0,030 20500 0,030300 4Isopropylaniline 20 0,030 20500 0,030300 Desethylatrazine 20 0,030 20500 0,030300 Trifluralin 20 0,015 20500 0,030300 Dimethoate 20 0,030 50500 0,030300 Simazine 50 0,030 20500 0,030600 Prometon 20 0,030 20500 0,030300 Atrazine 200 0,100 2005000 0,1003000 Propazine 20 0,015 20500 0,015300 Terbuthylazine 20 0,015 20500 0,015300 Parathionmethyl 50 0,030 50500 0,030300 Parathionethyl 20 0,030 20500 0,030300 Alachlor 20 0,015 20500 0,015300 Ametryn 20 0,030 20500 0,030300 Prometryn 20 0,030 20500 0,030300 Terbutryn 20 0,030 20500 0,030300 Chlorpyrifos 20 0,015 20500 0,015300 Chlorfenvinfos 20 0,015 20500 0,015300 HCH’s 20 0,015 20500 0,015300 Hexachlorobenzene 20 0,030 20500 0,030300 Heptachlor 20 0,015 20500 0,015300 HeptachlorepoxideA 20 0,015 20500 0,015300 HeptachlorepoxideB 20 0,015 20500 0,015300 Aldrin 20 0,015 20500 0,015300 4,4’Dichlorobenzophenone 20 0,015 20500 0,015300 Isodrin 20 0,015 20500 0,015300 αEndosulphan 20 0,015 20500 0,015300 pp’DDE 20 0,015 20500 0,015300 Dieldrin 20 0,015 20500 0,015300 Endrin 20 0,015 20500 0,015300 pp’DDD+op’DDT 40 0,030 401000 0,030600 Endosulphansulphate 20 0,015 20500 0,015300 pp’DDT 20 0,030 20500 0,030300 Dicofol 50 0,030 50500 0,030300 Metoxychlor 20 0,015 20500 0,015300 Metholachlor 20 0,015 20500 0,015–300 Molinate 20 0,015 20500 0,015–300 Tetradifon 20 0,015 20500 0,015300 TreatmentbyO 3+H 2O2: Thetreatmentwithozoneandhydrogenperoxideiscarriedoutinthesamewaythanozonation, butaddingdosagesofhydrogenperoxide(CarloErba,qualityforanalysis)correspondingtoweight 1 ratiosH2O2/O 3(gg )of0.1,0.5y2,beforetoproducethereaction. Resultsanddiscussion Degradation yields achieved to each pesticide applying previous treatments and average degradationpercentagesareshowedintable4.

2.4 5 Table 4. Single and average pesticide degradation yields (%) after applying treatments

Treatment 1 1 1 Pesticide 3mg 3mgO 3 L +0.1 3mgO 3 L +0.5 3mgO 3 L +2 1 1 1 1 1 1 1 O3L (gg )mgH 2O2 L (gg )mgH 2O2 L (gg )mgH 2O2 L Isoproturon 70 65 40 25 4Isopropylaniline 90 100 90 95 Diuron 75 30 65 20 3,4Dichloroaniline 85 100 70 95 Molinate 75 35 55 50 Trifluralyn 80 75 50 75 Alachlor 70 45 30 60 70 40 40 60 Simazine 65 15 30 30 Atrazine 50 20 50 20 Propazine 50 15 50 20 Terbuthylazine 45 15 45 25 Prometon 45 50 50 55 Ametryn 45 45 45 55 Prometryn 45 40 45 30 Terbutryn 55 50 50 40 Desethylatrazine 55 15 35 10 Parathionmethyl 75 30 40 40 Parathionethyl 80 30 45 40 Chlorpiryfos 80 45 60 55 Chlorfenvinfos 70 15 40 30 Dimethoathe 75 40 40 60 αHCH 75 20 60 15 βHCH 65 15 55 10 γHCH 55 15 55 10 δHCH 70 20 55 20 Hexachlorobenzene 90 30 35 30 Heptachlor 90 70 40 70 Heptachlorepoxide(B) 80 30 60 25 Heptachlorepoxide(A) 75 35 60 30 αEndosulphan 80 30 35 25 Endosulphansulphate 75 20 55 20 Methoxychlor 90 50 45 25 Tetradiphon 90 15 50 15 Aldrin 85 100 95 100 Isodrin 90 100 100 100 Dieldrin 90 15 60 55 Endrin 80 15 45 15 pp'DDE 75 80 55 20 pp'DDD+op’DDT 70 60 70 55 pp'DDT 75 70 50 65 Dicofol 80 0 15 0 4,4'Dichlorobenzofenone 85 25 55 25 AVERAGE 72 40 51 40 Treatmentbyozone Ozonation achieves an average removal yield of 72% for the studied pesticides. High removal percentagesofabove50%inpracticallyallcasesareobtainedbymeansofthistreatment. Thedegradationofeachcompoundbyozonedependsonitschemicalstructure.Thisdegradation canbecarriedoutviatwopathways:thedirectormolecularpathway(lowpH)andtheindirector radical pathway (basic pH). Via the direct pathway, molecular ozone reacts directly with the substrate giving rise to selective reactions, mainly with unsaturated and aromatic hydrocarbons

2.4 6 with OH, CH 3 and NH 2 groups. The radical pathway is constituted by reactions in which the reacting species are radicals generated in the decomposition of ozone (hydroxyl, superoxide, ozonide and hydroperoxide radicals) [26]. These reactions are very fast and non selective. Aliphatichydrocarbons,chlorinatedsolventsandalargenumberofchlorinatedpesticidesreactvia theradicalpathway[3,15,16,17,18,19]. The lowest removal percentages after ozonation, around 50%, were obtained for triazines (simazine, atrazine, propazine, terbuthylazine, prometon, ametryn, prometryn, terbutryn and desethylatrazine).Thisisduetothemajorstabilityoftriazinicringspresentinthesesubstances. Removalyieldsofabove60%wereobtainedfortheremainingpesticides.Thehighestyieldswere obtainedforheptachlors,drins(isodrin,endrin,dieldrin,aldrin),DDTsandotherpesticides,suchas 4isopropylaniline, 3,4dichloroaniline, trifluralin, chlorpyrifos, methoxychlor and tetradifon, all of which are chlorinated compounds that react with ozone quickly via the radical pathway [28]. Removal percentages of around 80% are obtained for the organophosphorous pesticides that possessP=Sbonds.ThemainreactionthattakesplaceintheirdegradationisoxidationoftheP=S bondswiththeformationofP=Obonds.Themoleculebreaksviaoneofthebondsthatinvolves thephosphorusatom,formingsimpleestersofphosphoricacid[31]. Treatmentbyozoneandhydrogenperoxide An overall average removal percentage between 40 and 51% is obtained by means of this treatmentwithdifferenthydrogenperoxidedosages.Asawhole,hydrogenperoxidereducesthe ozonereactivitywithstudiedpesticidesregardlesstheappliedconcentration.Thiscanbedueto theadditionofhydrogenperoxide,whichisdonetoimprovetheozonedecomposition,increases theextinctionspeedofreductiveradicals( HO 2/O 2 )inthereactionplace.Likethis,takingplace startreactionstodegradestudiedpesticidesismoredifficult. The most of studied pesticides are better degraded by O3+H 2O2 treatment with weight ratio 1 H2O2/O 3(gg )of0.5.Thisisduetothefactthat,ingeneral,anincreaseofradicalsproducedto degradethestudiedpesticidehappenswhenthehydrogenperoxideconcentrationrises.However, ifveryhighconcentrationsofhydrogenperoxideareused,aninhibitoryeffecthappens[1,8,13]. Ontheotherhand,pesticidessuchasisoproturonandpp’DDEaredegradedbetterwithaweight 1 ratioH2O2/O 3(gg )of0.1,andotherpesticideslikealachlor,metolachloranddimethoate,witha 1 weightratioH2O2/O 3(gg )of2.Moreover,therearepesticidessuchastrifluralinandheptachlor, which are degraded more effectively with hydrogen peroxide dosages corresponding to weight ratiosof0.1or2.Similardegradationpercentagesareachievedwithbothconcentrations,whereas 1 lesspercentagesareachievedwithaweightratioH2O2/O 3(gg )of0.5 The comparison of O 3 and O3+H 2O2 treatments shows that only 4isopropylaniline, 3,4 dichloroaniline,prometon,ametryn,aldrinandisodrinarebetterdegradedbyO 3+H 2O2treatment thanbyO 3treatment.

2.4 7 Conclusions Amongstudiedtreatments,thehighestpesticidesdegradationisachievedbythetreatmentwith3 mgL 1ofozone,obtaininganoverallaverageremovalpercentageof72%. Triazines, by ozonation, are degraded 50% approximately. In general, their degradation doesn’t improve with the addition of hydrogen peroxide. Only prometon and ametryn show degradation 1 percentageshigherwithperoxonesystem(H2O2/O 3(gg )of2)thanwithozonation. For organicphosporous pesticides, high degradation yields are achieved, around 80% by treatment with ozone. The treatment with hydrogen peroxide is less effective than ozonation to thesepesticides.Inallcases,degradationpercentagesachievedwithO3+H 2O2 treatmentareless thanwithO3 treatment. Inthecaseofhexachlorochiclohexanes,heptachlors,endosulphansandDDTs,degradationyields achievedwithO 3+H 2O2arelessorsimilarthanwithO 3only.Therefore,theadditionofhydrogen peroxideandtitaniumdioxidedecreasestheeffectivenessofozonewiththesepesticides. Todrins,animprovementofthealdrinandisodrindegradationisobservedbyO3+H 2O2treatment, regardlesshydrogenperoxideconcentrationapplied. The degradation of the remaining pesticides doesn’t increase with the addition of hydrogen peroxide to ozone. Only 4isopropylaniline and 3,4dichloroaniline are completely degraded and 1 lightlybetterwithO 3+H 2O2(H2O2/O 3(gg )of0.1). ByO 3andH 2O2combination,themaximumaveragedegradationofstudiedpesticidesisachieved 1 withadosageofhydrogenperoxidecorrespondingtoweightratioH2O2/O 3(gg )of0.5.Thisisdue tothefactthantheradicalsproductionincreaseswhenthehydrogenperoxideconcentrationrises. Butwhenthisconcentrationistoomuchhigh,aninhibitoryeffecthappens. Inconclusion,theadditionofH 2O2toO 3reducesthereactivityofthisagentwithstudiedpesticides. Thiscanbeduetothiscompound,althoughimprovestheozonedecomposition,causesaradicals decrease into the reaction place and these radicals are necessary to begin the degradation mechanismwhichtakesplacewithstudiedpesticidesbymeansofthesetreatments. Acknowledgements Authorswishthankforfinancialsupportgivenfor Education and Science Ministry (Project CTM 200504585). References 1. Alnaizy, R., Akgerman, A. “Advanced oxidation of phenolic compounds”. Advances in Environmental Research,4(3),233244(2000). 2.Alouini,Z.,Seux,R.“Kineticsandmechanismsofthehypochloriteoxidativeactionoveralphaaminoacids inwaterdisinfection”.WaterResearch,21(3),335343(1987). 3. Beltrán, F.J. “Aplicación del ozono en el tratamiento de contaminantes del agua”. Seminario sobre el ozonoeneltratamientodelagua.Burgos(1997). 4.Booman,G.,Dellarco,V.etal.“Drinkingwaterdisinfectionbyproducts:rewiewandapproachtotoxicity evaluation”.EnvironHealthPerspect.,107,207217(1999). 5. Cortés S., Ormad P., Puig A., Ovelleiro J.L. “Study of the advanced oxidation processes of chlorobenzenesinwater”.OzoneScienceandEngineering,118,291298(1996). 6.CortésS.,SarasaJ.,OrmadP.,GraciaR.,OvelleiroJ.L.“ComparativeefficiencyofthesystemsO 3/high pHandO 3/catalystfortheoxidationofchlorobenzenesinwater”.OzoneScienceandEngineering,22,415 426(2000).

2.4 8 7.Clark,R.,Sivaganesan,M.“PredictingchlorineresidualsandformationofTHMsindrinkingwater”.JEnvir Engrg,124,19031910,(1998). 8.De,A.K.,Chaudhuri,B.,Bhattacharjee,S.,Dutta,B.“EstimationofOHradicalreactionrateconstantsfor phenolandchlorinatedphenolsusingUV/H2O2photo oxidation”.JournalofHazardaousMaterials,64(1), 91104(1999). 9.Díaz,M.C.,Garrido,S.,Hidalgo,R.“Contaminaciónagrariadifusa”.MOPU(1988). 10. Directive 2000/60/CE of 23 of October of 2000, related to communal marc to actuation about water politic.DiaryOfficialofEuropeanCommunities(DOCE),nºL321,19ofDecemberof2000. 11. Directive 2006/11/CE of the European Parliament and Council of 15 of February of 2006, related to pollution caused by dangerous substances tipped in the aquatic environment of the Community. Diary OfficialofEuropeanCommunities(DOCE),nºL64,4ofMarchf2006. 12.EPAMethod525.2.“Determinationoforganiccompoundsindrinkingwaterbyliquidsolidextractionand capillarycolumngaschromatography/massspectrometryRevision2.0”. 13. Ghaly, M.Y., Härtel, G., Mayer, R., Haseneder, R. “Photochemical oxidation of pchlorophenol by UV/H2O2andphotoFentonprocess.Acomparativestudy”.WasteManagement,21(1),4147(2001). 14.Hart,J.;Walker,I.;Armstrong,D.C.“Theuseofhighconcentrationozoneforwatertreatment”.Ozone Science&Technology,17,485497,(1995). 15.Hoigné,J.,Bader,H.“Theroleofhydroxilradicalreactionsinozonationprocesesinaqueoussolutions”. WaterResearch,10(5),337386,(1976). 16.Hoigné,J.“Mechanims,ratesandselectivitiesofoxidationsoforganiccompoundsinitiatedbyozonation inwater”.HandbookofOzoneTechnologyandApplications.AnnArborSciencePublishers,Inc.,AnnArbor, MI,(1982). 17.Hoigné,J.,Bader,H.“Rateconstantsofreactionsofozonewithorganicandinorganiccompoundsin water.I:Nondissociatingorganiccompounds”.WaterResearch,17(2),173183,(1983a). 18.Hoigné,J.,Bader,H.“Rateconstantsofreactionsofozonewithorganicandinorganiccompoundsin water.II:Dissociatingorganiccompounds”.WaterResearch,17(2),185194,(1983b). 19. Hoigné, J., Bader, H., Haag, W.R., Staehelin, J. “Rate constants of reactions of ozone with organic and inorganiccompoundsinwater.III:Inorganiccompoundsandradicals”.WaterResearch,19(8),9931004,(1985). 20.Huang,W.J.,Chen,L.Y.,Peng,H.S.“EffectofNOMcharacteristicsonbrominatedorganicsformationby ozonation”.EnvironmentalInternational29(8),10491055,(2004). 21. Hureiki, L., Croué, J.P., Legube, B. “Chlorination studies of free and combined amino acids”. Water Research,28(12),25212531(1994). 22. Koga, M., Kadokami, K., Shinohara, R. “Laboratoryscale ozonation of water contaminated uit trace pesticides”.WaterScience&Technology,26,22572260,(1992). 23. Kuivinen J, Johnson H. “Determination of trihalomethanes and some chlorinated solvents in drinking waterbyheadspacetechniquewithcapillaritycolumngaschromatography”.WaterResearch,33(5),1201 1208,(1999). 24.Kuo,C.H.,Zhong,L.,Zappi,M.E.,Hong,A.P.“Kineticsandmechanismofthereactionbetseenozone andhydrogenperoxideinaqueoussolutions”.Can.JournalChemistryEngineering77,473482,(1999). 25.Merlet,N.,Thibaud,H.,Doré,M.“Chloropicrinformationduringoxidativetreatmentinthepreparationof drinkingwater”.ScienceoftheTotalEnvironment,47,223228(1985). 26.Oppenländer,T.“PhotochemicalPurificationofWaterandAir”.WileyVCH.ISBN:3527305637(2003). 27.Richardson,S.D.,Thruston,A.D.,Caughran,T.V.,Chen,P.H.,Collette,T.W.,Floyd,T.L.“Identification ofnewozonedisinfectionbyproductsindrinkingwater”.EnvironmentalScience&Technology,33,3368 3377,(1999). 28. Rodríguez Rodríguez Vidal, F.J. “Procesos de potabilización del agua e influencia del tratamiento de ozonización”.DíazdeSantos(2003). 29.RoyalDecree140/2003of7ofFebruaryof2003,laiddownthesanitarycriteriaforthequalityofwater forhumanconsumption.BulletinOfficialofState(BOE),nº45,21ofFebruaryof2003. 30.Sorlini,S.,Collivignarelli,C.“Trihalomethaneformationduringchemicaloxidationwithchlorine,chlorine dioxideandozoneoftenItaliannaturalwaters”.Desalination,176(13),103111,(2005). 31.Urfer,D.,Huck,P.,Gagnon,G.,Mutti,D.,Smith,F.“Modelingenhancedcoagulationtoimproveozone desinfection”.JournalAWWA,91,5972,(1999). 32. Von Gunten, U.“Ozonation in drinking water. Part I: Oxidationkinetics and product formation”.Water Research,37(7),14431467,(2003).

2.4 9