University of Nevada Reno the Petrology of a Zoned Granitic Stock

Total Page:16

File Type:pdf, Size:1020Kb

University of Nevada Reno the Petrology of a Zoned Granitic Stock University of Nevada Reno The Petrology of a Zoned Granitic Stock, Stillwater Range, Churchill County, Nevada A Thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Geology By Steven Wayne Nelson Hi May 1975 The thesis of Steven Wayne Nelson is approved: Thesis advisor /ft - ^ Department chairman Dean, Graduate School University of Nevada Reno May 1975 1 ACKNOWLEDGMENTS The writer is grateful for the assistance of many individuals during the course of this study. Many suggestions and much guidance were provided throughout the investigation by the thesis advisor, Dr. M. J. Hibbard. Many additional helpful suggestions were provided by Drs. L. C. Hsu, E. R. Larson and D. C. Noble of the University of Nevada, and by Dr. B. Page at Stanford University, California. The writer is indebted to Dr. John H. Stewart, Western Mineral Resources Branch, U.S. Geological Survey, Menlo Park, California, for providing the analytical support for this investigation under the Nevada State Map Project, No. 3-9320-0039. Drs. M. J. Hibbard and L. C. Hsu visited the field area in the fall of 1973. In the fall of 1974, graduate students Wayne R. Kemp and Andy B. Wallace accompanied the writer in the investigation of mineralized areas in the project area. Pat Walker provided recent aerial photographs which greatly assisted in the field work. And, to his wife, No&l C. Nelson, the writer is indebted for continuous moral and financial support through the graduate years. In addition, she has provided welcome assistance in portions of the field work. Special thanks is extended to Mrs. Sylvia Miller, the writer's mother-in-law, of the U.S. Geological Survey, for typing the final copy of this report. 1 1 ABSTRACT The epizonal Mud Springs stock is a zoned Tertiary intrusion consisting of six intrusive units. The initial intrusive unit was quartz monzodiorite (62.2% Si02) which was followed in order by a seriate granodiorite (65.0% SiC>2), a quartz monzonite porphyry (63.9% Si02), a quartz syenite porphyry (65.2% SiO ), and finally by a large composite dike consisting of alkali-feldspar granite (77.9% SiO ) and an alkali-feldspar granite porphyry (74.7% SiO ). 2 2 All contact relations between the units are well exposed and sharp. Minor aplite, granophyric dikes and hornblende andesite dikes are found. The granitic rocks of the stock have intruded Triassic slates and phyllites to the north and Tertiary volcanic rocks to the west and south. The stock is bounded on the east by the Dixie Valley fault and Holocene alluvial cover. The older I.X.L. Canyon quartz monzodiorite has been radiometrically dated at 28 m.y. All of the units are texturally homogeneous except for a zone of seriate porphyritic rocks bordering the more typical, hypidiomorphic- granular, I.X.L. Canyon quartz monzodiorite in the marginal areas of this unit. No mafic minerals are found in the alkali-feldspar granites, but biotite and hornblende make up approximately ten percent of the mafic mineral content of each of the other units. Minor rapakivi and antirapakivi textures are found in the Mud Springs quartz monzonite and quartz syenite porphyries respectively. Major oxide and trace element determinations were made on one representative sample from each of the units. Variation of the major oxides show that as SiC>2 increases A^O^, Ca0' M90 ' Ta°2 anc^ tota-*- iii iron (FeO+Fe^O^) decrease and Na20 remains nearly constant. K20 increases with increasing silica content. These trends correspond to an increase in potassium and a decrease in iron and calcium from the older to the younger units. Late potassium-feldspar replacement of plagioclase accounts for the high K 0 content (5.4%) of the Mud Springs quartz syenite. Trace element data suggest that simple progressive fractionation cannot be called upon to explain the variation in rock types found in the Mud Springs stock. The K/Rb ratios are higher than the average ratio for igneous rocks and indicate the late introduction of potassium-feldspar. Field mapping and mineralogical, textural and chemical data indicate that fractionation took place in an irregularly shaped magma chamber which was periodically tapped by fractures through the confining rocks. Economic mineralization is restricted to small local Cu, Pb, and Zn sulfide-bearing veins occurring within the seriate granodiorite and deposits of Pb, Zn, Cu, Ag, and Au found in the slates and phyllites of the contact zone in I.X.L. Canyon. An irregular zone of propylitic alteration of the granitic rocks occurs along the Dixie Valley fault. All of the units have well-developed joint sets, with northwest and northeast strikes predominating. The northwest joint set approximately parallels two faults in the area. Foliation and schlieren are rare. Two, previously unmapped normal faults have offset the alkali-feldspar granite dike and locally produced shearing and brecciation. IV TABLE OF CONTENTS Page ACKNOWLEDGMENTS....................................... • ABSTRACT........................................................ TABLE OF CONTENTS............................................... iv INTRODUCTION .................................................... x Name........................................................... i Location.................................................... i Accessibility ............................................. i Objectives of this study................................... X Methods of study............................................... 4 REGIONAL GEOLOGY ................................................... 3 Rock u n i t s ................................................... 8 Triassic rocks .......................................... 8 Jurassic rocks ....................................... 9 Tertiary.rocks ....................................... 10 Late Cenozoic lake sediments......................... 12 Major faulting of the Stillwater Range..................... 13 Thrust faults ....................................... 13 Cenozoic faulting..................................... 13 THE MUD SPRINGS STOCK........................................... 15 General statement ......................................... 15 Description of individual units ........................... 16 I.X.L. Canyon quartz monzodiorite.................... 16 Seriate granodiorite ................................. 25 Mud Springs quartz monzonite porphyry................. 29 Mud Springs quartz syenite porphyry.................. 38 Alkali-feldspar granites ............................. 45 Minor rocks of the stock............................. 52 PETROCHEMISTRY .................................................. 62 Introduction............................................... 62 Major oxide variation................................. 62 Trace element variation............................... 65 Normative mineral variation........................... 74 Mineralization ....................................... 82 STRUCTURES...................................................... 86 IGNEOUS ACTIVITY ................................................ 90 Other Tertiary (?) plutonic rocks in the Stillwater Range. 92 Emplacement history ....................................... 94 REFERENCES CITED 99 V ILLUSTRATIONS Figure Page 1. Location map of the Mud Springs stock...................... 2 2. Roads providing access to parts of the Mud Springs stock . 3 3. Modal plots of quartz and feldspars from the units of the Mud Springs stock......................................... 17 4. Photograph showing typical exposure of the I.X.L. Canyon quartz monzodiorite....................................... 18 5. Photograph showing contact zone in I.X.L. Canyon ........... 18 6. Photograph of zoned inclusion from the I.X.L. Canyon quartz monzodiorite....................................... 20 7. Photograph of a stained slab of I.X.L. Canyon quartz monzodiorite ............................................. 20 8. Photomicrograph of altered quartz monzodiorite ............ 23 9. Paragenetic sequence of minerals in the I.X.L. Canyon quartz monzodiorite....................................... 23 10. Photomicrograph of interstitial quartz in the I.X.L. Canyon quartz monzodiorite ............................... 24 11. Photograph of stained slab of seriate granodiorite ........ 27 12. Photograph of contact between the I.X.L. Canyon and seriate granodiorite units ............................... 27 13. Photomicrograph of adularia(?) in the mineralized seriate granodiorite ..................................... 28 14. Photomicrograph of quartz filling a fracture in the seriate granodiorite ..................................... 28 15. Paragenetic sequence of minerals in the seriate granodiorite ............................................. 30 16. Photomicrograph of rapakivi texture in the Mud Springs quartz monzonite porphyry................................. 32 17. Photograph of stained slab of the Mud Springs quartz monzonite porphyry ....................................... 33 18. Photomicrograph of granophyric groundmass in the Mud Springs quartz monzonite porphyry.................... 33 Vr ILLUSTRATIONS (Cont.) Page Figure 19. Photomicrograph of kink banding in biotite................ 34 20. Paragenetic sequence of minerals in the Mud Springs quartz monzonite porphyry ............................... 34 21. Modal abundances of phenocrysts from the various portions of the Mud Springs quartz monzonite porphyry............. 36 22. Photograph of stained slab of the Mud Springs quartz syenite porphyry........................................
Recommended publications
  • CONTRIBUTION to PETROLOGY and K/Ar AMPHIBOLE DATA for PLUTONIC ROCKS of the HAGGIER MTS., SOCOTRA ISLAND, YEMEN
    Acta Geodyn. Geomater., Vol. 6, No. 4 (156), 441–451, 2009 CONTRIBUTION TO PETROLOGY AND K/Ar AMPHIBOLE DATA FOR PLUTONIC ROCKS OF THE HAGGIER MTS., SOCOTRA ISLAND, YEMEN 1) 2) .Ferry FEDIUK * and Kadosa BALOGH 1) Geohelp, Na Petřinách 1897, Praha 6, Czech Republic 2) Institute of Nuclear Research of the Hungarian Academy of Sciences *Corresponding author‘s e-mail: [email protected] (Received June 2009, accepted November 2009) ABSTRACT A morphologically distinct intrusive massif emerges from sedimentary Mesozoic/Tertiary cover in Eastern Socotra forming the high Haggier Mts. It is mostly composed of peralkaline and hypersolvus granite partly accompanied by gabbroic rocks. Amphibole, the sole mafic mineral of the granite, shows predominately the arfvedsonite composition, while riebeckite, for which Socotra is reported in most manuals of mineralogy as the “locus typicus”, occurs subordinately only. Either Paleozoic or Tertiary age has been assumed for this massif for a long time. In the last decade, however, K/Ar datings have been published clearly showing Precambrian (Neoproterozoic) age. The present authors confirm with somewhat modified results this statement by five new radiometric measurements of monomineral amphibole fractions yielding values of 687 to 741 Ma for granites and 762 Ma for gabbroic rocks. The massif represents an isolated segment of numerous late postorogenic Pan- African A-granite bodies piercing the Nubian-Arabian Shield and is explained as the result of partial melting of Pan-African calc-alkaline shield rocks in the closing stage of the orogeny. KEYWORDS: Yemen, Socotra, Arabian–Nubian Shield, K/Ar data, amphiboles, peralkaline granite, coronitic gabbronorite, Neoproterozoic 1.
    [Show full text]
  • C:\A Projects\AAA IBLA Decs\061IBLA\L370-375.Wpd
    CHURCHILL COUNTY BOARD OF COMMISSIONERS IBLA 81-539 Decided February 17, 1982 Appeal from a decision of the Nevada State Director, Bureau of Land Management, denying a protest of wilderness study area designations. 8500 (N-932.6). Affirmed. 1. Federal Land Policy and Management Act of 1976: Wilderness--Wilderness Act--Words and Phrases. "Roadless." H.R. Rep. No. 94-1163, 94th Cong., 2d Sess. 17 (1976), provides a definition of "roadless" adopted by the Bureau of Land Management in its Wilderness Inventory Handbook. The word "roadless" refers to the absence of roads which have been improved and maintained by mechanical means to insure relatively regular and continuous use. A way maintained solely by the passage of vehicles does not constitute a road. 2. Federal Land Policy and Management Act of 1976: Wilderness--Wilderness Act Sights and sounds outside a wilderness study area will be considered during the study phase of the wilderness review process absent a finding by BLM during the inventory phase that such impacts are adjacent to the unit and are so extremely imposing that they cannot be ignored, and and if not considered, reasonable application of inventory guidelines would be questioned. 3. Federal Land Policy and Management Act of 1976: Wilderness--Wilderness Act The requirement in section 2(c) of the Wilderness Act of 1964, 16 U.S.C. § 1131(c) (1976), that a wilderness possess, inter alia, outstanding opportunities for solitude or a primitive and unconfined type of 61 IBLA 370 IBLA 81-539 recreation is properly construed to require outstanding opportunities for either solitude or a primitive and unconfined type of recreation; both need not be present in an inventory unit to allow the unit to enter the study phase of the wilderness review process.
    [Show full text]
  • GEOLOGY of the SOUTHERN PART of the SAND SPRINGS RANGE, CHURCHILL COUNTY, NEVADA by S. K. M. Abdullah a Thesis Submitted in Part
    GEOLOGY OF THE SOUTHERN PART OF THE SAND SPRINGS RANGE, CHURCHILL COUNTY, NEVADA By S. K. M. Abdullah A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science Mackay School of Mines University of Nevada January, 1966 a. Approved by M. ,r Thesis Director Approved by j^T- \ Department Head Approved by Graduate Dean CONTENTS Page LIST OF ILLUSTRATIONS........................................ vi ABSTRACT . ................................................ 1 INTRODUCTION ................................................ 2 Location and Accessibility ................................ 2 Scope and Method of Investigation.......................... 2 Previous Investigations ...................... 5 Acknowledgments ............................................ 5 GEOLOGIC SETTING ............................................ 7 GRANITIC ROCKS ................................... 8 Introduction .............................................. 8 The Pluton ................................................ 8 Porphyritic Quartz Monzonite ............................ Granodiorite ................................. 11- Contacts and Minor Structures ............................... 12 Origin ...................................... 12 A g e ......................................................... 12 The Dike Rocks .......... - ................................ 18 Aplite-Pegmatite Dikes ..................................... 18 Andesite Dikes ............................................. 1^ Rhyolite Dikes ............................................
    [Show full text]
  • UNIVERSITY of NEVADA-RENO Nevada Bureau of Mines and Geology Un~Vrrsiryof Nevada-8.Eno Reno, Nevada 89557-0088 (702) 784-6691 FAX: (7G2j 784-1709
    UNIVERSITY OF NEVADA-RENO Nevada Bureau of Mines and Geology Un~vrrsiryof Nevada-8.eno Reno, Nevada 89557-0088 (702) 784-6691 FAX: (7G2j 784-1709 NBMG OPEN-FILE REPORT 90-1 MINERAL RESOURCE INVENTORY BUREAU OF LAND MANAGEMENT, CARSON CITY DISTRICT, NEVADA Joseph V. Tingley This information should be considered preliminary. It has not been edited or checked for completeness or accuracy. Mineral Resource Inventory Bureau of Land Management, Carson City District, Nevada Prepared by: Joseph V. Tingley Prepared for: UNITED STATES DEPARTMENT OF E INTERIOR '\\ !\ BUREAU OF LAND MANAGEMENT Carson City Office Carson City, Nevada Under Cooperative Agreement 14-08-0001-A-0586 with the U.S. GEOLOGICAL SURVEY NEVADA BUREAU OF MINES AND GEOLOGY UNIVERSITY OF NEVADA, RENO January 1990 TABLE OF CONTENTS INTRODUCTION ........................ 3 LOCATION .......................... 4 MINERAL RESOURCES ...................... 4 MINING DISTRICTS AND AREAS .................. 6 ALLEN HOT SPRINGS AREA ................. 6 ALPINE DISTRICT .................... 7 AURORA DISTRICT .................... 10 BELL DISTRICT ..................... 13 BELLMOUNTAIN DISTRICT ................. 16 BENWAY DISTRICT .................... 19 BERNICE DISTRICT .................... 21 BOVARDDISTRICT .............23 BROKENHILLS DISTRICT ................. 27 BRUNERDISTRICT .................. 30 BUCKLEYDISTRICT ................. 32 BUCKSKINDISTRICT ............... 35 CALICO HILLS AREA ................... 39 CANDELARIA DISTRICT ................. 41 CARSON CITY DISTRICT .................. 44
    [Show full text]
  • Geology and Alteration at Northparkes Mines, NSW, Australia
    The Anatomy of an Alkalic Porphyry Cu-Au System: Geology and Alteration at Northparkes Mines, NSW, Australia Adam Pacey1,2,*, Jamie J. Wilkinson2,1, Jeneta Owens3, Darren Priest3, David R. Cooke4,5 and Ian L. Millar6 1Department of Earth Science and Engineering, Imperial College London, South Kensington, London, SW7 2AZ, United Kingdom 2Department of Earth Sciences, Natural History Museum, Cromwell Road, London, SW7 5BD, United Kingdom 3NorthparKes Mines, PO Box 995, ParKes, New South Wales, 2870, Australia 4Centre for Ore Deposit and Earth Sciences (CODES), University of Tasmania, Hobart, Tasmania 7001, Australia 5Transforming the Mining Value Chain (TMVC), an Australia Research Council (ARC) Industrial Transformation Research Hub, University of Tasmania, Hobart, Tasmania 7001, Australia 6NERC Isotope Geosciences Laboratory, Keyworth, Nottingham, NG12 5GG, United Kingdom *Corresponding author: [email protected] Keywords Northparkes, Macquarie Arc, porphyry deposit, propylitic alteration, potassic alteration, hydrothermal alteration, copper, gold Abstract The Late Ordovician-Early Silurian (~455-435 Ma) Northparkes system is a group of silica-saturated, alkalic porphyry deposits and prospects which developed within the Macquarie Island Arc. The system is host to a spectacular and diverse range of rocks and alteration-mineralization textures that facilitate a detailed understanding of its evolution, in particular into the nature and controls of porphyry-related propylitic alteration. The first intrusive phase at Northparkes is a pre- to early-mineralization pluton that underlies all the deposits and varies in composition from a biotite quartz monzonite (BQM) to alkali feldspar granite (AFG). Prior to total crystallization, this pluton was intruded by a more primitive quartz monzonite (QMZ) that marks the onset of a fertile fractionation series.
    [Show full text]
  • Figs- 2, 6 Assemblage, Usage of Term Defined, 6 Elbow Canyon Thrust, 40, 45, 47- 52 I Augusta Mountain Formation, 23- 25; Figs
    I n d e x Adelaide thrust, 34, 44, 46- 49, 51; Eastern assemblage of lower and middle Figs. 6—7 ; PI. 2 Paleozoic rocks, 5 Anderson, C. A., 5 East Range, 7, 13, 16- 20, 22- 23, 40- 4I Antler orogeny, 5, 33- 35, 47, 52 46; Figs. 1, 4 ; PI. 2 Antler orogenic belt, 5, 7, 35, 37-38 Edna Formation, 7, 14, 16, 36, 40, 51; Antler Peak Limestone, 16, 35; Figs. 2, 6 Fig. 1; PI. 2 Antler sequence, 14, 16, 35; Figs. 2- 3, Edna Mountain Formation, 16, 35, 7 ; PI 2 52- 53; Figs- 2, 6 Assemblage, usage of term defined, 6 Elbow Canyon thrust, 40, 45, 47- 52 I Augusta Mountain Formation, 23- 25; Figs. 6, 7 Fig. 2 ; PI. 1 Elko County, Nevada, 37 Augusta Mountains, 16, 19, 23; Fig. 1; El Paso Mountains, California, 35-36 PI. 2 Eugene Mountains, 21; Fig. 1 Augusta sequence, 7, 19, 23- 25, 37, 41, Excelsior Formation, 26- 28; Fig. 2 44, 5° - 5 j ; Figs. 2- 3> 7; pls- 1-2 Excelsior Mountains, 27; Fig. 1 Battle Formation, 14, 35; Fig. 2 Favret Formation, 23- 24; Fig. 2 ; PI. 1 Battle Mountain 7, 12, 14, 16- 18, 34, Ferguson, H. G., 3, 5- 7, 13- 14, 16- 18, 36, 40, 47, 51; Fig. 1 ; PI. 2 20, 22- 23, 26- 28, 30- 36, 38, 39, Berry, W. B. N., 12 40- 46, 50 Cameron, E. N., 21 Fish Creek Mountains, 24; Fig. 1; PI. 2 Candelaria Formation, 26, 28; Fig. 2 Gabbs Formation, 28, 31- 32; Figs.
    [Show full text]
  • Field Guide to Oligocene-Miocene Ash-Flows and Source Calderas in the Great Basin of Nevada
    U.S. DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY FIELD GUIDE TO OLIGOCENE-MIOCENE ASH-FLOWS AND SOURCE CALDERAS IN THE GREAT BASIN OF NEVADA David A. John1, editor Open-File Report 94-193 This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards or with the North American Stratigraphic Code. Any use of trade, product or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. .S. Geological Survey, Menlo Park, CA INTRODUCTION This field guide was prepared for a field trip to be held in conjunction with the Eighth International Conference on Geochronology, Cosmochronology and Isotopic Geology (ICOG8) scheduled for June 1994 in Berkeley, California. The road log and field guide covers the area between Caliente and Fallen, Nevada, and includes a stop near Soda Springs, California. The trip is 5 days long. Days 1 to 3 are covered in Part 1, which describes the Indian Peak and Central Nevada caldera complexes and exposures in White River Narrows and includes a road log between Caliente and Austin, Nevada. Part 2 describes day 4 and the morning of day 5. Included in this section are descriptions of the Stillwater caldera complex and its distal eruptive products and a road log from Austin to Fallen, Nevada. The afternoon of day 5 is covered in Part 3 which describes exposures of the Nine Hill Tuff near Soda Springs, California. PART 1. INDIAN PEAK CALDERA COMPLEX, WHITE RIVER NARROWS ("OUTFLOW ALLEY"), THE CENTRAL NEVADA CALDERA COMPLEX, AND ROAD LOG FROM CALIENTE TO AUSTIN, NEVADA Myron G.
    [Show full text]
  • Timing of Late Quaternary Faulting in the 1954 Dixie Valley Earthquake Area, Central Nevada
    Timing of late Quaternary faulting in the 1954 Dixie Valley earthquake area, central Nevada John W. Bell Nevada Bureau of Mines and Geology, University of Nevada, Reno, Nevada 89557 Terry Katzer Las Vegas Valley Water Districi, Las Vegas, Nevada 89153 ABSTRACT the basis of genesis, surface morphology, relative The 1954 Dixie Valley earthquake (M 6.9) in central Nevada produced about 3 m of total stratigraphic position, degree of soil develop- vertical displacement distributed across two principal fault zones along the east flank of the ment, tephrochronology, and radiometric data Stillwater Range. Most of the 1954 displacement was along the range-front fault with minor (Table 1). Lithologic characteristics were impor- amounts on the piedmont fault zone, in contrast to an earlier Holocene displacement that was tant, but not determining, criteria. This ap- restricted to the piedmont fault. Detailed chronostratigraphic, exploratory drilling, and trench- proach, commonly referred to as "alluvial ing studies indicate that faulting events have migrated back and forth between the range-front geomorphology" (e.g., Ku et al., 1979), facili- and piedmont fault zones in the late Quaternary. Prior to the 1954 earthquake, the range-front tates the mapping of synchronous (chronostrati- fault last ruptured in the late Pleistocene, during a large-magnitude event here called the IXL graphic) units. event. The northern half of the piedmont fault zone last ruptured between 1.5 and 6.8 ka during The oldest differentiated unit, old alluvial-fan a large-magnitude event here called the Bend event. On the basis of 6 m total slip since the deposits (Qfo), occurs as dissected remnants lo- deposition of shoreline gravels at ~12 ka, the estimated Holocene vertical-slip rate is 0.5 cally preserved across the range-front fault and mm/yr for the Dixie Valley rupture zone.
    [Show full text]
  • Intrusive Igneous Rocks, Part 2
    GLY 4310C LAB 7 INTRUSIVE IGNEOUS ROCKS, PART 2 Granite, Alkali Feldspar Granite, Granodiorite, Quartz Monzonite, and Monzonite These intrusive (plutonic) rocks correspond to fields on diagram 2-2 of Winter. These rocks are generally richer in silica and alkali feldspar than those studied in Lab 6. More information about these rocks is included in Chapter 13 and 14 of Moorhouse. GRANITE - Intrusive igneous, plutonic. Medium to coarse-grained plutonic rock containing between 20% to 60% quartz, feldspar (the plagioclase to plagioclase plus alkali feldspar (P/A+P) ratio is between 10 to 65%), and small amounts of biotite, hornblende or other silicates. K-spar may be orthoclase and/or microcline. The plagioclase is sodic, either oligoclase or andesine. Rocks of this composition are scarce and the definition is often broadened, for example by including quartz monzonite. The alkali feldspar is commonly microcline perthite (mixture of microcline and plagioclase). In some perthites, the albite and K-feldspar are completely separated, possibly due to recrystallization. The quartz is almost always anhedral in granites. The quartz grains often contain inclusions. Biotite is usually brown or brownish green and often contains inclusions. Hornblende is dark green and pleochroitic. Biotite may form a rim around the hornblende. If pyroxene (diopside) is present, hornblende may form a rim around the pyroxene. Muscovite may occur in patches around the biotite. Many granites are foliated. The name is from the Latin granum, meaning grain. ALKALI FELDSPAR GRANITE - Intrusive igneous, plutonic. Medium to coarse-grained plutonic rock containing between 20% to 60% quartz, feldspar (the plagioclase to plagioclase plus alkali feldspar (P/A+P) ratio < 10), and small amounts of biotite, hornblende or other silicates.
    [Show full text]
  • Evolution of Magmatic and Subsolidus AFM Mineral Assemblages In
    American Mineralogist, Volume 77, pages 821-833, 1992 Evolution of magmatic and subsolidusAFM mineral assemblagesin granitoid rocks: Biotite, muscovite,and garnet in the Cuffytown Creek pluton, South Carolina J. Ar.nx.qxrnn Spnnn Department of Marine, Earth, and Atmospheric Sciences,Box 8208, North Carolina State University, Raleigh,North Carolina27695-8208, U.S.A. SusaN W. Bncxnn l0l YeonasCircle SE,Vienna, Virginia 22180,U.S.A. Ansrnlcr The Cufttown Creek pluton is a leucocratic alkali feldspar granite with (F + Mn)-rich biotite, muscovite, garnet, and fluorite as varietal minerals. Bt + Ms is preserved as inclusion assemblagesin quartz; Bt + Ms + Grt and Ms + Grt are matrix assemblages. The inclusion assemblagesare interpreted as early magmatic, and the matrix assemblages as late magmatic with superimposedsubsolidus partial reequilibration. In sequence,the AFMMn crystallization reactions are liquid : Bt, liquid : Bt + Ms, liquid + Bt : Ms * Grt, and liquid : Grt + Ms. Inclusion biotite showsFeMg-, and Mn(Fe,Mg)-' exchanges, which may reflect both changein melt composition and cooling along an,fo, buffer. Inclu- sions of white mica are nearly end-member muscovite. Evolution from inclusion to matrix mica compositions shows narrowing of the compositional gap between the dioctahedral and trioctahedral micas, as well as OHF-, and MnMg-, exchangesin the biotite and (Fe2*,Mg,Mn)Sil6lAl'lolAl-' (celadonite),NaIL', OHF-r, and Ti enrichmentin the white micas. Garnets are spessartine-almandine. The liquid line of descentindicates that the melt becameincreasingly rich in Fel(Fe + Mg) and Mn/(Fe + Mn) with decreasingtemperatures, but each at differing rates at dif- fering stagesduring crystallization. Peraluminosity of the melt increasedrapidly at first, then decreasedslightly before increasing at a much slower rate.
    [Show full text]
  • Preliminary Evaluation of the Seismicity, Geology, and Hydrology of the Northern Sand Springs Range, Churchill County, Nevada, As a Possible Site for Project Shoal
    TEI-796 U. S. DEPARTMENT OF THE INTERIOR Preliminary Evaluation of the Seismicity, Geology, and Hydrology of the Northern Sand Springs Range, Churchill County, Nevada, as a Possible Site for Project Shoal By William S. Twenhofel John E. Moore Rudolph A. Black July 1961 This report is preliminary and has not been edited for con­ formity with Geological Survey format and nomenclature Geological Survey Washington, D. C. Prepared by Geological Survey for the UNITED STATES ATOMIC ENERGY COMMISSION Division of Technical Information LEGAL NOTICE This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission: A. Makes any warranty or representation, expressed or implied, with respect to the accu­ racy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed In this report. As used in the above, "person acting on behalf of the Commission" includes any em­ ployee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any Information pursuant to his employment or contract with the Commission, or his employment with such contractor. This report has been reproduced directly from the best available copy.
    [Show full text]
  • Physico-Chemical Conditions of Four Calc-Alkaline Granitoid Plutons of Chhotanagpur Gneissic Complex, Eastern India: Tectonic Implications
    J. Earth Syst. Sci. (2018) 127:120 c Indian Academy of Sciences https://doi.org/10.1007/s12040-018-1022-4 Physico-chemical conditions of four calc-alkaline granitoid plutons of Chhotanagpur Gneissic Complex, eastern India: Tectonic implications B Goswami*, P Roy, A Basak, S Das and C Bhattacharyya Department of Geology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700 019, India. *Corresponding author. e-mail: [email protected] MS received 28 February 2017; revised 3 March 2018; accepted 5 March 2018; published online 26 October 2018 Petrography and mineralogy of four calc-alkaline granitoid plutons Agarpur, Sindurpur, Raghunathpur and Sarpahari located from west to east of northern Purulia of Chhotanagpur Gneissic Complex, eastern India, are investigated. The plutons, as a whole, are composed of varying proportions of Qtz–Pl–Kfs–Bt–Hbl±Px–Ttn–Mag–Ap–Zrn±Ep. The composition of biotite is consistent with those of calc-alkaline granitoids. Hornblende–plagioclase thermometry, aluminium-in-hornblende barometry P T f and the assemblage sphene–magnetite–quartz were used to determine the , and O2 during the crystallisation of the parent magmas in different plutons. The plutons are crystallised under varying pressures (6.2–2.4 kbar) and a wide range of temperatures (896–718◦C) from highly oxidised magmas f − . − . (log O2 11 2to 15 4 bar). The water content of the magma of different plutons varied from 5.0 to 6.5 wt%, consistent with the calc-alkaline nature of the magma. Calc-alkaline nature, high oxygen fugacity andhighH2Omelt suggest that these plutons were emplaced in subduction zone environment.
    [Show full text]