Population Genetics

Total Page:16

File Type:pdf, Size:1020Kb

Population Genetics POPULATION GENETICS Brian Charlesworth University of Edinburgh I. Variation within Populations selection The differential survival or reproductive suc- II. Deterministic Population Genetics cess of individuals, associated with differences in III. Random Genetic Drift phenotype or genotype. IV. The Interaction of Drift with Deterministic Forces V. Conclusions DARWIN’S THEORY OF ‘‘DESCENT WITH MODIFI- CATION’’ implies that all of the stupendous diversity of life on Earth is ultimately traceable to genetic diversity GLOSSARY within populations. The study of the nature and causes of within-population variation, and of the mechanisms allele frequency The frequency of a variant form of a by which it is transformed into differences between genetic locus within a population. populations over space and time, is the province of genetic drift Evolutionary change caused by random population genetics. The subject involves both theoreti- sampling of genotype frequencies in a finite popu- cal modeling of evolutionary processes, based on lation. knowledge of the mechanisms of inheritance, and the genotype The state of an individual with respect to a testing of these models using data on variation and defined genetic locus or set of loci. evolution in natural and artificial populations. heritability The proportion of the variance in a trait that is due to additive genetic effects. inbreeding Matings between close relatives. I. VARIATION WITHIN POPULATIONS mutation rate The frequency with which new muta- tions arise per generation. A. Types of Phenotypic Variation neutral mutations Mutations whose effects on fit- Since evolutionary change depends on the existence of ness are either nonexistent or so small that genetic variation within populations, measurement of their fate is controlled by genetic drift rather than the extent of such variation is crucial (Lewontin, 1974). selection. Variation at the level of externally visible phenotypes phenotype The state of an individual with respect to can be divided into three categories. a trait of interest. polymorphism The existence at intermediate frequen- 1. Discrete Variation cies of two or more variants at a locus within a popu- This involves traits which can be divided into a small lation. number of discrete categories, such as eye color in hu- Encyclopedia of Biodiversity, Volume 4 Copyright 2001 by Academic Press. All rights of reproduction in any form reserved. 777 778 POPULATION GENETICS mans or shell color and pattern in the land snail Cepaea caused by genes of small effect (Crow, 1993). The net (Ford, 1975). It is often controlled by one or a few fitness of fully inbred Drosophila is only a few percent genes, and usually it involves relatively superficial traits of that of outbred flies. Even more extreme effects of such as color patterns. Only a relatively small propor- complete inbreeding are likely in vertebrates, which tion of the phenotypic variation of interest to evolution- have much larger genomes. The deleterious fitness ef- ists is of this kind. fects of inbreeding have probably played a major role in promoting the evolution of mechanisms of inbreeding 2. Quantitative Variation avoidance, such as the self-incompatibility loci of flow- Quantitative variation is all-pervasive. This can involve ering plants. either meristic traits, such as bristle number in Drosoph- ila, in which there is a large number of discrete catego- 4. Interpreting Phenotypic Variation ries, or continuously varying metrical traits such as body size. Variation in typical quantitative traits is The previously mentioned basic facts were established known to be under the joint control of environmental by the early 1950s and led to an active debate effects, accidents of development, and sets of genes concerning the causes of natural variation (Lewontin, whose individual effects are small relative to the total 1974). In one view, championed by H. J. Muller, range of variation in the traits (Falconer and Mackay, variation is mostly due to rare deleterious alleles 1996). Statistical methods that utilize the degree of maintained by mutation pressure at a large number of resemblance between close relatives enable the determi- loci; the coexistence of alleles at a locus at intermediate nation of the proportion of the total phenotypic varia- frequencies (polymorphism) is characteristic of only tion that is contributed by additive genetic causes—the a small number of loci. In the other view, advocated heritability, which controls the rate of response to selec- by Dobzhansky, polymorphism is the norm, and it tion on a trait (see Section II,D). Heritabilities for quan- reflects variation that is actively maintained by selec- titative traits typically are between 20 and 80%, corre- tion. In the absence of any means of identifying loci sponding to the fact that artificial selection is highly without the prior existence of genetic variability, no effective in changing the mean value of almost every unbiased survey of the extent of genetic variation at trait that has been examined (Falconer and Mackay, individual loci was possible with the methods of 1996). classical genetics, and so this question could not be answered. 3. Concealed Variability A more subtle form of phenotypic variation is con- cealed variability, i.e., variability that is only exposed B. Molecular Variation when homozygous genotypes are produced by close inbreeding. This is responsible for the increased varia- 1. Protein Electrophoresis tion among inbred lines when a set of such lines is The previously mentioned situation was transformed made from a random-bred base population and for by the development of molecular genetics. Gel electro- inbreeding depression, which is the decline in the phoresis of soluble enzymes and proteins provides a mean values of fitness-related traits such as viability rapid and simple method for surveying populations and fecundity with inbreeding (Falconer and Mackay, for variants affecting the structure of a large number 1996). Both of these phenomena reflect, at least in part, of different proteins and hence genes (Lewontin, 1974; the widespread occurrence of recessive or partially Hartl and Clark, 1997). The results of such surveys recessive rare alleles in random-mating populations reveal that a high fraction of loci coding for soluble (see Section II,F), whose phenotypic effects are only proteins are polymorphic in the sense of having at fully exposed when they are made homozygous and are least one rare variant whose frequency exceeds 5%; therefore not evident in randomly mating populations. the average individual from a randomly mating popula- In Drosophila, special breeding methods involving tion is typically heterozygous for a significant fraction the use of genetically marked chromosomes with inver- (several percent) of such loci. Despite some biases sions that suppress crossing over have shown that up in the methodology, particularly the inability of elec- to 50% of haploid genomes carry recessive lethal genes. trophoresis to detect many types of amino acid se- These contribute about half the inbreeding depression quence changes and the restriction of the method to manifested when fully homozygous genotypes are pro- soluble proteins, it is clear that protein polymorphism duced; a similar magnitude of inbreeding depression is is not an exceptional situation. POPULATION GENETICS 779 2. Measurement of Variation II. DETERMINISTIC POPULATION in DNA Sequences GENETICS The introduction of recombinant DNA technology has meant that population geneticists can now study varia- A. Allele and Genotype Frequencies tion at the level of the nucleotide sequence. Surveys of within-species DNA sequence variation of nuclear genes If we focus on a given nucleotide position, the basic have been most intensively carried out in Drosophila, descriptor of the state of a population is the set of but comparable results are emerging from other species frequencies of the four alternative states, A, T, G, and (Li, 1997). The basic conclusion is that variants due to C. If recombination within a gene is ignored, we can single nucleotide changes are the most abundant source consider the set of all nucleotide sequences observed of variation in natural populations. For silent substitu- at a locus as alternative alleles, whose frequencies char- tions in third coding positions, which do not change acterize the state of the population with respect to this the amino acid sequence, and for changes in introns and locus. Mendelian inheritance implies that this state is flanking sequences, the probability that two randomly not changed in the absence of evolutionary forces (the chosen alleles from a Drosophila population differ at a occurrence of intragenic crossing over and gene conver- given site (the nucleotide site diversity) is typically of sion at low frequencies means that in practice this is a the order of 1% or a few percent, depending on the good approximation rather than an exact description). species. The level of this type of variability is about 10 This is enshrined in the Hardy–Weinberg principle, times higher in the bacterium Escherichia coli and one- which states that the frequencies of diploid genotypes tenth as high in humans (Li, 1997). For most genes, in a random mating population with a set of n alleles иии diversity is much lower for replacement changes, which with frequencies p1, p2, , pn rapidly reach equilibrium alter the amino acid sequence. In addition to single values given by the multinomial expansion of ϩ ϩ иии n nucleotide polymorphisms, DNA variability is contrib- (p1 p2 , pn) . The importance of this result is uted by small insertions and deletions of sets of nucleo- that existing natural variation is preserved by Mendelian tides and by insertions of tranposable elements, mostly inheritance. This removes Darwin’s difficulties over the in noncoding regions. Other types of variability include rapid loss of variation under blending inheritance, variation in the sizes of tandem arrays of microsatellite which led him to adopt a theory of the inheritance of and minisatellite loci, which are often highly polymor- acquired characteristics for which there is no empirical phic and provide useful genetic markers (Bruford and foundation (Fisher, 1930).
Recommended publications
  • Mutation, Asexual Reproduction and Genetic Load: a Study in Three Parts
    Mutation, asexual reproduction and genetic load: A study in three parts by Tara N. Marriage Submitted to the graduate degree program in Ecology and Evolutionary Biology and the faculty of the Graduate School of the University of Kansas in partial fulfillment of the requirements for the degree of Doctor of Philosophy. Committee members: __________________________ John K. Kelly, Co-chairperson __________________________ Maria E. Orive, Co-chairperson __________________________ Helen Alexander __________________________ Mark Mort __________________________ Lisa Timmons Date defendeded: August 19, 2009 The Dissertation Committee for Tara N. Marriage certifies that this is the approved version of the following dissertation: Mutation, asexual reproduction and genetic load: A study in three parts Committee members: __________________________ John Kelly, Co-chairperson __________________________ Maria Orive, Co-chairperson __________________________ Helen Alexander __________________________ Mark Mort __________________________ Lisa Timmons Date approved: August 19, 2009 2 Table of Contents: Chapter Title Pages 1 Introduction and overview 4 – 7 2 Direct estimation of the mutation rate at 8 – 31 dinucleotide microsatellite loci in Arabidopsis thaliana (Brassicaceae) 3 Inbreeding depression in an asexual population 32 – 61 of Mimulus guttatus 4 Effects of asexual reproduction on genetic load 62 – 114 in infinite and finite populations. Appendices Pages A: Primer details and locus specific 115 – 116 information B: Inbreeding load data for Table 3-3 117 – 120 C: Coefficient of additive variation data 121 – 123 for Table 3-5 D: Trait correlations 124 – 126 3 Introduction I am interested in the genetic variation that exists in plant populations and in exploring the different forces that can influence genetic variation, specifically mutation rate, mating systems and asexual reproduction.
    [Show full text]
  • Evolutionary Population Genetics : a Brief Introduction
    Evolutionary population genetics : a brief introduction Pradipta Ray, BIOL 6385 / BMEN 6389, The University of Texas at Dallas (some material based on content by PR in Eric Xing’s 10-810 Carnegie Mellon class) BIOL 6385, Computational Biology usda.gov BIOL 6385, Computational Biology Forces shaping observations • Finite sample size : we cant sample the whole population • Sample bias : is our sample representative ? BIOL 6385, Computational Biology Fixing • Fate of an allele in long run : evolutionary race among alleles – either dies out : “fixed” at 0 (known as loss) – intermediate situation : “fixed” at intermediate value, determined by equilibrium distribution of stochastic process (known as equilibrium) – wipes out all other alleles (becomes monoallelic) : “fixed” at 1 (known as fixing) BIOL 6385, Computational Biology Mutation : a cursory look BIOL 6385, Computational Biology Mutation models : how many alleles • Bi – allelic model : Two alleles exist – a mutation will change the allele from type A to type B ( or a deleterious new allele which will vanish ) • Multi – allelic model : Many alleles exist – effect of mutation may be difficult to predict without explicit model • Infinite – allelic model : Every mutation creates a new allele (convenient, not true) BIOL 6385, Computational Biology Mutation models : how many sites Infinite sites model : • Every mutation happens at a new locus • Expected no of substitutions / site << 1 • Plausible assumption for low mutation rate, short evolutionary history studies BIOL 6385, Computational
    [Show full text]
  • Neutral Theory 2: Neutral Theory 1. Mutation 2. Polymorphism 3
    Neutral theory 2: Neutral theory 1. Mutation 2. Polymorphism Neutral theory: connected these is a new (radical) way 3. Substitution 1 Neutral theory of molecular evolution Motoo Kimura: • troubled by cost Haldane’s dilemma: • 1 substitution every 300 generations • troubled by Zukerkandl and Pauling’s (1965) molecular clock: • 1 substitution every 2 years Published a model of neutral evolution in 1968 Jack King and Thomas Jukes: Independently arrived at same conclusion as Kimura Published (1969) under the provocative title “Non-Darwinian evolution” I cannot over emphasize how radical this idea was at that time. Neutral theory of molecular evolution: elegant simplicity k = rate of nucleotide substitution at a site per generation [year] k = new mutations × probability of fixation Number of new mutations = µ × 2Ne Probability of fixation = 1 2Ne Hence, the neutral rate is: k = µ × 2Ne × 1/2Ne k = µ 2 Neutral theory of molecular evolution Neutral theory: the rate of evolution is independent of effective population size • mutation-drift equilibrium • assumes (i) neutrality and (ii) constant mutation rate • polymorphism is simply a phase of evolution (mutation, polymorphism and substitution are not separate processes) Evolution by natural selection: k = µ × 4Ne × s • rate depends on mutation rate and population size and intensity of selection Remember the genetic drift lecture… If we run this simulation long enough it will go to fixation of loss; it just takes much longer • rate to fixation [under drift] slows with increasing in Ne • ultimate fate is fixation or loss • Larger Ne yield larger residence time of a polymorphism in a population 3 Ne = 5000 Generations = 30 Generations = 50 Generations = 500 Generations = 1000 The average time to fixation is 4Ne generations Time to fixation (t) of new alleles in populations with different effective sizes.
    [Show full text]
  • Genetic Load and Introduction Neutral Theory 1. Mutation 2. Polymorphism
    Neutral theory 1: Genetic load and introduction Neutral theory 1. Mutation 2. Polymorphism Neutral theory: connected these is a new (radical) way 3. Substitution 1 Neo-Darwinism 1. genetic variation arises at random via mutation and recombination 2. populations evolve by changes in allele frequencies 3. allele frequencies change by mutation, migration, drift and natural selection 4. most mutations are deleterious 5. most adaptive phenotypic effects are small so changes in phenotype are slow and gradual • some such changes can have large discrete effects 6. diversification occurs by speciation • usually a gradual process • usually by geographic isolation 7. microevolution ⇒ macroevolution Neo-Darwinism Balance school Classical school • Most new mutations are deleterious • Most new mutations are deleterious • Natural selection is of central importance • Natural selection is of central importance •Polymorphism is a function of selection •Polymorphism is a function of selection • Polymorphism is common • Polymorphism is very rare •Balancing selection is comparable to • Positive Darwinian selection and purifying selection in micro-evolution balancing selection are rare with respect to purifying selection in micro-evolution • Genetic variation connected to morphological variation. • Too much “genetic load” for genetic variation to connect with morph. variation • Prediction: most populations will be heterozygous at most loci •Prediction: most populations will be homozygous at most loci 2 “It is altogether unlikely that two genes would have identical
    [Show full text]
  • (Mis)Interpreting Mathematical Models: Drift As a Physical Process
    Philos Theor Biol (2009) 1:e002 (Mis)interpreting Mathematical Models: Drift as a Physical Process Roberta L. Millstein,§ Robert A. Skipper, Jr.‡ and Michael R. Dietrich ¶ Recently, a number of philosophers of biology (e.g., Matthen and Ariew 2002; Walsh, Lewens, and Ariew 2002; Pigliucci and Kaplan 2006; Walsh 2007) have endorsed views about random drift that, we will argue, rest on an implicit assumption that the meaning of concepts such as drift can be understood through an examination of the mathematical models in which drift appears. They also seem to implicitly assume that ontological questions about the causality (or lack thereof) of terms appearing in the models can be gleaned from the models alone. We will question these general assumptions by showing how the same equation – the simple (p + q)2 = p2 + 2pq + q2 – can be given radically different interpretations, one of which is a physical, causal process and one of which is not. This shows that mathematical models on their own yield neither interpretations nor ontological conclusions. Instead, we argue that these issues can only be resolved by considering the phenomena that the models were originally designed to represent and the phenomena to which the models are currently applied. When one does take those factors into account, starting with the motivation for Sewall Wright’s and R.A. Fisher’s early drift models and ending with contemporary applications, a very different picture of the concept of drift emerges. On this view, drift is a term for a set of physical processes, namely, indiscriminate sampling processes (Beatty 1984; Hodge 1987; Millstein 2002, 2005).
    [Show full text]
  • 'A Model Detectable Alleles in a Finite Population' by Timoko Ohta And
    Genet. Res., Camb. (2007), 89, pp. 365–366. f 2008 Cambridge University Press 365 doi:10.1017/S0016672308009543 Printed in the United Kingdom A model in two acts: a commentary on ‘A model of mutation appropriate to estimate the number of electrophoretically detectable alleles in a finite population’ by Timoko Ohta and Motoo Kimura JODY HEY* Department of Genetics, Rutgers University, Nelson Biological Labs (rm B326), 604 Allison Road, Piscataway, NJ 08854-8082, USA In the early 1970s, protein electrophoresis was the variation, and they tended to include explicitly a primary tool geneticists used to discover and measure neutral mutation rate as well as assumptions about allelic variation in natural populations. It was a rela- the nature of the mutation process. tively simple and inexpensive technique and, most One prediction of the neutral theory was that importantly, it permitted the detection of multiple the number of alleles in a population was expected alleles regardless of polymorphism levels. This was a to co-vary strongly with the effective population size. critical point because before the age of protein elec- Earlier in 1964, Kimura and James Crow had devel- trophoresis, segregating alleles were usually discovered oped the infinite alleles model, in which every mu- only in cases where clearly discrete patterns of pheno- tation gives rise to a new allele (Kimura & Crow, typic variation were first observed. With protein 1964), and under this model the number of neutral electrophoresis a geneticist’s ability to identify mul- alleles varies linearly with both effective population tiple alleles did not depend on a prior indication of the size and neutral mutation rate.
    [Show full text]
  • Evolutionary Processes in Automictic Populations
    | INVESTIGATION Asexual but Not Clonal: Evolutionary Processes in Automictic Populations Jan Engelstädter1 School of Biological Sciences, The University of Queensland, Brisbane, 4072, Australia ORCID ID: 0000-0003-3340-918X (J.E.) ABSTRACT Many parthenogenetically reproducing animals produce offspring not clonally but through different mechanisms collectively referred to as automixis. Here, meiosis proceeds normally but is followed by a fusion of meiotic products that restores diploidy. This mechanism typically leads to a reduction in heterozygosity among the offspring compared to the mother. Following a derivation of the rate at which heterozygosity is lost at one and two loci, depending on the number of crossovers between loci and centromere, a number of models are developed to gain a better understanding of basic evolutionary processes in automictic populations. Analytical results are obtained for the expected neutral genetic variation, effective population size, mutation–selection balance, selection with overdominance, the spread of beneficial mutations, and selection on crossover rates. These results are complemented by numerical investigations elucidating how associative overdominance (two off-phase deleterious mutations at linked loci behaving like an overdominant locus) can in some cases maintain heterozygosity for prolonged times, and how clonal interference affects adaptation in automictic populations. These results suggest that although automictic populations are expected to suffer from the lack of gene shuffling with other individuals, they are nevertheless, in some respects, superior to both clonal and outbreeding sexual populations in the way they respond to beneficial and deleterious mutations. Implications for related genetic systems such as intratetrad mating, clonal reproduction, selfing, as well as different forms of mixed sexual and automictic reproduction are discussed.
    [Show full text]
  • Population Genetics
    Population genetics Tutorial Peter Pfaffelhuber and Pleuni Pennings November 30, 2007 University of Munich Biocenter Großhaderner Straße 2 D-82152 Planegg-Martinsried 3 Copyright (c) 2007 Peter Pfaffelhuber and Pleuni Pennings. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License". Preface This manuscript is written for the course population genetics computer lab given at the LMU Biozentrum, Martinsried, in the summer 2007. The course consists of nine sections which contain lectures and computerlabs. The course is meant for you if you a biologist by training, but is certainly also useful if you are bio-informatician, mathematician or statistician with an interest in population genetics. We expect you to have a basic understanding of genetics, statistics and modelling, although we have introductions to these subjects in the course. You get insights into population genetics from a theoretical but also from an applied side. This results in developing theory on the one side and applying it to data and simu- lations on the other. After following the course you should have a good understanding of the main methods in molecular population genetics that are used to analyse data. If you want to extend you insights, you might wish to look at books like Durrett (2002), Gillespie (2004), Halliburton (2004), Hartl and Clark (2007), Hedrick (2005) or Nei (1987).
    [Show full text]
  • Population Genetics from 1966 to 2016
    Heredity (2017) 118, 2–9 OPEN Official journal of the Genetics Society www.nature.com/hdy REVIEW Population genetics from 1966 to 2016 B Charlesworth and D Charlesworth We describe the astonishing changes and progress that have occurred in the field of population genetics over the past 50 years, slightly longer than the time since the first Population Genetics Group (PGG) meeting in January 1968. We review the major questions and controversies that have preoccupied population geneticists during this time (and were often hotly debated at PGG meetings). We show how theoretical and empirical work has combined to generate a highly productive interaction involving successive developments in the ability to characterise variability at the molecular level, to apply mathematical models to the interpretation of the data and to use the results to answer biologically important questions, even in nonmodel organisms. We also describe the changes from a field that was largely dominated by UK and North American biologists to a much more international one (with the PGG meetings having made important contributions to the increased number of population geneticists in several European countries). Although we concentrate on the earlier history of the field, because developments in recent years are more familiar to most contemporary researchers, we end with a brief outline of topics in which new understanding is still actively developing. Heredity (2017) 118, 2–9; doi:10.1038/hdy.2016.55; published online 27 July 2016 INTRODUCTION debate was revived in a different context by the demonstration by By 1966, population genetics had accumulated a substantial body Motoo Kimura and James Crow that neutral mutation and drift could of mathematical theory stemming from the pioneering work of Fisher, result in large levels of variability within populations (Kimura and Haldane and Wright, as well as a large amount of data from laboratory Crow, 1964).
    [Show full text]
  • Three Perspectives on Neutrality and Drift in Molecular Evolution
    Dartmouth College Dartmouth Digital Commons Open Dartmouth: Published works by Dartmouth faculty Faculty Work 12-1-2006 Three Perspectives on Neutrality and Drift in Molecular Evolution Michael Dietrich Dartmouth College Follow this and additional works at: https://digitalcommons.dartmouth.edu/facoa Part of the Biology Commons Dartmouth Digital Commons Citation Dietrich, Michael, "Three Perspectives on Neutrality and Drift in Molecular Evolution" (2006). Open Dartmouth: Published works by Dartmouth faculty. 20. https://digitalcommons.dartmouth.edu/facoa/20 This Article is brought to you for free and open access by the Faculty Work at Dartmouth Digital Commons. It has been accepted for inclusion in Open Dartmouth: Published works by Dartmouth faculty by an authorized administrator of Dartmouth Digital Commons. For more information, please contact [email protected]. Three Perspectives on Neutrality and Drift in Molecular Evolution Michael R. Dietrich† This article offers three contrasting cases of the use of neutrality and drift in molecular evolution. In the first, neutrality is assumed as a simplest case for modeling. In the second and third, concepts of drift and neutrality are developed within the context of population genetics testing and the development and ap- plication of the molecular clock. 1. Introduction. The importance of random drift for the field of molec- ular evolution is undeniable, even if its relative significance has been the subject of intense controversy. Random drift was given a leading role in the development of molecular evolution by Motoo Kimura, Tomoko Ohta, Tom Jukes, Jack King, and others. Beginning in the late 1960s, advocates of neutral molecular evolution presented it as a radical alter- native to the omnipotence of natural selection in biological evolution.
    [Show full text]
  • By Timoko Ohta and Motoo Kimura
    Genet. Res., Camb. (2007), 89, pp. 365–366. f 2008 Cambridge University Press 365 doi:10.1017/S0016672308009543 Printed in the United Kingdom A model in two acts: a commentary on ‘A model of mutation appropriate to estimate the number of electrophoretically detectable alleles in a finite population’ by Timoko Ohta and Motoo Kimura JODY HEY* Department of Genetics, Rutgers University, Nelson Biological Labs (rm B326), 604 Allison Road, Piscataway, NJ 08854-8082, USA In the early 1970s, protein electrophoresis was the variation, and they tended to include explicitly a primary tool geneticists used to discover and measure neutral mutation rate as well as assumptions about allelic variation in natural populations. It was a rela- the nature of the mutation process. tively simple and inexpensive technique and, most One prediction of the neutral theory was that importantly, it permitted the detection of multiple the number of alleles in a population was expected alleles regardless of polymorphism levels. This was a to co-vary strongly with the effective population size. critical point because before the age of protein elec- Earlier in 1964, Kimura and James Crow had devel- trophoresis, segregating alleles were usually discovered oped the infinite alleles model, in which every mu- only in cases where clearly discrete patterns of pheno- tation gives rise to a new allele (Kimura & Crow, typic variation were first observed. With protein 1964), and under this model the number of neutral electrophoresis a geneticist’s ability to identify mul- alleles varies linearly with both effective population tiple alleles did not depend on a prior indication of the size and neutral mutation rate.
    [Show full text]