Neutral Theory 2: Neutral Theory 1. Mutation 2. Polymorphism 3

Total Page:16

File Type:pdf, Size:1020Kb

Neutral Theory 2: Neutral Theory 1. Mutation 2. Polymorphism 3 Neutral theory 2: Neutral theory 1. Mutation 2. Polymorphism Neutral theory: connected these is a new (radical) way 3. Substitution 1 Neutral theory of molecular evolution Motoo Kimura: • troubled by cost Haldane’s dilemma: • 1 substitution every 300 generations • troubled by Zukerkandl and Pauling’s (1965) molecular clock: • 1 substitution every 2 years Published a model of neutral evolution in 1968 Jack King and Thomas Jukes: Independently arrived at same conclusion as Kimura Published (1969) under the provocative title “Non-Darwinian evolution” I cannot over emphasize how radical this idea was at that time. Neutral theory of molecular evolution: elegant simplicity k = rate of nucleotide substitution at a site per generation [year] k = new mutations × probability of fixation Number of new mutations = µ × 2Ne Probability of fixation = 1 2Ne Hence, the neutral rate is: k = µ × 2Ne × 1/2Ne k = µ 2 Neutral theory of molecular evolution Neutral theory: the rate of evolution is independent of effective population size • mutation-drift equilibrium • assumes (i) neutrality and (ii) constant mutation rate • polymorphism is simply a phase of evolution (mutation, polymorphism and substitution are not separate processes) Evolution by natural selection: k = µ × 4Ne × s • rate depends on mutation rate and population size and intensity of selection Remember the genetic drift lecture… If we run this simulation long enough it will go to fixation of loss; it just takes much longer • rate to fixation [under drift] slows with increasing in Ne • ultimate fate is fixation or loss • Larger Ne yield larger residence time of a polymorphism in a population 3 Ne = 5000 Generations = 30 Generations = 50 Generations = 500 Generations = 1000 The average time to fixation is 4Ne generations Time to fixation (t) of new alleles in populations with different effective sizes. Note that most new mutations are lost from the population due to drift and those mutations are NOT shown. The time to fixation (as an average) is longer in populations with large size. Ne = small 1 Allele frequency Allele 0 t Ne = large 1 Allele frequency 0 t A slice in time for each population is shown by a dotted vertical line ( ). Note that at such a slice in time the population with larger effective size is more polymorphic as compared with the smaller population. 4 The average time between neutral substitutions is the reciprocal of µ Mean time between mutation events (1/µ) is much shorter in the larger population because the number of new mutations is on average = µ × 2Ne (for diploid organisms). The mutation rate (µ) is the same in both populations, but numbers differ because of differences in population size. Mutation event Ne = small 1 Allele frequency frequency Allele 0 mean 1/µ Ne = large 1 Allele frequency 0 mean 1/µ The population attains an equilibrium substitution rate (k = µ) k = µ In words: Large populations: high number of new mutants each generation (2Ne is high) but probability of fixation is low (1/ 2Ne) Small populations: lower number of new mutants each generation (2Ne is lower), but each has a higher probability of fixation (1/ 2Ne is larger) 5 The population attains an equilibrium substitution rate (k = µ) At mutation-drift equilibrium the mutations rate is equal to the substitution rate and the effective population size cancels out. Ne = small: fewer mutations but they drift to fixation more often 1 Allele frequency 0 Ne = large: more mutations, but few ultimately get fixed 1 Allele frequency 0 Mutation that goes to fixation (same rate in both populations) Mutation lost due to genetic drift The population attains an equilibrium polymorphism He = 4Neµ/(1+4Neµ) this result assumes an “infinite alleles model” θ = 4Neµ population geneticists are obsessed with the θ parameter 6 The population attains an equilibrium polymorphism Expected equilibrium levels of heterozygosity at a locus as a function of the parameter θ. Heterozygosity will be higher in larger populations. 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 Heterozygosity (H) Heterozygosity 0.2 0.1 0 0246810 θ Neutral theory of molecular evolution 1. The standing level of polymorphism is dependent on effective population size 2. The rate of evolution is independent of effective population size 7 Neutralist-selectionist debate Neutralists and selectionists actually agree on many points: • natural selection is ONLY explanation for adaptation • most new mutations have fitness consequences • most new mutations are deleterious and subject to purifying selection • most new mutations are quickly removed from a population by selection • morphological evolution is mainly driven by selective advantage Early disagreements focused on genetic load verses selective neutrality: “It is altogether unlikely that two genes would have identical selective values under all the conditions under which they may coexist in a population. … cases of neutral polymorphism do not exist … it appears probable that random fixation is of negligible evolutionary importance” ⎯Ernst Mayr Neutralist-selectionist debate: an argument about proportions Neutral Model Selectionist Model Deleterious Neutral Adaptive 8 Misconceptions about neutral theory There has been some confusion about what the neutral theory suggests, so it is worth trying to clear up some of the misconceptions. Myth 1: Only genes that are unimportant can undergo neutral mutations. [Neutral theory only asserts that alternative alleles segregating at a locus are selectively equivalent. Such loci can, and do, encode genes that have important functional roles.] Myth 2: Neutral theory diminished the role of natural selection in adaptation. [To the contrary, neutralists and selectionists both maintain that natural selection is the primary mechanism of adaptation, and that morphological evolution is primarily driven by natural selection.] Myth 3: Nucleotide or amino acid sites that undergo neutral substitutions are not subject to natural selection. [Neutral theory does not preclude the possibility that adaptive mutations can occur at sites where neutral mutations occur. Neutral theory only asserts that adaptive mutations will be much less frequent and will go to fixation much more quickly; hence, most polymorphism observed in a population will be neutral.] Myth 4: Neutral mutations have a selective coefficient of s = 0. [Because natural population sizes are finite, the fate of mildly deleterious alleles can be fixed due to drift. See population genetic Topic 8 for a review.] Myth 5: Neutral mutations are always neutral. [Neutral theory makes no assertions about the stability of the environment. The selection coefficient will depend of the environment.] Predictions of the neutral theory 1. The level of within species genetic variation is determined by population size and mutation rate, and is correlated with the level of sequence divergence between species. 2. The rate of gene evolution (substitution) is inversely related to the level of functional constraint (purifying selection) acting on the gene. [this is macro-evolution] 3. The pattern of base composition at neutral sites reflects mutational equilibrium. 4. There is a constant rate of sequence evolution; i.e., a molecular clock. 9 Genetic load and “hard selection” We already encountered the notion of excess reproductive capacity of a species. When excess individuals with the same fitness compete for finite resources, the resulting mortality is unrelated to natural selection. This is sometimes called “background mortality”. Many models of genetic load were based on Hard Selection. Hard selection refers to any selection-based mortality on top of the mortality that arises when excess individuals have the same fitness; i.e., mortality in addition to the background mortality. All of Kimura’s and Haldane’s arguments concerning genetic load assumed hard selection. Genetic load and “hard selection” A question that often comes up: What if we could substitute some of the genetic death for some of the background mortality? Soft selection is the term used to describe the situation when some selective deaths are substituted for non-selective background mortality. The consensus opinion is that natural selection in real populations reflects some mixture of hard and soft selection. Hence, the initial models of genetic load and the cost of selection are thought to overestimate the amount of genetic death. Hard and soft selection should be considered extreme of a continuum, and natural selection is likely to represent some intermediate point along this continuum. Do we still need the neutral theory? We will return to this question later. 10 hard and soft selection Background: no selective death 120 100 80 Background mortality when all 60 individuals have the same fitness 40 20 0 12 Extreme soft selection Mix of soft & hard selection Extreme hard selection 120 120 120 Only some selective All selective death is 100 100 death is substituted 100 All selective death on top of background 80 80 with background 80 mortality is substituted with mortality (50%); some 60 background 60 selective death is on 60 top of background 40 mortality 40 40 mortality (50%) 20 20 20 0 0 0 12 12 12 Do we still need the neutral theory? Let’s look at those predictions and see how they fit real data. 11.
Recommended publications
  • Mutation, Asexual Reproduction and Genetic Load: a Study in Three Parts
    Mutation, asexual reproduction and genetic load: A study in three parts by Tara N. Marriage Submitted to the graduate degree program in Ecology and Evolutionary Biology and the faculty of the Graduate School of the University of Kansas in partial fulfillment of the requirements for the degree of Doctor of Philosophy. Committee members: __________________________ John K. Kelly, Co-chairperson __________________________ Maria E. Orive, Co-chairperson __________________________ Helen Alexander __________________________ Mark Mort __________________________ Lisa Timmons Date defendeded: August 19, 2009 The Dissertation Committee for Tara N. Marriage certifies that this is the approved version of the following dissertation: Mutation, asexual reproduction and genetic load: A study in three parts Committee members: __________________________ John Kelly, Co-chairperson __________________________ Maria Orive, Co-chairperson __________________________ Helen Alexander __________________________ Mark Mort __________________________ Lisa Timmons Date approved: August 19, 2009 2 Table of Contents: Chapter Title Pages 1 Introduction and overview 4 – 7 2 Direct estimation of the mutation rate at 8 – 31 dinucleotide microsatellite loci in Arabidopsis thaliana (Brassicaceae) 3 Inbreeding depression in an asexual population 32 – 61 of Mimulus guttatus 4 Effects of asexual reproduction on genetic load 62 – 114 in infinite and finite populations. Appendices Pages A: Primer details and locus specific 115 – 116 information B: Inbreeding load data for Table 3-3 117 – 120 C: Coefficient of additive variation data 121 – 123 for Table 3-5 D: Trait correlations 124 – 126 3 Introduction I am interested in the genetic variation that exists in plant populations and in exploring the different forces that can influence genetic variation, specifically mutation rate, mating systems and asexual reproduction.
    [Show full text]
  • Evolutionary Population Genetics : a Brief Introduction
    Evolutionary population genetics : a brief introduction Pradipta Ray, BIOL 6385 / BMEN 6389, The University of Texas at Dallas (some material based on content by PR in Eric Xing’s 10-810 Carnegie Mellon class) BIOL 6385, Computational Biology usda.gov BIOL 6385, Computational Biology Forces shaping observations • Finite sample size : we cant sample the whole population • Sample bias : is our sample representative ? BIOL 6385, Computational Biology Fixing • Fate of an allele in long run : evolutionary race among alleles – either dies out : “fixed” at 0 (known as loss) – intermediate situation : “fixed” at intermediate value, determined by equilibrium distribution of stochastic process (known as equilibrium) – wipes out all other alleles (becomes monoallelic) : “fixed” at 1 (known as fixing) BIOL 6385, Computational Biology Mutation : a cursory look BIOL 6385, Computational Biology Mutation models : how many alleles • Bi – allelic model : Two alleles exist – a mutation will change the allele from type A to type B ( or a deleterious new allele which will vanish ) • Multi – allelic model : Many alleles exist – effect of mutation may be difficult to predict without explicit model • Infinite – allelic model : Every mutation creates a new allele (convenient, not true) BIOL 6385, Computational Biology Mutation models : how many sites Infinite sites model : • Every mutation happens at a new locus • Expected no of substitutions / site << 1 • Plausible assumption for low mutation rate, short evolutionary history studies BIOL 6385, Computational
    [Show full text]
  • Genetic Load and Introduction Neutral Theory 1. Mutation 2. Polymorphism
    Neutral theory 1: Genetic load and introduction Neutral theory 1. Mutation 2. Polymorphism Neutral theory: connected these is a new (radical) way 3. Substitution 1 Neo-Darwinism 1. genetic variation arises at random via mutation and recombination 2. populations evolve by changes in allele frequencies 3. allele frequencies change by mutation, migration, drift and natural selection 4. most mutations are deleterious 5. most adaptive phenotypic effects are small so changes in phenotype are slow and gradual • some such changes can have large discrete effects 6. diversification occurs by speciation • usually a gradual process • usually by geographic isolation 7. microevolution ⇒ macroevolution Neo-Darwinism Balance school Classical school • Most new mutations are deleterious • Most new mutations are deleterious • Natural selection is of central importance • Natural selection is of central importance •Polymorphism is a function of selection •Polymorphism is a function of selection • Polymorphism is common • Polymorphism is very rare •Balancing selection is comparable to • Positive Darwinian selection and purifying selection in micro-evolution balancing selection are rare with respect to purifying selection in micro-evolution • Genetic variation connected to morphological variation. • Too much “genetic load” for genetic variation to connect with morph. variation • Prediction: most populations will be heterozygous at most loci •Prediction: most populations will be homozygous at most loci 2 “It is altogether unlikely that two genes would have identical
    [Show full text]
  • (Mis)Interpreting Mathematical Models: Drift As a Physical Process
    Philos Theor Biol (2009) 1:e002 (Mis)interpreting Mathematical Models: Drift as a Physical Process Roberta L. Millstein,§ Robert A. Skipper, Jr.‡ and Michael R. Dietrich ¶ Recently, a number of philosophers of biology (e.g., Matthen and Ariew 2002; Walsh, Lewens, and Ariew 2002; Pigliucci and Kaplan 2006; Walsh 2007) have endorsed views about random drift that, we will argue, rest on an implicit assumption that the meaning of concepts such as drift can be understood through an examination of the mathematical models in which drift appears. They also seem to implicitly assume that ontological questions about the causality (or lack thereof) of terms appearing in the models can be gleaned from the models alone. We will question these general assumptions by showing how the same equation – the simple (p + q)2 = p2 + 2pq + q2 – can be given radically different interpretations, one of which is a physical, causal process and one of which is not. This shows that mathematical models on their own yield neither interpretations nor ontological conclusions. Instead, we argue that these issues can only be resolved by considering the phenomena that the models were originally designed to represent and the phenomena to which the models are currently applied. When one does take those factors into account, starting with the motivation for Sewall Wright’s and R.A. Fisher’s early drift models and ending with contemporary applications, a very different picture of the concept of drift emerges. On this view, drift is a term for a set of physical processes, namely, indiscriminate sampling processes (Beatty 1984; Hodge 1987; Millstein 2002, 2005).
    [Show full text]
  • 'A Model Detectable Alleles in a Finite Population' by Timoko Ohta And
    Genet. Res., Camb. (2007), 89, pp. 365–366. f 2008 Cambridge University Press 365 doi:10.1017/S0016672308009543 Printed in the United Kingdom A model in two acts: a commentary on ‘A model of mutation appropriate to estimate the number of electrophoretically detectable alleles in a finite population’ by Timoko Ohta and Motoo Kimura JODY HEY* Department of Genetics, Rutgers University, Nelson Biological Labs (rm B326), 604 Allison Road, Piscataway, NJ 08854-8082, USA In the early 1970s, protein electrophoresis was the variation, and they tended to include explicitly a primary tool geneticists used to discover and measure neutral mutation rate as well as assumptions about allelic variation in natural populations. It was a rela- the nature of the mutation process. tively simple and inexpensive technique and, most One prediction of the neutral theory was that importantly, it permitted the detection of multiple the number of alleles in a population was expected alleles regardless of polymorphism levels. This was a to co-vary strongly with the effective population size. critical point because before the age of protein elec- Earlier in 1964, Kimura and James Crow had devel- trophoresis, segregating alleles were usually discovered oped the infinite alleles model, in which every mu- only in cases where clearly discrete patterns of pheno- tation gives rise to a new allele (Kimura & Crow, typic variation were first observed. With protein 1964), and under this model the number of neutral electrophoresis a geneticist’s ability to identify mul- alleles varies linearly with both effective population tiple alleles did not depend on a prior indication of the size and neutral mutation rate.
    [Show full text]
  • Population Genetics
    POPULATION GENETICS Brian Charlesworth University of Edinburgh I. Variation within Populations selection The differential survival or reproductive suc- II. Deterministic Population Genetics cess of individuals, associated with differences in III. Random Genetic Drift phenotype or genotype. IV. The Interaction of Drift with Deterministic Forces V. Conclusions DARWIN’S THEORY OF ‘‘DESCENT WITH MODIFI- CATION’’ implies that all of the stupendous diversity of life on Earth is ultimately traceable to genetic diversity GLOSSARY within populations. The study of the nature and causes of within-population variation, and of the mechanisms allele frequency The frequency of a variant form of a by which it is transformed into differences between genetic locus within a population. populations over space and time, is the province of genetic drift Evolutionary change caused by random population genetics. The subject involves both theoreti- sampling of genotype frequencies in a finite popu- cal modeling of evolutionary processes, based on lation. knowledge of the mechanisms of inheritance, and the genotype The state of an individual with respect to a testing of these models using data on variation and defined genetic locus or set of loci. evolution in natural and artificial populations. heritability The proportion of the variance in a trait that is due to additive genetic effects. inbreeding Matings between close relatives. I. VARIATION WITHIN POPULATIONS mutation rate The frequency with which new muta- tions arise per generation. A. Types of Phenotypic Variation neutral mutations Mutations whose effects on fit- Since evolutionary change depends on the existence of ness are either nonexistent or so small that genetic variation within populations, measurement of their fate is controlled by genetic drift rather than the extent of such variation is crucial (Lewontin, 1974).
    [Show full text]
  • Evolutionary Processes in Automictic Populations
    | INVESTIGATION Asexual but Not Clonal: Evolutionary Processes in Automictic Populations Jan Engelstädter1 School of Biological Sciences, The University of Queensland, Brisbane, 4072, Australia ORCID ID: 0000-0003-3340-918X (J.E.) ABSTRACT Many parthenogenetically reproducing animals produce offspring not clonally but through different mechanisms collectively referred to as automixis. Here, meiosis proceeds normally but is followed by a fusion of meiotic products that restores diploidy. This mechanism typically leads to a reduction in heterozygosity among the offspring compared to the mother. Following a derivation of the rate at which heterozygosity is lost at one and two loci, depending on the number of crossovers between loci and centromere, a number of models are developed to gain a better understanding of basic evolutionary processes in automictic populations. Analytical results are obtained for the expected neutral genetic variation, effective population size, mutation–selection balance, selection with overdominance, the spread of beneficial mutations, and selection on crossover rates. These results are complemented by numerical investigations elucidating how associative overdominance (two off-phase deleterious mutations at linked loci behaving like an overdominant locus) can in some cases maintain heterozygosity for prolonged times, and how clonal interference affects adaptation in automictic populations. These results suggest that although automictic populations are expected to suffer from the lack of gene shuffling with other individuals, they are nevertheless, in some respects, superior to both clonal and outbreeding sexual populations in the way they respond to beneficial and deleterious mutations. Implications for related genetic systems such as intratetrad mating, clonal reproduction, selfing, as well as different forms of mixed sexual and automictic reproduction are discussed.
    [Show full text]
  • Population Genetics
    Population genetics Tutorial Peter Pfaffelhuber and Pleuni Pennings November 30, 2007 University of Munich Biocenter Großhaderner Straße 2 D-82152 Planegg-Martinsried 3 Copyright (c) 2007 Peter Pfaffelhuber and Pleuni Pennings. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License". Preface This manuscript is written for the course population genetics computer lab given at the LMU Biozentrum, Martinsried, in the summer 2007. The course consists of nine sections which contain lectures and computerlabs. The course is meant for you if you a biologist by training, but is certainly also useful if you are bio-informatician, mathematician or statistician with an interest in population genetics. We expect you to have a basic understanding of genetics, statistics and modelling, although we have introductions to these subjects in the course. You get insights into population genetics from a theoretical but also from an applied side. This results in developing theory on the one side and applying it to data and simu- lations on the other. After following the course you should have a good understanding of the main methods in molecular population genetics that are used to analyse data. If you want to extend you insights, you might wish to look at books like Durrett (2002), Gillespie (2004), Halliburton (2004), Hartl and Clark (2007), Hedrick (2005) or Nei (1987).
    [Show full text]
  • Population Genetics from 1966 to 2016
    Heredity (2017) 118, 2–9 OPEN Official journal of the Genetics Society www.nature.com/hdy REVIEW Population genetics from 1966 to 2016 B Charlesworth and D Charlesworth We describe the astonishing changes and progress that have occurred in the field of population genetics over the past 50 years, slightly longer than the time since the first Population Genetics Group (PGG) meeting in January 1968. We review the major questions and controversies that have preoccupied population geneticists during this time (and were often hotly debated at PGG meetings). We show how theoretical and empirical work has combined to generate a highly productive interaction involving successive developments in the ability to characterise variability at the molecular level, to apply mathematical models to the interpretation of the data and to use the results to answer biologically important questions, even in nonmodel organisms. We also describe the changes from a field that was largely dominated by UK and North American biologists to a much more international one (with the PGG meetings having made important contributions to the increased number of population geneticists in several European countries). Although we concentrate on the earlier history of the field, because developments in recent years are more familiar to most contemporary researchers, we end with a brief outline of topics in which new understanding is still actively developing. Heredity (2017) 118, 2–9; doi:10.1038/hdy.2016.55; published online 27 July 2016 INTRODUCTION debate was revived in a different context by the demonstration by By 1966, population genetics had accumulated a substantial body Motoo Kimura and James Crow that neutral mutation and drift could of mathematical theory stemming from the pioneering work of Fisher, result in large levels of variability within populations (Kimura and Haldane and Wright, as well as a large amount of data from laboratory Crow, 1964).
    [Show full text]
  • Three Perspectives on Neutrality and Drift in Molecular Evolution
    Dartmouth College Dartmouth Digital Commons Open Dartmouth: Published works by Dartmouth faculty Faculty Work 12-1-2006 Three Perspectives on Neutrality and Drift in Molecular Evolution Michael Dietrich Dartmouth College Follow this and additional works at: https://digitalcommons.dartmouth.edu/facoa Part of the Biology Commons Dartmouth Digital Commons Citation Dietrich, Michael, "Three Perspectives on Neutrality and Drift in Molecular Evolution" (2006). Open Dartmouth: Published works by Dartmouth faculty. 20. https://digitalcommons.dartmouth.edu/facoa/20 This Article is brought to you for free and open access by the Faculty Work at Dartmouth Digital Commons. It has been accepted for inclusion in Open Dartmouth: Published works by Dartmouth faculty by an authorized administrator of Dartmouth Digital Commons. For more information, please contact [email protected]. Three Perspectives on Neutrality and Drift in Molecular Evolution Michael R. Dietrich† This article offers three contrasting cases of the use of neutrality and drift in molecular evolution. In the first, neutrality is assumed as a simplest case for modeling. In the second and third, concepts of drift and neutrality are developed within the context of population genetics testing and the development and ap- plication of the molecular clock. 1. Introduction. The importance of random drift for the field of molec- ular evolution is undeniable, even if its relative significance has been the subject of intense controversy. Random drift was given a leading role in the development of molecular evolution by Motoo Kimura, Tomoko Ohta, Tom Jukes, Jack King, and others. Beginning in the late 1960s, advocates of neutral molecular evolution presented it as a radical alter- native to the omnipotence of natural selection in biological evolution.
    [Show full text]
  • By Timoko Ohta and Motoo Kimura
    Genet. Res., Camb. (2007), 89, pp. 365–366. f 2008 Cambridge University Press 365 doi:10.1017/S0016672308009543 Printed in the United Kingdom A model in two acts: a commentary on ‘A model of mutation appropriate to estimate the number of electrophoretically detectable alleles in a finite population’ by Timoko Ohta and Motoo Kimura JODY HEY* Department of Genetics, Rutgers University, Nelson Biological Labs (rm B326), 604 Allison Road, Piscataway, NJ 08854-8082, USA In the early 1970s, protein electrophoresis was the variation, and they tended to include explicitly a primary tool geneticists used to discover and measure neutral mutation rate as well as assumptions about allelic variation in natural populations. It was a rela- the nature of the mutation process. tively simple and inexpensive technique and, most One prediction of the neutral theory was that importantly, it permitted the detection of multiple the number of alleles in a population was expected alleles regardless of polymorphism levels. This was a to co-vary strongly with the effective population size. critical point because before the age of protein elec- Earlier in 1964, Kimura and James Crow had devel- trophoresis, segregating alleles were usually discovered oped the infinite alleles model, in which every mu- only in cases where clearly discrete patterns of pheno- tation gives rise to a new allele (Kimura & Crow, typic variation were first observed. With protein 1964), and under this model the number of neutral electrophoresis a geneticist’s ability to identify mul- alleles varies linearly with both effective population tiple alleles did not depend on a prior indication of the size and neutral mutation rate.
    [Show full text]