Measles Virus As an Oncolytic Immunotherapy

Total Page:16

File Type:pdf, Size:1020Kb

Measles Virus As an Oncolytic Immunotherapy cancers Review Measles Virus as an Oncolytic Immunotherapy Christine E. Engeland 1,2,* and Guy Ungerechts 1,* 1 Clinical Cooperation Unit Virotherapy, German Cancer Research Center (DKFZ), National Center for Tumor Diseases (NCT) and Department of Medical Oncology, University Hospital Heidelberg, 69120 Heidelberg, Germany 2 Center for Biomedical Education and Research (ZBAF), Institute of Virology and Microbiology, Faculty of Health, School of Medicine, Witten/Herdecke University, 58453 Witten, Germany * Correspondence: [email protected] (C.E.E.); [email protected] (G.U.) Simple Summary: Measles virus is currently under investigation as an innovative cancer treatment. The virus selectively replicates in and kills cancer cells. Furthermore, it can be genetically engineered to increase tumor specificity and therapeutic efficacy. Importantly, treatment with measles virus activates antitumor immune responses. A number of clinical trials using measles virus for cancer treatment have been completed or are ongoing. Future studies will further harness the possibilities of virus engineering and potential of combination immunotherapies to improve clinical outcome. Abstract: Measles virus (MeV) preferentially replicates in malignant cells, leading to tumor lysis and priming of antitumor immunity. Live attenuated MeV vaccine strains are therefore under investigation as cancer therapeutics. The versatile MeV reverse genetics systems allows for engi- neering of advanced targeted, armed, and shielded oncolytic viral vectors. Therapeutic efficacy can further be enhanced by combination treatments. An emerging focus in this regard is combination immunotherapy, especially with immune checkpoint blockade. Despite challenges arising from antiviral immunity, availability of preclinical models, and GMP production, early clinical trials have demonstrated safety of oncolytic MeV and yielded promising efficacy data. Future clinical trials with engineered viruses, rational combination regimens, and comprehensive translational research Citation: Engeland, C.E.; programs will realize the potential of oncolytic immunotherapy. Ungerechts, G. Measles Virus as an Oncolytic Immunotherapy. Cancers Keywords: oncolytic virus; measles virus; cancer immunotherapy; vector engineering; vaccination; 2021, 13, 544. https://doi.org/ 10.3390/cancers13030544 immune checkpoint blockade Academic Editor: David Wong Received: 31 December 2020 Accepted: 26 January 2021 1. Introduction—Measles Virus for Cancer Therapy Published: 1 February 2021 Measles virus (MeV) is a negative-strand RNA virus belonging to the family Paramyx- oviridae, genus Morbillivirus. Its genome has a length of approximately 16 kb and en- Publisher’s Note: MDPI stays neutral codes six structural and two non-structural proteins (Figure1a,b). The viral glycoproteins with regard to jurisdictional claims in hemagglutinin and fusion mediate receptor binding and fusion at the plasma membrane, published maps and institutional affil- respectively. While wild type MeV uses CD150/SLAM on lymphoid cells and epithelial iations. nectin-4 as receptors, vaccine strains of MeV infect cells primarily via CD46 [1]. This is due to mutations in the receptor attachment protein hemagglutinin H in vaccine strain MeV, resulting in high affinity of H for CD46 [2–6]. MeV infection results in syncytia formation as typical cytopathic effect (Figure1c). Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). Cancers 2021, 13, 544. https://doi.org/10.3390/cancers13030544 https://www.mdpi.com/journal/cancers Cancers 2021, 13, x 2 of 19 safety record [10]. Several years later, testing of Edmonston B measles vaccine strain de- rivatives for cancer treatment began. In many early studies, hematological malignancies were chosen as target entities [11–14]. This was supported by the natural lymphotropism of MeV. However, other malignancies including ovarian cancer [15] and glioblastoma [16] were soon found to also be sensitive to MeV oncolysis, while normal cells are spared [15,17]. Meanwhile, preclinical efficacy of oncolytic MeV has been demonstrated against a broad range of cancer entities (reviewed in [18]). In addition to Edmonston B derivatives, also the vaccine strains Moraten-Schwarz [19], Edmonston-Zagreb and AIK-C [20], rMV- Cancers 2021, 13, 544 Hu191 [21], as well as Leningrad-16 [22] have been shown to exert oncolytic effects2 of 18 in preclinical studies. FigureFigure 1. 1.Measles Measles as as an an oncolytic oncolytic virus. virus. (a ()a Schematic) Schematic of of the the measles measles virus virus particle. particle. The The viral viral RNA RNA genome genome is is encapsulated encapsulated byby the the nucleocapsid nucleocapsid (N) (N) protein protein and and is associated is associated with with the viral the viral polymerase polymerase (L, large (L, protein)large protein) and its and cofactor its cofactor phosphoprotein phospho- (P),protein forming (P), the forming ribonucleoprotein the ribonucleoprot complexein (RNP).complex The (RNP). matrix The (M) matrix protein (M) connects protein theconnects RNP and the theRNP viral and envelope. the viral enve- The surfacelope. The glycoproteins surface glycoproteins hemagglutinin hemagglutinin (H) and fusion (H) (F) and mediate fusion receptor (F) mediate binding receptor and cell binding fusion, and respectively. cell fusion, (b )respectively. Schematic of(b the) Schematic measlesvirus of the genome measles with virus open genome reading with frames open reading encoding frames the six encoding structural the proteins six structural flanked proteins by the flanked 30 leader by (ld) the 3′ leader (ld) and 5′ trailer (tr). (c) Syncytia formation as the typical cytopathic effect associated with measles virus infec- and 50 trailer (tr). (c) Syncytia formation as the typical cytopathic effect associated with measles virus infection. Human tion. Human colorectal cancer (KM12, top) and pancreatic adenocarcinoma (T3M4, bottom) cells were transfected with colorectal cancer (KM12, top) and pancreatic adenocarcinoma (T3M4, bottom) cells were transfected with plasmids encoding plasmids encoding the MeV glycoproteins H and F as well as enhanced green fluorescent protein as reporter. Control cells thewere MeV subjected glycoproteins to mock H transfection. and F as well Phase as enhanced contrast green and fluo fluorescentrescence protein images as were reporter. acquired Control with cells an Axiovert were subjected 200 micro- to mockscope transfection. (Zeiss) at 36 Phase h (KM12) contrast and and12 h fluorescencepost-transfection images (T3M4). were acquiredScale bar: with 200 µM. an Axiovert (d) Lymphoma 200 microscope remission (Zeiss) after atmeasles 36 h (KM12)infection. and Left 12 h panel: post-transfection The patient (T3M4).presented Scale with bar: orbital 200 µBurkitt’sm. (d) Lymphoma lymphoma. remission Middle panel: after measlesThe patient infection. was infected Left panel: with Themeasles; patient the presented typical skin with rash orbital is visible. Burkitt’s Right lymphoma. panel: With Middleout specific panel: anti-lym The patientphoma was treatment, infected with the orbital measles; mass the resolved. typical skinReproduced rash is visible. from RightLancet panel: 10 July Without 1971; 2 specific(7715): 105–106, anti-lymphoma with permission. treatment, the orbital mass resolved. Reproduced from Lancet 10 July 1971; 2 (7715): 105–106, with permission. Thus, MeV is one of several oncolytic platforms currently developed for cancer ther- apy.Originally, Advantages the of idea MeV to treatinclude cancer the patients excellen witht safety MeV profile arose afterof the case oncolytic reports whichvaccine linkedstrains measles and lack infection of genotoxicity, to tumor remissionits immunoge [7].nicity, One highly and especially cited example the plethora relates to of a engi- boy sufferingneering frompossibilities Burkitt’s offered lymphoma by the [8] MeV (Figure reverse1d). These genetics experiments system. ofSpecific nature challenges inspired the re- idealated of to using MeV MeV include in cancer pre-existing treatment. antiviral However, immunity, measles the is choice a severe of preclinical infectious diseasemodels [and9]. Thus,manufacturing. employing These a pathogenic assets and strain drawbacks of MeV inare cancer discussed therapy in more is out detail of question. within this Live re- attenuatedview article. MeV strains for vaccination were licensed in the 1960s and have a proven safety record [10]. Several years later, testing of Edmonston B measles vaccine strain derivatives for2. Measles cancer treatment Virus Oncotropism began. In many early studies, hematological malignancies were chosenMeasles as target vaccine entities strain [11–14 oncotropism]. This was supported correlates by with the CD46 natural overexpression lymphotropism on of malig- MeV. However, other malignancies including ovarian cancer [15] and glioblastoma [16] were nantly transformed cells [23]. Although viral entry occurs in benign cells and at low CD46 soon found to also be sensitive to MeV oncolysis, while normal cells are spared [15,17]. receptor density, a certain threshold of expression is required for syncytia formation and Meanwhile, preclinical efficacy of oncolytic MeV has been demonstrated against a cell death [24]. In myeloma, CD46 upregulation has
Recommended publications
  • Communicable Disease Chart
    COMMON INFECTIOUS ILLNESSES From birth to age 18 Disease, illness or organism Incubation period How is it spread? When is a child most contagious? When can a child return to the Report to county How to prevent spreading infection (management of conditions)*** (How long after childcare center or school? health department* contact does illness develop?) To prevent the spread of organisms associated with common infections, practice frequent hand hygiene, cover mouth and nose when coughing and sneezing, and stay up to date with immunizations. Bronchiolitis, bronchitis, Variable Contact with droplets from nose, eyes or Variable, often from the day before No restriction unless child has fever, NO common cold, croup, mouth of infected person; some viruses can symptoms begin to 5 days after onset or is too uncomfortable, fatigued ear infection, pneumonia, live on surfaces (toys, tissues, doorknobs) or ill to participate in activities sinus infection and most for several hours (center unable to accommodate sore throats (respiratory diseases child’s increased need for comfort caused by many different viruses and rest) and occasionally bacteria) Cold sore 2 days to 2 weeks Direct contact with infected lesions or oral While lesions are present When active lesions are no longer NO Avoid kissing and sharing drinks or utensils. (Herpes simplex virus) secretions (drooling, kissing, thumb sucking) present in children who do not have control of oral secretions (drooling); no exclusions for other children Conjunctivitis Variable, usually 24 to Highly contagious;
    [Show full text]
  • Mumps Virus Pathogenesis Clinical Features
    Mumps Mumps Mumps is an acute viral illness. Parotitis and orchitis were described by Hippocrates in the 5th century BCE. In 1934, Johnson and Goodpasture showed that mumps could be transmitted from infected patients to rhesus monkeys and demonstrated that mumps was caused by a filterable agent present in saliva. This agent was later shown to be a virus. Mumps was a frequent cause of outbreaks among military personnel in the prevaccine era, and was one of the most common causes of aseptic meningitis and sensorineural deafness in childhood. During World War I, only influenza and gonorrhea were more common causes of hospitalization among soldiers. Outbreaks of mumps have been reported among military personnel as recently as 1986. Mumps Virus Mumps virus is a paramyxovirus in the same group as parainfluenza and Newcastle disease virus. Parainfluenza and Newcastle disease viruses produce antibodies that cross- 11 react with mumps virus. The virus has a single-stranded RNA genome. The virus can be isolated or propagated in cultures of various human and monkey tissues and in embryonated eggs. It has been recovered from the saliva, cerebrospinal fluid, urine, blood, milk, and infected tissues of patients with mumps. Mumps virus is rapidly inactivated by formalin, ether, chloroform, heat, and ultraviolet light. Pathogenesis The virus is acquired by respiratory droplets. It replicates in the nasopharynx and regional lymph nodes. After 12–25 days a viremia occurs, which lasts from 3 to 5 days. During the viremia, the virus spreads to multiple tissues, including the meninges, and glands such as the salivary, pancreas, testes, and ovaries.
    [Show full text]
  • Measles, Mumps, and Rubella
    Measles, Mumps, and Rubella Developed by Vini Vijayan, MD, in collaboration with the ANGELS Team. Last reviewed by Vini Vijayan, MD, January 24, 2017. Because measles, mumps, and rubella can be prevented by a combination vaccine, all 3 of these illnesses are discussed in this Guideline. The following vaccines are available in the United States: Live measles, mumps, and rubella virus vaccine (MMR) Live measles, mumps, rubella, and varicella virus vaccine (MMRV) MEASLES (RUBEOLA) Key Points Measles, also called rubeola or red measles, is a highly contagious viral illness characterized by fever, malaise, rash, cough, coryza (runny nose), and conjunctivitis. Measles is a leading cause of morbidity and mortality in developing countries. Over the past decade measles has been making a resurgence in the United States. Vaccination with MMR or MMRV is highly effective in preventing the disease. Introduction The Virus The measles virus is a single-stranded, enveloped ribonucleic acid (RNA) virus of the genus Morbillivirus within the family Paramyxoviridae. 1 The virus enters the respiratory epithelium of the nasopharynx and regional lymph nodes resulting in viremia and dissemination to the skin, respiratory tract, and other organs. The peak incidence of measles in temperate areas is late winter and early spring. Transmission Measles is a highly contagious virus with an estimated 90% secondary infection rate in susceptible domestic contacts. Measles is spread by droplets from respiratory secretions and close personal contact or direct contact with infected nasal or throat secretions. Measles virus can be transmitted by an infected person from 4 days prior to the onset of the rash to 4 days after the rash erupts.
    [Show full text]
  • An Effective Strategy of Human Tumor Vaccine Modification by Coupling
    An effective strategy of human tumor vaccine modification by coupling bispecific costimulatory molecules Claudia Haas,1 Christel Herold-Mende,2 Roswitha Gerhards,3 and Volker Schirrmacher1 1German Cancer Research Center, Tumor Immunology Program, Heidelberg, Germany; 2Department of Neurosurgery, University-Clinic, Heidelberg, Germany; and 3Marien-Hospital, Herne, Germany. A new, generally applicable procedure is described for the introduction of defined costimulatory molecules into human cancer cells to increase their T-cell stimulatory capacity. The procedure involves infection with Newcastle disease virus to mediate the cell surface binding of costimulatory molecules (e.g., specially designed bispecific antibodies (bsAb)). The modification is independent of tumor cell proliferation and laborious recombinant gene technology and can be applied directly to freshly isolated and g-irradiated patient-derived tumor cells as an autologous cancer vaccine. Following the infection of tumor cells with a nonvirulent strain of Newcastle disease virus, the cells are washed and then further modified by coincubation with bsAbs, which attach with one arm to the viral hemagglutinin-neuraminidase (HN) molecule on the infected tumor cells. The second specificity of one bsAb (bs HN 3 CD28) is directed against CD28 to augment antitumor T-cell responses by selectively channeling positive costimulatory signals via the CD28 pathway. A second bsAb (bs HN 3 CD3) was produced to deliver T-cell receptor-mediated signals either alone (bsCD3 vaccine) or in combination with anti-CD28 (bsCD3 vaccine plus bsCD28 vaccine). In human T-cell stimulation studies in vitro, the bsCD28 vaccine caused an up-regulation of early (CD69) and late (CD25) T-cell activation markers on CD4 and CD8 T lymphocytes from either normal healthy donors or cancer patients (autologous system) and induced tumor cytostasis in nonmodified bystander tumor cells.
    [Show full text]
  • Viruses in Transplantation - Not Always Enemies
    Viruses in transplantation - not always enemies Virome and transplantation ECCMID 2018 - Madrid Prof. Laurent Kaiser Head Division of Infectious Diseases Laboratory of Virology Geneva Center for Emerging Viral Diseases University Hospital of Geneva ESCMID eLibrary © by author Conflict of interest None ESCMID eLibrary © by author The human virome: definition? Repertoire of viruses found on the surface of/inside any body fluid/tissue • Eukaryotic DNA and RNA viruses • Prokaryotic DNA and RNA viruses (phages) 25 • The “main” viral community (up to 10 bacteriophages in humans) Haynes M. 2011, Metagenomic of the human body • Endogenous viral elements integrated into host chromosomes (8% of the human genome) • NGS is shaping the definition Rascovan N et al. Annu Rev Microbiol 2016;70:125-41 Popgeorgiev N et al. Intervirology 2013;56:395-412 Norman JM et al. Cell 2015;160:447-60 ESCMID eLibraryFoxman EF et al. Nat Rev Microbiol 2011;9:254-64 © by author Viruses routinely known to cause diseases (non exhaustive) Upper resp./oropharyngeal HSV 1 Influenza CNS Mumps virus Rhinovirus JC virus RSV Eye Herpes viruses Parainfluenza HSV Measles Coronavirus Adenovirus LCM virus Cytomegalovirus Flaviviruses Rabies HHV6 Poliovirus Heart Lower respiratory HTLV-1 Coxsackie B virus Rhinoviruses Parainfluenza virus HIV Coronaviruses Respiratory syncytial virus Parainfluenza virus Adenovirus Respiratory syncytial virus Coronaviruses Gastro-intestinal Influenza virus type A and B Human Bocavirus 1 Adenovirus Hepatitis virus type A, B, C, D, E Those that cause
    [Show full text]
  • Infection Prevention News & Updates
    APRIL 2018 INFECTION PREVENTION NEWS & UPDATES FAST FACTS HEPATITIS A Hepatitis A outbreaks continue to occur as the global prevalence appears Severity to be rapidly increasing. Victoria Australia is seeing its outbreak grow with MULTI-COUNTRY OUTBREAK 58 confirmed cases, 7 probably cases, 16 cases under early investigation, and one death. Being homeless or an IV drug user is associated with a higher probability of becoming infected. The initial laboratory analysis suggests the strain is similar to a strain circulating in Europe, suggesting Transmission CONTACT there is a travel associated case linking the outbreaks. The outbreak in Kentucky in the US is continuing to grow with 150 cases, 124 of which are in the greater Louisville area. As with other outbreaks, the homeless and IV drug users are at a higher risk of getting disease. The Utah outbreak has 217 confirmed cases. Genetic sequencing of the virus has shown that the Arizona and California outbreaks reported previously are tied to these outbreaks as well. Location AUSTRALIA, USA Hepatitis A is an infection that causes an inflammation of the liver. There are a number of viruses that can cause Hepatitis including Hepatitis A, Hepatitis B, and Hepatitis C, with vaccinations available for Hepatitis A and Hepatitis B. Hepatitis A is passed to other people through contact with infected feces, or if an infected person touches objects after using the toilet and not washing their hands, including contaminating food or drink from contact with contaminated hands, so handwashing and surface disinfection are important interventions to prevent the spread of the virus. It can also be spread by sexual contact.
    [Show full text]
  • Perspectives on Vaccination Against Respiratory Syncytial Virus
    Perspectives on vaccination against respiratory syncytial virus What makes the development of RSV vaccines challenging? Oliver Wicht PhD, Projectleader MD-RSV antibodies RIVM, Centrum infektieziektenbestrijding http://www.strategischprogramma rivm.nl/gezondheid_afweer RSV is a pleomorphic paramyxovirus Jeffree et al. Virology, Volume 306, Issue 2, 2003, 254–267 ● Same family as measles virus, mumps virus, and metapneumovirus ● Vaccine is not available ● Pathogenesis varies from mild cold to bronchiolitis and pneumonia, rarely lethal ● reinfections frequently occur throughout life, 5-20% of population per annum 3 Perspectives on vaccination against RSV | 18-11-2015 RSV-mediated respiratory disease RSV infection by large droplets and contaminated surfaces virus shedding URT virus cleared 3- 5 days 1- 3 weeks Upper respiratory tract infection Rhinorrhea, cough, common cold 4 Perspectives on vaccination against RSV | 18-11-2015 RSV-mediated respiratory disease RSV infection by large droplets and Lower respiratory tract infection: contaminated surfaces Fever, malaise, headache, myalgia, sore throat, cough, dyspnea, rhinorrhea Otits, Sinositis, brochiolitis, pneumonia 1- 3 days virus shedding 4 - 8 months virus LRT URT virus cleared cleared 3- 5 days 1- 3 weeks possible longer term effects: airway hyperreactivity, wheezing, asthma 5 Perspectives on vaccination against RSV | 18-11-2015 RSV-mediated respiratory disease ● RSV stays in the lungs, usually not systemic – Mucosal pathogens are hard to study because conditions are hard to mimick in
    [Show full text]
  • Immunology 101
    Immunology 101 Justin Kline, M.D. Assistant Professor of Medicine Section of Hematology/Oncology Committee on Immunology University of Chicago Medicine Disclosures • I served as a consultant on Advisory Boards for Merck and Seattle Genetics. • I will discuss non-FDA-approved therapies for cancer 2 Outline • Innate and adaptive immune systems – brief intro • How immune responses against cancer are generated • Cancer antigens in the era of cancer exome sequencing • Dendritic cells • T cells • Cancer immune evasion • Cancer immunotherapies – brief intro 3 The immune system • Evolved to provide protection against invasive pathogens • Consists of a variety of cells and proteins whose purpose is to generate immune responses against micro-organisms • The immune system is “educated” to attack foreign invaders, but at the same time, leave healthy, self-tissues unharmed • The immune system can sometimes recognize and kill cancer cells • 2 main branches • Innate immune system – Initial responders • Adaptive immune system – Tailored attack 4 The immune system – a division of labor Innate immune system • Initial recognition of non-self (i.e. infection, cancer) • Comprised of cells (granulocytes, monocytes, dendritic cells and NK cells) and proteins (complement) • Recognizes non-self via receptors that “see” microbial structures (cell wall components, DNA, RNA) • Pattern recognition receptors (PRRs) • Necessary for priming adaptive immune responses 5 The immune system – a division of labor Adaptive immune system • Provides nearly unlimited diversity of receptors to protect the host from infection • B cells and T cells • Have unique receptors generated during development • B cells produce antibodies which help fight infection • T cells patrol for infected or cancerous cells • Recognize “foreign” or abnormal proteins on the cell surface • 100,000,000 unique T cells are present in all of us • Retains “memory” against infections and in some cases, cancer.
    [Show full text]
  • Current Status of Mumps Virus Infection: Epidemiology, Pathogenesis, and Vaccine
    International Journal of Environmental Research and Public Health Review Current Status of Mumps Virus Infection: Epidemiology, Pathogenesis, and Vaccine Shih-Bin Su 1, Hsiao-Liang Chang 2 and Kow-Tong Chen 3,4,* 1 Department of Occupational Medicine, Chi-Mei Medical Center, Tainan 710, Taiwan; [email protected] 2 Department of Surveillance, Centers for Disease Control, Taipei 100, Taiwan; [email protected] 3 Department of Occupational Medicine, Tainan Municipal Hospital (Managed by Show Chwan Medical Care Corporation), Tainan 701, Taiwan 4 Department of Public Health, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan * Correspondence: [email protected]; Tel.: +886-6-2609926; Fax: +886-6-2606351 Received: 17 January 2020; Accepted: 29 February 2020; Published: 5 March 2020 Abstract: Mumps is an important childhood infectious disease caused by mumps virus (MuV). We reviewed the epidemiology, pathogenesis, and vaccine development of mumps. Previous studies were identified using the key words “mumps” and “epidemiology”, “pathogenesis” or “vaccine” in MEDLINE, PubMed, Embase, Web of Science, and Google Scholar. We excluded the articles that were not published in the English language, manuscripts without abstracts, and opinion articles from the review. The number of cases caused by MuV decreased steeply after the introduction of the mumps vaccine worldwide. In recent years, a global resurgence of mumps cases in developed countries and cases of aseptic meningitis caused by some mumps vaccine strains have renewed the importance of MuV infection worldwide. The performance of mumps vaccination has become an important issue for controlling mumps infections. Vaccine development and routine vaccination are still effective measures to globally reduce the incidence of mumps infections.
    [Show full text]
  • Mumps Outbreak — Connecticut, in This Issue
    Volume 30, No. 3 April 2010 Mumps Outbreak — Connecticut, In this issue... January – April 2010 Mumps Outbreak—Connecticut, 9 During January 2010, the Connecticut Department January — April 2010 of Public Health (DPH) identified the first mumps Outbreaks of Norovirus 10 outbreak in the state in more than 25 years. This Gastroenteritis Associated with a report summarizes the outbreak, describes the Bakery, Connecticut, 2010 relationship between the outbreak in Connecticut Figure 1: Mumps cases associated with a and a larger mumps outbreak ongoing in the Connecticut residential school (n=13) Northeast region, and provides general mumps clinical characteristics, as well as transmission and 4 vaccination information. 3 On January 28, 2010 the DPH Immunization s e s Program was notified of several possible mumps a C f o cases in a Connecticut residential school providing 2 r e secondary and post-secondary education to 72 b m u male students from a tradition-observant religious N 1 community. Shortly thereafter, a site visit was conducted, case follow-up was initiated, and additional statewide case-finding methods were 0 implemented. Cases were classified using the 2008 Jan 6 Jan 15 Jan 24 Feb 2 Feb 11 national surveillance case definition (1). On Date of Illness Onset February 5, 2010, the DPH issued a mumps advisory to raise awareness among practitioners mumps outbreak in Connecticut is epidemiologically and enhance surveillance for potential mumps linked to a larger outbreak occurring in the cases; an update was provided on March 16. Northeast region; epidemiologic linkage consisted of travel to an out-of-state area where mumps As of April 13, 2010, a total of 12 confirmed cases cases were occurring.
    [Show full text]
  • A Dendritic Cell Cancer Vaccine
    MILESTONES MILESTONE 17 to mature. The pulsed dendritic cells are then reinfused into the patient over several cycles. A dendritic cell cancer vaccine Although sipuleucel-T has not been very widely adopted (and is no longer available in the European Union), it was recently announced that the combination of hormonal therapeutics with sipuleucel-T extended the survival of patients with metastatic castration-resistant prostate cancer. Other clinical trials combining sipuleucel-T with radiation, hormo- nal, targeted or other immunothera- pies are ongoing. So far sipuleucel-T remains the only vaccine-based immunotherapy approved for prostate cancer, and is also the only approved cell-based vaccine in the USA. Overall clinical responses to dendritic cell vaccines have been disappointing, but with increasing Credit: Science Photo Library / Alamy Stock Photo Science Photo Library Credit: knowledge, newer and more sophisti- cated strategies are being investigated In 1909 Paul Ehrlich postulated that T cells and induce protective T cell to improve the efficacy of dendritic the immune system may defend responses. If a cancer-specific antigen cell-based vaccines. Improved meth- the host against neoplastic cells and is presented, this can result in an Sipuleucel-T ods to generate more mature and hinder the development of cancers. anti-tumour response. As T cell became in ‘effective’ dendritic cells using ex vivo This concept has been widely recog- responses are indeed crucial for 2010 the first protocols, alternative combinations nized ever since, and eventually led eliciting an immune response against of antigens, optimized loading of to the development of novel cancer cancers, dendritic cells have for a approved dendritic cells and transfection of treatments in more recent years that long time been suggested as potential dendritic cell dendritic cells with RNA or DNA are revolutionized cancer care.
    [Show full text]
  • Mumps Virus: a Comprehensive Review
    Journal Identification = VIR Article Identification = 0745 Date: August 8, 2018 Time: 5:59 pm Review Virologie 2018, 22 (4) : E14-E28 Mumps virus: a comprehensive review Thomas Mourez1 Abstract. Once very common in children, mumps virus infection is now much Julia Dina2 rarer thanks to vaccination, recommended in the majority of countries in the world. This virus of the family Paramyxoviridae has a marked tropism for glan- 1 Normandie Univ, dular tissues which explains the great diversity of pathologies related to this UniRouen, EA2656, virus, including parotitis, orchitis or meningitis. Due to the lower circulation CHU de Rouen, of the virus, the proportion of infected adults increases. A surveillance system Laboratoire de virologie, for mumps virus infections at the national and international levels is organized, 1, rue de Germont, particularly at the molecular level. In France, it is provided by the national refer- 76031 Rouen, France ence center for Measles, Mumps and Rubella. Although it has led to a significant <[email protected]> reduction in the number of cases, the long-term effectiveness of mumps vacci- 2 Normandie Univ, nation is questionable. The nature of the vaccine strains and the lack of regular UniCaen, EA2656, stimulation of populations by circulating wild viruses may explain, in part, the CHU de Caen, decrease in immunity over time. Thus, the vaccination recommandations could Laboratoire de virologie, evolve in the future to reach eradication in a medium or long term. Centre national de référence rougeole, oreillons, rubéole, Key words : mumps virus, paramyxoviridae, parotitis, vaccination Avenue Georges-Clemenceau 14033 Caen, France Résumé. Autrefois très fréquente chez les enfants, l’infection par le virus des oreillons est aujourd’hui beaucoup plus rare grâce à la vaccination, recommandée dans la majorité des pays dans le monde.
    [Show full text]