Science Journals — AAAS

Total Page:16

File Type:pdf, Size:1020Kb

Science Journals — AAAS RESEARCH ◥ was to understand how the medium spiny RESEARCH ARTICLE SUMMARY neurons (MSNs), the principal cell types in the striatum, differentiate and diversify, and which NEURODEVELOPMENT genes act as master regulators of fate determi- nation. MSNs diversify into D1 and D2 types, so The coding and long noncoding single-cell atlas named for their expression of one of the two variants of the human dopamine receptor (D1 of the developing human fetal striatum and D2). We used single-cell RNA sequencing to infer the developmental landscape of MSNs Vittoria Dickinson Bocchi, Paola Conforti, Elena Vezzoli, Dario Besusso, Claudio Cappadona, Tiziana Lischetti, and to define and validate fate markers. Maura Galimberti, Valeria Ranzani, Raoul J. P. Bonnal, Marco De Simone, Grazisa Rossetti, Xiaoling He, Kenji Kamimoto, Ira Espuny-Camacho, Andrea Faedo, Federica Gervasoni, Romina Vuono, Samantha A. Morris, RESULTS: Bulk RNA sequencing enabled the Jian Chen, Dan Felsenfeld, Giulio Pavesi, Roger A. Barker, Massimiliano Pagani*, Elena Cattaneo* annotation of 1116 novel lincRNAs of different areas of the human developing telencephalon, and we found that these lincRNAs are less con- INTRODUCTION: The striatum modulates dis- levant fetal tissue and the use of only a limited served among species than those previously tinct characteristics of human social behavior panel of protein-coding genes in most gene identified in the adult brain. Bulk measure- andisanareaaffectedinmanyneurological identification studies. We created a cell-specific ments enabled us to pinpoint the distinctive diseases. We created a comprehensive single- molecular atlas of the lateral ganglionic emi- signature of the striatum relative to surround- cell atlas of this area during early human fetal nence (LGE), the striatal primordium. Our first ing areas, and we determined that huntingtin development, considering both protein-coding goal was to develop a catalog of de novo iden- (HTT) is a specific upstream regulator of this Downloaded from transcripts and long intergenic noncoding tified lincRNAs of this area using bulk RNA region. We then profiled 96,789 single cells of RNAs (lincRNAs). sequencing. This catalog should help to clarify the LGE, based on both coding RNAs and the the specific characteristics of human develop- newly identified lincRNAs. This enabled us to RATIONALE: Understanding of the molecular ment because lincRNAs exhibit accelerated uncover the transcriptional profiles of 15 dif- mechanisms that define human striatal devel- evolution, are highly cell-specific, and are re- ferent cell states that included lincRNAs that opment has been limited by the scarcity of re- quired for brain development. Our second goal were gained throughout evolution. We found http://science.sciencemag.org/ that a common progenitor generates both D1- and D2-MSNs and that this progenitor is distinct from the progenitor of interneurons. We also discovered a postmitotic precursor cell state for both D1- and D2-MSNs, which falls within a continuum of key fate determinants. Finally, we identified a panel of gene regula- tory networks that define D1- and D2-MSNs, Gene regulatory and we showed that in silico knockout of the networks Human-specific transcription factors governing these networks lincRNAs could cause the arrest of both MSN lineages, on July 25, 2021 blockage of a specific MSN class, or switching Driver genes between MSN fates. Medium spiny neurons CONCLUSION: Our findings reveal the differen- CX In silico gene tiation hierarchies that govern human striatal perturbation development. We anticipate that the set of LGE transcription factors and lincRNAs identified MGE in this study will be leveraged to recreate MSN differentiation in vitro and that these cells can Lineage reconstruction Progenitors then be used for cell replacement therapies in Huntington’s disease (HD). Furthermore, we expect that this atlas will guide investigations of the developmental components related to HD. Validation Finally, we foresee that our lincRNA catalog will contribute to understanding the additional layer of fine-tuning mechanisms present in the human striatum but not in other species.▪ Cell type discovery The list of author affiliations is available in the full article online. lincRNA *Corresponding author. Email: [email protected] (E.C.); Gene signatures identification [email protected] (M.P.) Cite this article as V. D. Bocchi et al., Science 372,eabf5759 The molecular blueprint of striatal development. Combined bulk and single-cell RNA sequencing of the (2021). DOI: 10.1126/science.abf5759 human fetal striatum reveals cell states together with their key coding and lincRNA fate determinants, and defines the developmental hierarchies underlying lineage commitment in medium spiny neurons. CX, READ THE FULL ARTICLE AT ILLUSTRATION: TIZIANA LISCHETTI neocortex; LGE, lateral ganglionic eminence; MGE, medial ganglionic eminence. https://doi.org/10.1126/science.abf5759 Bocchi et al., Science 372, 591 (2021) 7 May 2021 1of1 RESEARCH ◥ conceptional weeks (pcw), with at least two RESEARCH ARTICLE or three biological replicates for each devel- opmental stage (table S1). We then profiled NEURODEVELOPMENT by RNA-seq the transcriptome of each area (Fig. 1A) and set up a computational pipeline The coding and long noncoding single-cell atlas (fig. S1A) to create a corresponding catalog of lincRNAs (fig. S1, B to E). Because our bulk of the developing human fetal striatum RNA-seq protocol was unstranded, and be- cause genic lncRNAs are difficult to correctly Vittoria Dickinson Bocchi1,2, Paola Conforti1,2, Elena Vezzoli1,2†, Dario Besusso1,2, predict without strand information discriminat- Claudio Cappadona1,2‡, Tiziana Lischetti1,2, Maura Galimberti1,2, Valeria Ranzani2, ing them from overlapping genes, we decided to Raoul J. P. Bonnal2§, Marco De Simone2¶, Grazisa Rossetti2§, Xiaoling He3, Kenji Kamimoto4,5,6, include only a reliable set of intergenic lncRNAs Ira Espuny-Camacho1,2#, Andrea Faedo1,2**, Federica Gervasoni2,7§, Romina Vuono3††, (lincRNAs). To better understand the relation- Samantha A. Morris4,5,6, Jian Chen8, Dan Felsenfeld8, Giulio Pavesi1, Roger A. Barker3, ship between lincRNAs identified in other Massimiliano Pagani2,7§*, Elena Cattaneo1,2* tissues and our newly identified lincRNAs, we integrated two catalogs derived from dif- Deciphering how the human striatum develops is necessary for understanding the diseases that affect ferent human tissues and cell types (7, 8), plus this region. To decode the transcriptional modules that regulate this structure during development, we a lincRNA catalog of the developing human compiled a catalog of 1116 long intergenic noncoding RNAs (lincRNAs) identified de novo and then profiled CX (9), into this study. 96,789 single cells from the early human fetal striatum. We found that D1 and D2 medium spiny neurons We detected 1116 novel lincRNA loci (Fig. 1B (D1- and D2-MSNs) arise from a common progenitor and that lineage commitment is established during the and table S2), among which the highest num- Downloaded from postmitotic transition, across a pre-MSN phase that exhibits a continuous spectrum of fate determinants. ber was found in the developing LGE and the We then uncovered cell type–specific gene regulatory networks that we validated through in silico lowest in the CX (fig. S1F), probably because of perturbation. Finally, we identified human-specific lincRNAs that contribute to the phylogenetic divergence of the greater extent of data available from the this structure in humans. This work delineates the cellular hierarchies governing MSN lineage commitment. CX. We found that lincRNAs had an average of 2.27 exons; this was also the case for all lincRNA catalogs integrated into this study, http://science.sciencemag.org/ he striatum, a subcortical structure made During development, MSNs are derived from with the exception of the FANTOM catalog, up of the caudate nucleus and putamen, progenitors in the lateral ganglionic eminence which used CAGE-seq instead of classic RNA- is important in motor control and learn- (LGE) of the telencephalon (4). Most studies of seq and showed fewer exons (fig. S1G). For each T ing, procedural behavior, cognition, and this area have concentrated on rodent models sampled pcw, we then defined a signature of emotional and motivational responses. and the coding signature of limited cell types. protein-coding genes and lincRNAs that were Many of these functions are associated with Long noncoding RNAs (lncRNAs) have a higher uniquely expressed in either the LGE, the CX, or uniquely human abilities including the devel- tissue specificity than mRNAs (5) and a diver- the MGE (Fig. 1C, fig. S2A, and table S3). Gene opment of speech and language (1). In adults, sity that correlates more closely with brain com- Ontology (GO) analysis in the LGE between 7 the striatum is primarily composed of medium plexity than protein-coding genes (6). LncRNAs and 11 pcw revealed an enrichment for terms spiny neurons (MSNs) carrying either D1-type may, therefore, better discriminate cell states related to neural differentiation and to forebrain or D2-type dopamine receptors interspersed during striatal development in humans. and subpallium development (fig. S2B and table on July 25, 2021 with aspiny interneurons (2). This organiza- In this study, we first conducted bulk RNA- S4), whereas at 20 pcw this changed to regula- tion does not appear to vary among species (3). seq to identify novel long intergenic noncoding tion of synaptic
Recommended publications
  • Tlx3 Exerts Direct Control in Specifying Excitatory Over Inhibitory Neurons in the Dorsal Spinal Cord
    fcell-09-642697 April 24, 2021 Time: 18:18 # 1 ORIGINAL RESEARCH published: 29 April 2021 doi: 10.3389/fcell.2021.642697 Tlx3 Exerts Direct Control in Specifying Excitatory Over Inhibitory Neurons in the Dorsal Spinal Cord Filipe A. Monteiro1,2,3*, Rafael M. Miranda1,2,3, Marta C. Samina1,2,3, Ana F. Dias2,3,4, Alexandre A. S. F. Raposo5,6, Patrícia Oliveira3,7, Carlos Reguenga1,2,3, Diogo S. Castro3,5,8† and Deolinda Lima1,2,3† 1 Unidade de Biologia Experimental, Departamento de Biomedicina, Faculdade de Medicina da Universidade do Porto, Porto, Portugal, 2 Pain Research Group, Instituto de Biologia Molecular e Celular, Porto, Portugal, 3 Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal, 4 Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal, 5 Molecular Neurobiology Group, Instituto Gulbenkian de Ciência, Oeiras, Portugal, 6 Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal, 7 Diagnostics, Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal, 8 Stem Cells & Neurogenesis Group, Instituto de Biologia Molecular e Celular, Porto, Portugal The spinal cord dorsal horn is a major station for integration and relay of somatosensory information and comprises both excitatory and inhibitory neuronal populations. The homeobox gene Tlx3 acts as a selector gene to control the development of late- Edited by: Jiri Novotny, born excitatory (dILB) neurons by specifying glutamatergic transmitter fate in dorsal Charles University, Czechia spinal cord. However, since Tlx3 direct transcriptional targets remain largely unknown, Reviewed by: it remains to be uncovered how Tlx3 functions to promote excitatory cell fate.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Supplemental Materials ZNF281 Enhances Cardiac Reprogramming
    Supplemental Materials ZNF281 enhances cardiac reprogramming by modulating cardiac and inflammatory gene expression Huanyu Zhou, Maria Gabriela Morales, Hisayuki Hashimoto, Matthew E. Dickson, Kunhua Song, Wenduo Ye, Min S. Kim, Hanspeter Niederstrasser, Zhaoning Wang, Beibei Chen, Bruce A. Posner, Rhonda Bassel-Duby and Eric N. Olson Supplemental Table 1; related to Figure 1. Supplemental Table 2; related to Figure 1. Supplemental Table 3; related to the “quantitative mRNA measurement” in Materials and Methods section. Supplemental Table 4; related to the “ChIP-seq, gene ontology and pathway analysis” and “RNA-seq” and gene ontology analysis” in Materials and Methods section. Supplemental Figure S1; related to Figure 1. Supplemental Figure S2; related to Figure 2. Supplemental Figure S3; related to Figure 3. Supplemental Figure S4; related to Figure 4. Supplemental Figure S5; related to Figure 6. Supplemental Table S1. Genes included in human retroviral ORF cDNA library. Gene Gene Gene Gene Gene Gene Gene Gene Symbol Symbol Symbol Symbol Symbol Symbol Symbol Symbol AATF BMP8A CEBPE CTNNB1 ESR2 GDF3 HOXA5 IL17D ADIPOQ BRPF1 CEBPG CUX1 ESRRA GDF6 HOXA6 IL17F ADNP BRPF3 CERS1 CX3CL1 ETS1 GIN1 HOXA7 IL18 AEBP1 BUD31 CERS2 CXCL10 ETS2 GLIS3 HOXB1 IL19 AFF4 C17ORF77 CERS4 CXCL11 ETV3 GMEB1 HOXB13 IL1A AHR C1QTNF4 CFL2 CXCL12 ETV7 GPBP1 HOXB5 IL1B AIMP1 C21ORF66 CHIA CXCL13 FAM3B GPER HOXB6 IL1F3 ALS2CR8 CBFA2T2 CIR1 CXCL14 FAM3D GPI HOXB7 IL1F5 ALX1 CBFA2T3 CITED1 CXCL16 FASLG GREM1 HOXB9 IL1F6 ARGFX CBFB CITED2 CXCL3 FBLN1 GREM2 HOXC4 IL1F7
    [Show full text]
  • Regulation of Bcl11b by Post-Translational Modifications
    AN ABSTRACT OF THE THESIS OF Xiao Liu for the degree of Master of Science in Pharmacy presented on June 3, 2011. Title: REGULATION OF BCL11B BY POST-TRANSLATIONAL MODIFICATIONS. Abstract approved Mark E. Leid Bcl11b (B-cell lymphoma/leukemia 11b), also known as Ctip2 (Chicken ovalbumin upstream promoter transcription factor (COUP-TF)-interacting protein 2), is a C2H2 zinc finger transcriptional regulatory protein, which is an essential protein for post-natal life in the mouse and plays crucial roles in the development, and presumably function, of several organ systems, including the central nervous, immune, craniofacial formation and cutaneous/skin systems. Moreover, inactivation of Bcl11b has been implicated in the etiology of lymphoid malignancies, suggesting that Bcl11b may function as a tumor suppressor. Bcl11b was originally identified as a protein that interacted directly with the orphan nuclear receptor COUP-TF2. Later studies revealed that this C2H2 zinc finger protein can bind DNA directly in a COUP-independent manner, and it has been studied mostly as a transcription repressor. In T cells, gene repression mediated by Bcl11b involves the recruitment of class I HDACs, HDAC1 and HDAC2, within the context of the Nucleosome Remodeling and Deacetylation (NuRD) complex. The hypothesis that Bcl11b functions as a transcriptional repressor has been supported by transcriptome analyses in mouse T cells and human neuroblastoma cells. However, approximately one- third of the genes that were dysregulated in the double positive (DP) cells of Bcl11b-null mice were down-regulated relative to control T cells, suggesting that Bcl11b may act as a transcriptional activator in some promoter and/or cell contexts.
    [Show full text]
  • Structural and Spatial Chromatin Features at Developmental Gene Loci in Human Pluripotent Stem Cells
    ARTICLE DOI: 10.1038/s41467-017-01679-x OPEN Structural and spatial chromatin features at developmental gene loci in human pluripotent stem cells Hiroki Ikeda1, Masamitsu Sone1,2, Shinya Yamanaka1,3 & Takuya Yamamoto 1,2,4 Higher-order chromatin organization controls transcriptional programs that govern cell properties and functions. In order for pluripotent stem cells (PSCs) to appropriately respond 1234567890 to differentiation signals, developmental gene loci should be structurally and spatially regu- lated to be readily available for immediate transcription, even though these genes are hardly expressed in PSCs. Here, we show that both chromatin interaction profiles and nuclear positions at developmental gene loci differ between human somatic cells and hPSCs, and that changes in the chromatin interactions are closely related to the nuclear repositioning. Moreover, we also demonstrate that developmental gene loci, which have bivalent histone modifications, tend to colocalize in PSCs. Furthermore, this colocalization requires PRC1, PRC2, and TrxG complexes, which are essential regulatory factors for the maintenance of transcriptionally poised developmental genes. Our results indicate that higher-order chro- matin regulation may be an integral part of the differentiation capacity that defines pluripotency. 1 Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan. 2 Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan. 3 Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA. 4 AMED-CREST, AMED 1-7-1 Otemach, Chiyodaku, Tokyo 100-0004, Japan. Correspondence and requests for materials should be addressed to T.Y.
    [Show full text]
  • G Protein-Coupled Receptors
    S.P.H. Alexander et al. The Concise Guide to PHARMACOLOGY 2015/16: G protein-coupled receptors. British Journal of Pharmacology (2015) 172, 5744–5869 THE CONCISE GUIDE TO PHARMACOLOGY 2015/16: G protein-coupled receptors Stephen PH Alexander1, Anthony P Davenport2, Eamonn Kelly3, Neil Marrion3, John A Peters4, Helen E Benson5, Elena Faccenda5, Adam J Pawson5, Joanna L Sharman5, Christopher Southan5, Jamie A Davies5 and CGTP Collaborators 1School of Biomedical Sciences, University of Nottingham Medical School, Nottingham, NG7 2UH, UK, 2Clinical Pharmacology Unit, University of Cambridge, Cambridge, CB2 0QQ, UK, 3School of Physiology and Pharmacology, University of Bristol, Bristol, BS8 1TD, UK, 4Neuroscience Division, Medical Education Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK, 5Centre for Integrative Physiology, University of Edinburgh, Edinburgh, EH8 9XD, UK Abstract The Concise Guide to PHARMACOLOGY 2015/16 provides concise overviews of the key properties of over 1750 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. The full contents can be found at http://onlinelibrary.wiley.com/doi/ 10.1111/bph.13348/full. G protein-coupled receptors are one of the eight major pharmacological targets into which the Guide is divided, with the others being: ligand-gated ion channels, voltage-gated ion channels, other ion channels, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading.
    [Show full text]
  • Multi-Functionality of Proteins Involved in GPCR and G Protein Signaling: Making Sense of Structure–Function Continuum with In
    Cellular and Molecular Life Sciences (2019) 76:4461–4492 https://doi.org/10.1007/s00018-019-03276-1 Cellular andMolecular Life Sciences REVIEW Multi‑functionality of proteins involved in GPCR and G protein signaling: making sense of structure–function continuum with intrinsic disorder‑based proteoforms Alexander V. Fonin1 · April L. Darling2 · Irina M. Kuznetsova1 · Konstantin K. Turoverov1,3 · Vladimir N. Uversky2,4 Received: 5 August 2019 / Revised: 5 August 2019 / Accepted: 12 August 2019 / Published online: 19 August 2019 © Springer Nature Switzerland AG 2019 Abstract GPCR–G protein signaling system recognizes a multitude of extracellular ligands and triggers a variety of intracellular signal- ing cascades in response. In humans, this system includes more than 800 various GPCRs and a large set of heterotrimeric G proteins. Complexity of this system goes far beyond a multitude of pair-wise ligand–GPCR and GPCR–G protein interactions. In fact, one GPCR can recognize more than one extracellular signal and interact with more than one G protein. Furthermore, one ligand can activate more than one GPCR, and multiple GPCRs can couple to the same G protein. This defnes an intricate multifunctionality of this important signaling system. Here, we show that the multifunctionality of GPCR–G protein system represents an illustrative example of the protein structure–function continuum, where structures of the involved proteins represent a complex mosaic of diferently folded regions (foldons, non-foldons, unfoldons, semi-foldons, and inducible foldons). The functionality of resulting highly dynamic conformational ensembles is fne-tuned by various post-translational modifcations and alternative splicing, and such ensembles can undergo dramatic changes at interaction with their specifc partners.
    [Show full text]
  • Genequery™ Human Stem Cell Transcription Factors Qpcr Array
    GeneQuery™ Human Stem Cell Transcription Factors qPCR Array Kit (GQH-SCT) Catalog #GK125 Product Description ScienCell's GeneQuery™ Human Stem Cell Transcription Factors qPCR Array Kit (GQH-SCT) surveys a panel of 88 transcription factors related to stem cell maintenance and differentiation. Transcription factors are proteins that can regulate target gene transcription level by binding to specific regions of the genome known as enhancers or silencers. Brief examples of how genes may be grouped according to their functions are shown below: • Pluripotency transcription factors: NANOG, POU5F1, SOX2 • Embryonic development: EOMES, FOXC2/D3/O1, HOXA9/A10, KLF2/5, LIN28B, MAX, PITX2, SMAD1, TBX5, ZIC1 • Germ layer formation and differentiation: FOXA2, GATA6, HAND1, ISL1, KLF4, SMAD2, SOX9 • Organ morphogenesis: EZH2, HOXA11/B3/B5/C9, MSX2, MYC, PAX5/8, VDR • Angiogenesis: CDX2, JUN, NR2F2, RUNX1, WT1 • Hematopoiesis and osteogenesis: EGR3, ESR1, GATA1/2/3, GLI2, NFATC1, PAX9, RB1, SOX6, SP1, STAT1 • Neural stem cell maintenance and differentiation: ATF2, CREB1, FOSB, FOXO3, HES1, HOXD10, MCM2/7, MEF2C, NEUROD1/G1, OLIG1/2, PAX3/6, POU4F1, PPARG, SMAD3/4, SNAI1, STAT3 Note : all gene names follow their official symbols by the Human Genome Organization Gene Nomenclature Committee (HGNC). GeneQuery™ qPCR array kits are qPCR ready in a 96-well plate format, with each well containing one primer set that can specifically recognize and efficiently amplify a target gene's cDNA. The carefully designed primers ensure that: (i) the optimal annealing temperature in qPCR analysis is 65°C (with 2 mM Mg 2+ , and no DMSO); (ii) the primer set recognizes all known transcript variants of target gene, unless otherwise indicated; and (iii) only one gene is amplified.
    [Show full text]
  • Wnt/Rspondin/Β-Catenin Signals Control Axonal Sorting and Lineage Progression in Schwann Cell Development
    Wnt/Rspondin/β-catenin signals control axonal sorting and lineage progression in Schwann cell development Tamara Grigoryana, Simone Steina, Jingjing Qia, Hagen Wendeb, Alistair N. Garrattc, Klaus-Armin Naved, Carmen Birchmeierb, and Walter Birchmeiera,1 aCancer Research Program and bNeuroscience Program, Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany; cCenter for Anatomy, Charité University Hospital, 10117 Berlin, Germany; and dDepartment of Neurogenetics, Max Planck Institute for Experimental Medicine, 37075 Göttingen, Germany Edited by Thomas C. Südhof, Stanford University School of Medicine, Stanford, CA, and approved September 26, 2013 (received for review June 2, 2013) During late Schwann cell development, immature Schwann cells organs (24–27). A role of Rspondins and Lgr4–6 receptors in SC segregate large axons from bundles, a process called “axonal ra- development has not been studied. dial sorting.” Here we demonstrate that canonical Wnt signals play Here we define a temporal window of Wnt/β-catenin activity a critical role in radial sorting and assign a role to Wnt and Rspon- and its role in SC lineage progression using mouse genetics and din ligands in this process. Mice carrying β-catenin loss-of-function cell culture techniques. Conditional loss-of-function (LOF) and mutations show a delay in axonal sorting; conversely, gain-of-function gain-of-function (GOF) mutations of β-catenin in mouse SCs mutations result in accelerated sorting. Sorting deficits are accom- produce converse phenotypes: a delay and an acceleration of panied by abnormal process extension, differentiation, and aber- axonal sorting, respectively. Using cultured primary SCs and rant cell cycle exit of the Schwann cells.
    [Show full text]
  • The Role of Nkx2.5 in Keratinocyte Differentiation
    Ann Dermatol Vol. 21, No. 4, 2009 ORIGINAL ARTICLE The Role of Nkx2.5 in Keratinocyte Differentiation Chul Hwang, M.D., Sunhyae Jang, M.S., Dae Kyoung Choi, M.S., Sujong Kim, Ph.D.1, Joong Hwa Lee, M.D., Ph.D.2, Young Lee, M.D., Ph.D., Chang Deok Kim, Ph.D., Jeung Hoon Lee, M.D., Ph.D. Department of Dermatology, College of Medicine, Chungnam National University, Daejeon, 1Skin Research Institute, Amorepacific R&D Center, Yongin, 2Lee Joong Hwa Urologic Clinic, Daejeon, Korea Background: Nkx2.5 is a homeodomain-containing nuclear -Keywords- transcription protein that has been associated with acute Keratinocyte differentiation, Nkx2.5, Transcription factor T-lymphoblastic leukemia. In addition, Nkx2.5 has an essential role in cardiomyogenesis. However, the expression of Nkx2.5 in the skin has not been investigated. Objective: INTRODUCTION In an attempt to screen the differentially regulated genes involved in keratinocyte differentiation, using a cDNA Keratinocytes provide the rigid stratified structure of the microarray, we identified Nkx2.5 as one of the transcription skin through a highly complicated and tightly regulated factors controlling the expression of proteins associated with process of differentiation1. Many differentiation-related keratinocyte differentiation. Methods: To investigate the genes, including those encoding transglutaminase 1 and 3 expression of Nkx2.5 during keratinocyte differentiation, we (TGase 1 and 3), involucrin, cornifin, loricrin, filaggrin, used a calcium-induced keratinocyte differentiation model. and small proline-rich proteins (SPRs), have been shown Results: RT-PCR and Western blot analysis revealed that the to be expressed in a temporally regulated manner during expression of Nkx2.5, in cultured human epidermal kerati- keratinocyte differentiation2-6.
    [Show full text]
  • Wnt/Rspondin/Β-Catenin Signals Control Axonal Sorting and Lineage Progression in Schwann Cell Development
    Wnt/Rspondin/β-catenin signals control axonal sorting and lineage progression in Schwann cell development Tamara Grigoryana, Simone Steina, Jingjing Qia, Hagen Wendeb, Alistair N. Garrattc, Klaus-Armin Naved, Carmen Birchmeierb, and Walter Birchmeiera,1 aCancer Research Program and bNeuroscience Program, Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany; cCenter for Anatomy, Charité University Hospital, 10117 Berlin, Germany; and dDepartment of Neurogenetics, Max Planck Institute for Experimental Medicine, 37075 Göttingen, Germany Edited by Thomas C. Südhof, Stanford University School of Medicine, Stanford, CA, and approved September 26, 2013 (received for review June 2, 2013) During late Schwann cell development, immature Schwann cells organs (24–27). A role of Rspondins and Lgr4–6 receptors in SC segregate large axons from bundles, a process called “axonal ra- development has not been studied. dial sorting.” Here we demonstrate that canonical Wnt signals play Here we define a temporal window of Wnt/β-catenin activity a critical role in radial sorting and assign a role to Wnt and Rspon- and its role in SC lineage progression using mouse genetics and din ligands in this process. Mice carrying β-catenin loss-of-function cell culture techniques. Conditional loss-of-function (LOF) and mutations show a delay in axonal sorting; conversely, gain-of-function gain-of-function (GOF) mutations of β-catenin in mouse SCs mutations result in accelerated sorting. Sorting deficits are accom- produce converse phenotypes: a delay and an acceleration of panied by abnormal process extension, differentiation, and aber- axonal sorting, respectively. Using cultured primary SCs and rant cell cycle exit of the Schwann cells.
    [Show full text]
  • The Cytogenetics of Hematologic Neoplasms 1 5
    The Cytogenetics of Hematologic Neoplasms 1 5 Aurelia Meloni-Ehrig that errors during cell division were the basis for neoplastic Introduction growth was most likely the determining factor that inspired early researchers to take a better look at the genetics of the The knowledge that cancer is a malignant form of uncon- cell itself. Thus, the need to have cell preparations good trolled growth has existed for over a century. Several biologi- enough to be able to understand the mechanism of cell cal, chemical, and physical agents have been implicated in division became of critical importance. cancer causation. However, the mechanisms responsible for About 50 years after Boveri’s chromosome theory, the this uninhibited proliferation, following the initial insult(s), fi rst manuscripts on the chromosome makeup in normal are still object of intense investigation. human cells and in genetic disorders started to appear, fol- The fi rst documented studies of cancer were performed lowed by those describing chromosome changes in neoplas- over a century ago on domestic animals. At that time, the tic cells. A milestone of this investigation occurred in 1960 lack of both theoretical and technological knowledge with the publication of the fi rst article by Nowell and impaired the formulations of conclusions about cancer, other Hungerford on the association of chronic myelogenous leu- than the visible presence of new growth, thus the term neo- kemia with a small size chromosome, known today as the plasm (from the Greek neo = new and plasma = growth). In Philadelphia (Ph) chromosome, to honor the city where it the early 1900s, the fundamental role of chromosomes in was discovered (see also Chap.
    [Show full text]