Hexophthalma

Total Page:16

File Type:pdf, Size:1020Kb

Hexophthalma Hexophthalma Hexophthalma is a genus of spiders in the family Sicariidae.[1] Although the genus was originally erected in 1878 (then with the name Hexomma), it was merged into the genus Sicarius in the 1890s, and remained unused until revived in 2017, when it was discovered that the African species then placed in Sicarius were distinct. External links. Snyman, C. & Larsen, N. (2005), "Spider bite and its treatment in southern Africa", Occupational Health Southern Africa, 11 (2): 22â“26, retrieved 2018-07-23. Euxanthopyge hexophthalma photos. There are no photos of this species on the website yet. You can offer your photo by logging into your account. News. 27.09.2017: Link autocorrection for users comments. 19.09.2017: New photos are needed on a first-priority basis for the following Insecta orders and families. 16.09.2017: If the info about the species is available only in a foreign language. In synonymy: Hexophthalma testacea (Purcell, 1908) = Hexophthalma hahni (Karsch, 1878) (Lotz, 2018: 11). Hexophthalma albospinosa (Purcell, 1908) | | Namibia, South Africa [urn:lsid:nmbe.ch:spidersp:002756]. Sicarius albospinosus Purcell, 1908: 224 (Df). Hexophthalma albospinosa Magalhães, Brescovit & Santos, 2017: 851, f. 20A-B, 21A-B, 62A-C (mf, T from Sicarius). Hexophthalma albospinosa Lotz, 2018: 7, f. 6-8, 17 (mf). Hexophthalma binfordae Lotz, 2018 | | Namibia [urn:lsid:nmbe.ch:spidersp:050246]. Download 16 Hexophthalma Stock Photos for FREE or amazingly low rates! New users enjoy 60% OFF. 85,955,822 stock photos online. Home. Hexophthalma Stock Images, Vector Illustrations And Stock FootageHexophthalma Stock Images, Vector Illustrations And Stock Footage. Hexophthalma testacea (Purcell, 1908). Hexophthalma hahni (synonym Sicarius hahni), known along with other members of the genus as the six-eyed sand spider, is a member of the family Sicariidae, found in deserts and other sandy places in southern Africa. All species of Hexophthalma produce venom that can have necrotic (dermonecrotic) effects, capable of causing serious or even life-threatening wounds, particularly if the wound becomes infected or the venom spreads in the body. Hexophthalma is a genus of spiders in the family Sicariidae. Although the genus was originally erected in 1878 (then with the name Hexomma), it was merged into the genus Sicarius in the 1890s, and remained unused until revived in 2017, when it was discovered that the African species then placed in Sicarius were distinct. The English name six-eyed sand spiders is used for members of the genus, particularly Hexophthalma hahni. Species in the genus have necrotic (dermonecrotic) venom, and can potentially.
Recommended publications
  • Comparative Analyses of Venoms from American and African Sicarius Spiders That Differ in Sphingomyelinase D Activity
    This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/copyright Author's personal copy Toxicon 55 (2010) 1274–1282 Contents lists available at ScienceDirect Toxicon journal homepage: www.elsevier.com/locate/toxicon Comparative analyses of venoms from American and African Sicarius spiders that differ in sphingomyelinase D activity Pamela A. Zobel-Thropp*, Melissa R. Bodner 1, Greta J. Binford Department of Biology, Lewis and Clark College, 0615 SW Palatine Hill Road, Portland, OR 97219, USA article info abstract Article history: Spider venoms are cocktails of toxic proteins and peptides, whose composition varies at Received 27 August 2009 many levels. Understanding patterns of variation in chemistry and bioactivity is funda- Received in revised form 14 January 2010 mental for understanding factors influencing variation. The venom toxin sphingomyeli- Accepted 27 January 2010 nase D (SMase D) in sicariid spider venom (Loxosceles and Sicarius) causes dermonecrotic Available online 8 February 2010 lesions in mammals. Multiple forms of venom-expressed genes with homology to SMase D are expressed in venoms of both genera.
    [Show full text]
  • The Phylogenetic Distribution of Sphingomyelinase D Activity in Venoms of Haplogyne Spiders
    Comparative Biochemistry and Physiology Part B 135 (2003) 25–33 The phylogenetic distribution of sphingomyelinase D activity in venoms of Haplogyne spiders Greta J. Binford*, Michael A. Wells Department of Biochemistry and Molecular Biophysics, University of Arizona, Tucson, AZ 85721, USA Received 6 October 2002; received in revised form 8 February 2003; accepted 10 February 2003 Abstract The venoms of Loxosceles spiders cause severe dermonecrotic lesions in human tissues. The venom component sphingomyelinase D (SMD) is a contributor to lesion formation and is unknown elsewhere in the animal kingdom. This study reports comparative analyses of SMD activity and venom composition of select Loxosceles species and representatives of closely related Haplogyne genera. The goal was to identify the phylogenetic group of spiders with SMD and infer the timing of evolutionary origin of this toxin. We also preliminarily characterized variation in molecular masses of venom components in the size range of SMD. SMD activity was detected in all (10) Loxosceles species sampled and two species representing their sister taxon, Sicarius, but not in any other venoms or tissues surveyed. Mass spectrometry analyses indicated that all Loxosceles and Sicarius species surveyed had multiple (at least four to six) molecules in the size range corresponding to known SMD proteins (31–35 kDa), whereas other Haplogynes analyzed had no molecules in this mass range in their venom. This suggests SMD originated in the ancestors of the Loxoscelesy Sicarius lineage. These groups of proteins varied in molecular mass across species with North American Loxosceles having 31–32 kDa, African Loxosceles having 32–33.5 kDa and Sicarius having 32–33 kDa molecules.
    [Show full text]
  • Sphingomyelinase D Activity in Sicarius Tropicus Venom:Toxic
    toxins Article Sphingomyelinase D Activity in Sicarius tropicus Venom: Toxic Potential and Clues to the Evolution of SMases D in the Sicariidae Family Priscila Hess Lopes 1, Caroline Sayuri Fukushima 2,3 , Rosana Shoji 1, Rogério Bertani 2 and Denise V. Tambourgi 1,* 1 Immunochemistry Laboratory, Butantan Institute, São Paulo 05503-900, Brazil; [email protected] (P.H.L.); [email protected] (R.S.) 2 Special Laboratory of Ecology and Evolution, Butantan Institute, São Paulo 05503-900, Brazil; [email protected] (C.S.F.); [email protected] (R.B.) 3 Finnish Museum of Natural History, University of Helsinki, 00014 Helsinki, Finland * Correspondence: [email protected] Abstract: The spider family Sicariidae includes three genera, Hexophthalma, Sicarius and Loxosceles. The three genera share a common characteristic in their venoms: the presence of Sphingomyelinases D (SMase D). SMases D are considered the toxins that cause the main pathological effects of the Loxosceles venom, that is, those responsible for the development of loxoscelism. Some studies have shown that Sicarius spiders have less or undetectable SMase D activity in their venoms, when compared to Hexophthalma. In contrast, our group has shown that Sicarius ornatus, a Brazilian species, has active SMase D and toxic potential to envenomation. However, few species of Sicarius have been characterized for their toxic potential. In order to contribute to a better understanding about the toxicity of Sicarius venoms, the aim of this study was to characterize the toxic properties of male and female venoms from Sicarius tropicus and compare them with that from Loxosceles laeta, one Citation: Lopes, P.H.; Fukushima, of the most toxic Loxosceles venoms.
    [Show full text]
  • Selection for Imperfection: a Review of Asymmetric Genitalia 2 in Araneomorph Spiders (Araneae: Araneomorphae)
    bioRxiv preprint doi: https://doi.org/10.1101/704692; this version posted July 16, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Selection for imperfection: A review of asymmetric genitalia 2 in araneomorph spiders (Araneae: Araneomorphae). 3 4 5 6 F. ANDRES RIVERA-QUIROZ*1, 3, MENNO SCHILTHUIZEN2, 3, BOOPA 7 PETCHARAD4 and JEREMY A. MILLER1 8 1 Department Biodiversity Discovery group, Naturalis Biodiversity Center, 9 Darwinweg 2, 2333CR Leiden, The Netherlands 10 2 Endless Forms Group, Naturalis Biodiversity Center, Darwinweg 2, 2333CR Leiden, 11 The Netherlands 12 3 Institute for Biology Leiden (IBL), Leiden University, Sylviusweg 72, 2333BE 13 Leiden, The Netherlands. 14 4 Faculty of Science and Technology, Thammasat University, Rangsit, Pathum Thani, 15 12121 Thailand. 16 17 18 19 Running Title: Asymmetric genitalia in spiders 20 21 *Corresponding author 22 E-mail: [email protected] (AR) 23 bioRxiv preprint doi: https://doi.org/10.1101/704692; this version posted July 16, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 24 Abstract 25 26 Bilateral asymmetry in the genitalia is a rare but widely dispersed phenomenon in the 27 animal tree of life. In arthropods, occurrences vary greatly from one group to another 28 and there seems to be no common explanation for all the independent origins.
    [Show full text]
  • Loxosceles Laeta (Nicolet) (Arachnida: Araneae) in Southern Patagonia
    Revista de la Sociedad Entomológica Argentina ISSN: 0373-5680 ISSN: 1851-7471 [email protected] Sociedad Entomológica Argentina Argentina The recent expansion of Chilean recluse Loxosceles laeta (Nicolet) (Arachnida: Araneae) in Southern Patagonia Faúndez, Eduardo I.; Alvarez-Muñoz, Claudia X.; Carvajal, Mariom A.; Vargas, Catalina J. The recent expansion of Chilean recluse Loxosceles laeta (Nicolet) (Arachnida: Araneae) in Southern Patagonia Revista de la Sociedad Entomológica Argentina, vol. 79, no. 2, 2020 Sociedad Entomológica Argentina, Argentina Available in: https://www.redalyc.org/articulo.oa?id=322062959008 PDF generated from XML JATS4R by Redalyc Project academic non-profit, developed under the open access initiative Notas e recent expansion of Chilean recluse Loxosceles laeta (Nicolet) (Arachnida: Araneae) in Southern Patagonia La reciente expansión de Loxosceles laeta (Nicolet) (Arachnida: Araneae) en la Patagonia Austral Eduardo I. Faúndez Laboratorio de entomología, Instituto de la Patagonia, Universidad de Magallanes, Chile Claudia X. Alvarez-Muñoz Unidad de zoonosis, Secretaria Regional Ministerial de Salud de Aysén, Chile Mariom A. Carvajal [email protected] Laboratorio de entomología, Instituto de la Patagonia, Universidad de Magallanes, Chile Catalina J. Vargas Revista de la Sociedad Entomológica Argentina, vol. 79, no. 2, 2020 Laboratorio de entomología, Instituto de la Patagonia, Universidad de Sociedad Entomológica Argentina, Magallanes, Chile Argentina Received: 06 February 2020 Accepted: 03 May 2020 Published: 29 June 2020 Abstract: e recent expansion of the Chilean recluse Loxosceles laeta (Nicolet, 1849) Redalyc: https://www.redalyc.org/ in southern Patagonia is commented and discussed in the light of current global change. articulo.oa?id=322062959008 New records are provided from both Región de Aysén and Región de Magallanes.
    [Show full text]
  • Eggcase Construction and Further Observations on the Sexual Behavior of the Spider Sicarius (Araneae: Sicariidae)'* by Herbert W
    EGGCASE CONSTRUCTION AND FURTHER OBSERVATIONS ON THE SEXUAL BEHAVIOR OF THE SPIDER SICARIUS (ARANEAE: SICARIIDAE)'* BY HERBERT W. LEvi AND LORNA R. LEvi Museum of Comparative Zoology, Harvard University The eggcase of Sicarius is unique among spiders. Its masonry wall resembles in texture the nests of mud dauber wasps.. And, unlike other spider eggcases, it is buried in sand, attached to stones. We do not know of any other masonry construction by spiders, or of other buried eggsacs. Some spiders incorporate sand grains and detritus into their webs or their trapdoors. The European theridiid A chaearanea saxatile (C. L. Koch) makes a thimble-shaped retreat for herself and her silken eggsac (P6tzsch, 963), and covers the thimble with large sand grains and little stones. The colonial European zodariids, Zodarion germanicum (C. L. Koch) and Z. elegans Simon, build retreats under stones. Each semispherical retreat is covered by sand grains from the surroundings, and pieces of bark and spruce needles are woven into the wall. The retreat is used by the .spider and the eggsac is hung up in it. As far as I know, the building of the retreat has not been observed. Wiehle (1953) illustrates a row of large setae in front of the zodariid spinnerets and peculiar branched setae that cover the legs and tarsi. These seta.e are perhaps used for handling the detritus. The unusual 8icarius eggcase was first noted by Simon (I899) 1. Al- though we have two species of Sicarius in culture the possibility of watching eggsac construction seemed at fir.st remote because the only eggcase made in the laboratory appeared to.
    [Show full text]
  • Nswatugi Cave – Paintings, Dust and Spiders
    Nswatugi Cave – Paintings, Dust and Spiders By Moira FitzPatrick Nswatugi Cave is probably one of the most visited cave in the Matobo Hills because of its fine paintings and easy access. The name, Nswatugi, means the ‘place of jumping’ and, according to local legends, Mlimo (God) leapt from his home at Njelele Hill, landing from his first leap on Nswatugi hill, leaving a ‘footprint’ in the granite. The ‘footprint’ is a natural The floor of this cave is covered in fine clay dust mark, enlarged by artificial pecking. The cave was which has blown onto the paintings over the many used as a granary in the 19th century, although years of high visitorship. With funding from the the grainbins that used to be present have long Monuments Watch Fund we are covering the floor of disappeared. Cattle used to be kept hidden in this cave this cave with a layer of river-sand and then granite which explains for the blurred nature of much of the slabs in an effort to prevent further dust damaging art below the one and a half metre mark. these outstanding paintings. We are hoping that in the future, with expert help we will find a way to clear the The majority of the paintings are on the northern dust off the paintings. wall of the cave and have been the subject of much study and speculation since the cave was discovered in 1932. Most are thought to date to between 10 000 and 6 000 years ago, based on the frequency of the occurrence of pigment recovered during excavations in the deposit.
    [Show full text]
  • Role of <I>Ixodes Scapularis</I> Sphingomyelinase-Like Protein
    Old Dominion University ODU Digital Commons Biological Sciences Theses & Dissertations Biological Sciences Spring 2020 Role of Ixodes scapularis Sphingomyelinase-Like Protein (IsSMase) in Tick Pathogen Interactions Pravesh Regmi Old Dominion University, [email protected] Follow this and additional works at: https://digitalcommons.odu.edu/biology_etds Part of the Biology Commons, Immunology and Infectious Disease Commons, and the Microbiology Commons Recommended Citation Regmi, Pravesh. "Role of Ixodes scapularis Sphingomyelinase-Like Protein (IsSMase) in Tick Pathogen Interactions" (2020). Master of Science (MS), Thesis, Biological Sciences, Old Dominion University, DOI: 10.25777/m6tg-vt35 https://digitalcommons.odu.edu/biology_etds/111 This Thesis is brought to you for free and open access by the Biological Sciences at ODU Digital Commons. It has been accepted for inclusion in Biological Sciences Theses & Dissertations by an authorized administrator of ODU Digital Commons. For more information, please contact [email protected]. i ROLE OF IXODES SCAPULARIS SPHINGOMYELINASE-LIKE PROTEIN (ISSMASE) IN TICK PATHOGEN INTERACTIONS by Pravesh Regmi B.Sc. Microbiology – January 2012, St. Xavier’s College, Nepal M.Sc. Medical Microbiology – December 2015, St. Xavier’s College, Nepal A Thesis Submitted to the Faculty of Old Dominion University in Partial Fulfillment of the Requirements for the degree of MASTER OF SCIENCE BIOLOGY OLD DOMINION UNIVERSITY May 2020 Approved by: Dr. Hameeda Sultana (Director) Dr. Emilia Oleszak (Member) Dr. Deborah Waller (Member) ii ABSTRACT ROLE OF IXODES SCAPULARIS SPHINGOMYELINASE-LIKE PROTEIN (ISSMASE) IN TICK PATHOGEN INTERACTIONS Pravesh Regmi Old Dominion University, 2020 Director: Dr. Hameeda Sultana Arthropod-borne diseases are one of the major concerns throughout the world. Ixodes scapularis (hard tick) is one of the major vectors that is involved in arthropod- borne disease transmission.
    [Show full text]
  • Molecular Phylogenetics and Evolution 49 (2008) 538–553
    Molecular Phylogenetics and Evolution 49 (2008) 538–553 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Phylogenetic relationships of Loxosceles and Sicarius spiders are consistent with Western Gondwanan vicariance Greta J. Binford a,*, Melissa S. Callahan a,1, Melissa R. Bodner a,2, Melody R. Rynerson a,3, Pablo Berea Núñez b, Christopher E. Ellison a,4, Rebecca P. Duncan a a Department of Biology, Lewis & Clark College, 0615 SW Palatine Hill Road, Portland, OR 97219, USA b Octolab, Veracruz 91160, Mexico article info abstract Article history: The modern geographic distribution of the spider family Sicariidae is consistent with an evolutionary ori- Received 17 March 2008 gin on Western Gondwana. Both sicariid genera, Loxosceles and Sicarius are diverse in Africa and South/ Revised 1 August 2008 Central America. Loxosceles are also diverse in North America and the West Indies, and have species Accepted 2 August 2008 described from Mediterranean Europe and China. We tested vicariance hypotheses using molecular phy- Available online 9 August 2008 logenetics and molecular dating analyses of 28S, COI, 16S, and NADHI sequences. We recover reciprocal monophyly of African and South American Sicarius, paraphyletic Southern African Loxosceles and mono- Keywords: phyletic New World Loxosceles within which an Old World species group that includes L. rufescens is Biogeography derived. These patterns are consistent with a sicariid common ancestor on Western Gondwana. North Spider Loxosceles American Loxosceles are monophyletic, sister to Caribbean taxa, and resolved in a larger clade with South Sicarius American Loxosceles. With fossil data this pattern is consistent with colonization of North America via a Vicariance land bridge predating the modern Isthmus of Panama.
    [Show full text]
  • Harvesting Toxin Sequences in Tarantulas As a Case Study
    toxins Communication Phylogeny-Guided Selection of Priority Groups for Venom Bioprospecting: Harvesting Toxin Sequences in Tarantulas as a Case Study Tim Lüddecke 1,*, Andreas Vilcinskas 1,2,3 and Sarah Lemke 2 1 Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Winchesterstr. 2, 35394 Gießen, Germany 2 Institute for Insect Biotechnology, Justus-Liebig-University of Gießen, Heinrich-Buff-Ring 26-32, 35392 Gießen, Germany 3 LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt, Germany * Correspondence: [email protected] Received: 19 July 2019; Accepted: 22 August 2019; Published: 25 August 2019 Abstract: Animal venoms are promising sources of novel drug leads, but their translational potential is hampered by the low success rate of earlier biodiscovery programs, in part reflecting the narrow selection of targets for investigation. To increase the number of lead candidates, here we discuss a phylogeny-guided approach for the rational selection of venomous taxa, using tarantulas (family Theraphosidae) as a case study. We found that previous biodiscovery programs have prioritized the three subfamilies Ornithoctoninae, Selenocosmiinae, and Theraphosinae, which provide almost all of the toxin sequences currently available in public databases. The remaining subfamilies are poorly represented, if at all. These overlooked subfamilies include several that form entire clades of the theraphosid life tree, such as the subfamilies Eumenophorinae, Harpactirinae, and Stromatopelminae, indicating that biodiversity space has not been covered effectively for venom biodiscovery in Theraphosidae. Focusing on these underrepresented taxa will increase the likelihood that promising candidates with novel structures and mechanisms of action can be identified in future bioprospecting programs.
    [Show full text]
  • Common Spiders (Arachnida: Araneae) in the Wichita Mountains and Surrounding Areas
    Common Spiders (Arachnida: Araneae) in the Wichita Mountains and Surrounding Areas Angel A. Chiri Entomologist and abdomen) and does not include legs. Introduction Although this guide is primarily for spiders, harvestmen, scorpions, ticks, and sun spiders are Spiders belong in the Phylum Arthropoda, Class briefly mentioned. Arachnida, Order Araneae. These common arachnids are found in grasslands, forests, orchards, cultivated fields, backyards, gardens, empty lots, parks, and homes. There are some 570 genera and 3,700 species of spiders in North America, north of Mexico. According to an Oklahoma State University checklist at least some 187 genera and 432 species were recorded in the state. Cokendolpher and Bryce (1980) examined arachnid specimens collected at the Wichita Mountains Wildlife Refuge by various groups between 1926 and 1978. Their work yielded a total of 182 arachnid species, of which 170 were spiders. Figure 1. Texas brown tarantula, Aphonopelma hentzi, male Many spiders are common and distinctive, often seen resting on their webs or crawling on the Summary of Structure and Function ground during the warmer months. The larger orb-weavers, for instance, are readily noticed in Being arthropods, spiders have a rigid external late summer and early fall because of their size skeleton, or exoskeleton, and jointed legs. The and conspicuousness. Others are uncommon or spider body consists of two segments, the seldom seen because of their secretive habits or cephalothorax (anterior segment) and the small size. For instance, some spiders that live abdomen (posterior segment), joined by a short, in leaf litter are minute, cryptic, and seldom thin, flexible pedicel. The dorsal part of the noticed without the use of special collecting cephalothorax is the carapace.
    [Show full text]
  • SANSA News, Issue 28, Jan-April 2017
    1 SANSA NEWS South African National Survey of Arachnida Newsletter Date No 28 JAN APRIL 2017 FEEDBACK ON THE Inside this issue: 12 AFRAS COLLOQUIUM Feedback AFRAS colloquium …..1-2 22-25 January 2017 SANSA 20 years ………...................3 Medically important spiders..……….4 Spiders in and around the house…..5 University of the Free State…………6 University of Venda………………….7 ARC-PPR………...………………......8 National Mus of the Free State …….9 New genera…………………..……..10 Field observations Q and A…........ 11 Student project……………………...12 Soil paper…………………………...13 Recent publications……………......14 Last Word……………………….......15 NATIONAL SPIDER SPECIES COUNT JANUARY 2015 — 2171 species JUNE 2015 — 2192 species OCTOBER 2015 — 2220 species MAY 2016 — 2234 species DECEMBER 2016 — 2239 species APRIL 2017 — 2243 species Delegates at the colloquium The 12th AFRAS colloquium was hosted by the University of the Free State and the ARC. It was held at the Goudini Spa in the Worcester district, Western Cape, South Africa. The objectives of these Colloquia are to promote research on the African Arachnida (non-Acari) and to provide a fo- rum for the discussion of research on African arachnids in oral presentations, posters and work- Editors and coordinators: shops, as well as informal discussions. Ansie Dippenaar-Schoeman & A total of 40 delegates and five accompanying persons attended the colloquium, from as far afield Robin Lyle as Belgium, Israel, Russia, Czech Republic, Nigeria, Sudan, Zimbabwe, UK and USA. ARC-Plant Protection Research Private Bag X134 37 papers and 17 posters were presented during the colloquium Queenswood 0121 Two workshops were held, organized by Dr Ansie Dippenaar-Schoeman on the South African South Africa National Survey of Arachnida (SANSA), and by Dr Gerbus Muller on medically important spiders E-mail: [email protected] We also celebrated the 20th year of SANSA and 30th year of AFRAS.
    [Show full text]