Download Our Poster for More Information!
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Enzymatic Encoding Methods for Efficient Synthesis Of
(19) TZZ__T (11) EP 1 957 644 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: C12N 15/10 (2006.01) C12Q 1/68 (2006.01) 01.12.2010 Bulletin 2010/48 C40B 40/06 (2006.01) C40B 50/06 (2006.01) (21) Application number: 06818144.5 (86) International application number: PCT/DK2006/000685 (22) Date of filing: 01.12.2006 (87) International publication number: WO 2007/062664 (07.06.2007 Gazette 2007/23) (54) ENZYMATIC ENCODING METHODS FOR EFFICIENT SYNTHESIS OF LARGE LIBRARIES ENZYMVERMITTELNDE KODIERUNGSMETHODEN FÜR EINE EFFIZIENTE SYNTHESE VON GROSSEN BIBLIOTHEKEN PROCEDES DE CODAGE ENZYMATIQUE DESTINES A LA SYNTHESE EFFICACE DE BIBLIOTHEQUES IMPORTANTES (84) Designated Contracting States: • GOLDBECH, Anne AT BE BG CH CY CZ DE DK EE ES FI FR GB GR DK-2200 Copenhagen N (DK) HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI • DE LEON, Daen SK TR DK-2300 Copenhagen S (DK) Designated Extension States: • KALDOR, Ditte Kievsmose AL BA HR MK RS DK-2880 Bagsvaerd (DK) • SLØK, Frank Abilgaard (30) Priority: 01.12.2005 DK 200501704 DK-3450 Allerød (DK) 02.12.2005 US 741490 P • HUSEMOEN, Birgitte Nystrup DK-2500 Valby (DK) (43) Date of publication of application: • DOLBERG, Johannes 20.08.2008 Bulletin 2008/34 DK-1674 Copenhagen V (DK) • JENSEN, Kim Birkebæk (73) Proprietor: Nuevolution A/S DK-2610 Rødovre (DK) 2100 Copenhagen 0 (DK) • PETERSEN, Lene DK-2100 Copenhagen Ø (DK) (72) Inventors: • NØRREGAARD-MADSEN, Mads • FRANCH, Thomas DK-3460 Birkerød (DK) DK-3070 Snekkersten (DK) • GODSKESEN, -
A Systematic Review on the Implications of O-Linked Glycan Branching and Truncating Enzymes on Cancer Progression and Metastasis
cells Review A Systematic Review on the Implications of O-linked Glycan Branching and Truncating Enzymes on Cancer Progression and Metastasis 1, 1, 1 1,2,3, Rohitesh Gupta y, Frank Leon y, Sanchita Rauth , Surinder K. Batra * and Moorthy P. Ponnusamy 1,2,* 1 Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68105, USA; [email protected] (R.G.); [email protected] (F.L.); [email protected] (S.R.) 2 Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 681980-5900, USA 3 Department of Pathology and Microbiology, UNMC, Omaha, NE 68198-5900, USA * Correspondence: [email protected] (S.K.B.); [email protected] (M.P.P.); Tel.: +402-559-5455 (S.K.B.); +402-559-1170 (M.P.P.); Fax: +402-559-6650 (S.K.B. & M.P.P.) Equal contribution. y Received: 21 January 2020; Accepted: 12 February 2020; Published: 14 February 2020 Abstract: Glycosylation is the most commonly occurring post-translational modifications, and is believed to modify over 50% of all proteins. The process of glycan modification is directed by different glycosyltransferases, depending on the cell in which it is expressed. These small carbohydrate molecules consist of multiple glycan families that facilitate cell–cell interactions, protein interactions, and downstream signaling. An alteration of several types of O-glycan core structures have been implicated in multiple cancers, largely due to differential glycosyltransferase expression or activity. Consequently, aberrant O-linked glycosylation has been extensively demonstrated to affect biological function and protein integrity that directly result in cancer growth and progression of several diseases. -
Localization of Heparanase in Esophageal Cancer Cells: Respective Roles in Prognosis and Differentiation
Laboratory Investigation (2004) 84, 1289–1304 & 2004 USCAP, Inc All rights reserved 0023-6837/04 $30.00 www.laboratoryinvestigation.org Localization of heparanase in esophageal cancer cells: respective roles in prognosis and differentiation Takaomi Ohkawa1, Yoshio Naomoto1, Munenori Takaoka1, Tetsuji Nobuhisa1, Kazuhiro Noma1, Takayuki Motoki1, Toshihiro Murata1, Hirokazu Uetsuka1, Masahiko Kobayashi1, Yasuhiro Shirakawa1, Tomoki Yamatsuji1, Nagahide Matsubara1, Junji Matsuoka1, Minoru Haisa1, Mehmet Gunduz2, Hidetsugu Tsujigiwa2, Hitoshi Nagatsuka2, Masao Hosokawa3, Motowo Nakajima4 and Noriaki Tanaka1 1Department of Gastroenterological Surgery, Transplant, and Surgical Oncology; 2Department of Oral Pathology and Medicine, Graduate School of Medicine and Dentistry, Okayama University, Okayama, Japan; 3Keiyukai Sapporo Hospital, Sapporo, Japan and 4Tsukuba Research Institute, Novartis Pharma KK Tsukuba, Japan In this study, we examined the distribution of heparanase protein in 75 esophageal squamous cell carcinomas by immunohistochemistry and analyzed the relationship between heparanase expression and clinicopatho- logical characteristics. In situ hybridization showed that the mRNA expression pattern of heparanase was similar to that of the protein, suggesting that increased expression of the heparanase protein at the invasive front was caused by an increase of heparanase mRNA in tumor cells. Heparanase expression correlated significantly with depth of tumor invasion, lymph node metastasis, tumor node metastasis (TNM) stage and lymphatic -
Ultrasensitive Small Molecule Fluorogenic Probe for Human Heparanase
bioRxiv preprint doi: https://doi.org/10.1101/2020.03.26.008730; this version posted March 29, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Ultrasensitive small molecule fluorogenic probe for human heparanase Jun Liu1, 2, Kelton A. Schleyer1, 2, Tyrel L. Bryan2, Changjian Xie2, Gustavo Seabra1, Yongmei Xu3, Arjun Kafle2, Chao Cui1, 2, Ying Wang2, Kunlun Yin2, Benjamin Fetrow2, Paul K. P. Henderson2, Peter Z. Fatland2, Jian Liu3, Chenglong Li1, Hua Guo2, and Lina Cui1, 2, * 1Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA (Current) 2Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM 87131, USA 3Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA *Correspondence should be addressed to L.C. E-mail: [email protected] Abstract Heparanase is a critical enzyme involved in the remodeling of the extracellular matrix (ECM), and its elevated expression has been linked with diseases such as cancer and inflammation. The detection of heparanase enzymatic activity holds tremendous value in the study of the cellular microenvironment, and search of molecular therapeutics targeting heparanase, however, assays developed for this enzyme so far have suffered prohibitive drawbacks. Here we present an ultrasensitive fluorogenic small-molecule probe for heparanase enzymatic activity. The probe exhibits a 756-fold fluorescence turn-on response in the presence of human heparanase, allowing one-step detection of heparanase activity in real-time with a picomolar detection limit. -
Heparanase Is Required for Activation and Function of Macrophages
Heparanase is required for activation and function of macrophages Lilach Gutter-Kapona, Dror Alishekevitzb, Yuval Shakedb, Jin-Ping Lic, Ami Aronheimd, Neta Ilana, and Israel Vlodavskya,1 aCancer and Vascular Biology Research Center, Bruce Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel; bDepartment of Cell Biology and Cancer Science, Bruce Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel; cDepartment of Medical Biochemistry and Microbiology, University of Uppsala, SE-751 05 Uppsala, Sweden; and dDepartment of Molecular Genetics, the Bruce Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel Edited by Joseph Schlessinger, Yale University School of Medicine, New Haven, CT, and approved October 17, 2016 (received for review July 13, 2016) The emerging role of heparanase in tumor initiation, growth, The carcinoma microenvironment includes nontransformed metastasis, and chemoresistance is well recognized and is encouraging epithelial cells, fibroblasts, endothelial cells, and infiltrated immune the development of heparanase inhibitors as anticancer drugs. Unlike cells. Endothelial cells lining blood and lymph vessels are major the function of heparanase in cancer cells, very little attention has component of the tumor microenvironment, and antiangiogenesis been given to heparanase contributed by cells composing the tumor therapy, targeting vascular endothelial growth factor (VEGF) or microenvironment. Here we used a genetic approach and examined its receptor (VEGFR2), is implemented clinically (15). In addi- the behavior and function of macrophages isolated from wild-type tion, recent research has revealed the critical roles of inflam- (WT) and heparanase-knockout (Hpa-KO) mice. Hpa-KO macrophages matory responses in different stages of tumor development and express lower levels of cytokines (e.g., TNFα,IL1-β) and exhibit lower metastasis (16). -
Trevigen Price List 2008 International.Indd
BASEMENT MEMBRANE EXTRACT PRODUCTS AND SPECIALTY PROTEINS • CELL INVASION ASSAYS • DIRECTED IN VIVO ANGIOGENESIS ASSAYS • COMETASSAYTM • TREVIGEN PAR/PARP/PARG • PRODUCT FOCUS and price list 2008-2009MAY 2008 TACSTM IN SITU APOPTOSIS DETECTION KITS • 1.800.TREVIGEN • www.trevigen.com 2008 TREVIGEN PRODUCT FOCUS AND PRICE LIST Product Overviews BME Tools for 3D Culture Assays TACS™ Basement Membrane Extract Products and 3D Culture Cell Proliferation Assay (96 well) .......10 In Situ Apoptosis Detection Kits .....................18-23 Specialty Proteins ............................................2-5 3D Culture Cell Harvesting Kit ............................11 Annexin DIVAA™ PAR/PARP/PARG For monitoring apoptosis via flow cytometry ...24-25 Directed in vivo Angiogenesis Assays .................6-7 Kits, Reagents, Antibodies, and Enzymes .......12-14 Oxidative Stress Kits Cell Invasion/Migration Assays CometAssay™ ..................................................................26-27 Kits, Reagents, and Plates ................................8-9 Kits, Reagents, and Slides ............................15-17 Trevigen Product International Cell Assays ......................................25 Price List ..........................................28-38 Distributors ..............................39-40 Ordering Information • Please use product names and catalog numbers when ordering. Conditions Trevigen products are sold for Research Use Only. • Please provide your name, purchase order number, shipping address, billing address, and telephone number -
Co-Occupancy by Multiple Cardiac Transcription Factors Identifies
Co-occupancy by multiple cardiac transcription factors identifies transcriptional enhancers active in heart Aibin Hea,b,1, Sek Won Konga,b,c,1, Qing Maa,b, and William T. Pua,b,2 aDepartment of Cardiology and cChildren’s Hospital Informatics Program, Children’s Hospital Boston, Boston, MA 02115; and bHarvard Stem Cell Institute, Harvard University, Cambridge, MA 02138 Edited by Eric N. Olson, University of Texas Southwestern, Dallas, TX, and approved February 23, 2011 (received for review November 12, 2010) Identification of genomic regions that control tissue-specific gene study of a handful of model genes (e.g., refs. 7–10), it has not been expression is currently problematic. ChIP and high-throughput se- evaluated using unbiased, genome-wide approaches. quencing (ChIP-seq) of enhancer-associated proteins such as p300 In this study, we used a modified ChIP-seq approach to define identifies some but not all enhancers active in a tissue. Here we genome wide the binding sites of these cardiac TFs (1). We show that co-occupancy of a chromatin region by multiple tran- provide unbiased support for collaborative TF interactions in scription factors (TFs) identifies a distinct set of enhancers. GATA- driving cardiac gene expression and use this principle to show that chromatin co-occupancy by multiple TFs identifies enhancers binding protein 4 (GATA4), NK2 transcription factor-related, lo- with cardiac activity in vivo. The majority of these multiple TF- cus 5 (NKX2-5), T-box 5 (TBX5), serum response factor (SRF), and “ binding loci (MTL) enhancers were distinct from p300-bound myocyte-enhancer factor 2A (MEF2A), here referred to as cardiac enhancers in location and functional properties. -
Evidence Against a Role for Heparan Sulfate in Glomerular Permselectivity
JASN Express. Published on February 14, 2007 as doi: 10.1681/ASN.2007010086 Editorial Breaking Down the Barrier: Evidence against a Role for Heparan Sulfate in Glomerular Permselectivity Scott J. Harvey and Jeffrey H. Miner Renal Division, Washington University School of Medicine, St. Louis, Missouri J Am Soc Nephrol 18: 672–674, 2007. doi: 10.1681/ASN.2007010086 he glomerular capillary wall is thought to function as Charge barrier dysfunction has long been touted as an un- both a size- and charge-selective barrier. The concept of derlying cause of human glomerular disease (10–12). This may T charge selectivity emerged from a series of now classic be brought about by decreased expression or undersulfation of studies that used tracers such as dextran, peroxidase, and fer- GBM-HSPG (13,14). Segmental or global loss of GBM-HS has ritin to evaluate the influence of molecular charge on glomer- been reported in human membranous nephritis, lupus nephri- ular filtration (1–5). The permeability of anionic derivatives of tis, minimal change disease, and diabetic nephropathy (13,15), each tracer was lower than their neutral counterparts of com- as well as in rat models of adriamycin and Heymann nephritis parable size, whereas the permeability of cationic forms was (16,17). The intensity of GBM labeling inversely correlates with enhanced. This led to the theory that the passage of endoge- severity of disease, which supports the theory that reductions nous circulating polyanions, notably albumin, would likewise in GBM-HS contribute directly to a loss of barrier function. be impeded by the “fixed” or intrinsic negative charge of the However, in a recent study, GBM-HS was reported to be nor- glomerular capillary wall. -
Detecting Substrate Glycans of Fucosyltransferases on Glycoproteins with Fluorescent Fucose
bioRxiv preprint doi: https://doi.org/10.1101/2020.01.28.919860; this version posted January 29, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Detecting substrate glycans of fucosyltransferases on glycoproteins with fluorescent fucose Key words: Fucose/Fucosylation/fucosyltransferase/core-fucose/glycosylation Supplementary Data Included: Supplemental Fig.1 to Fig. 2 Zhengliang L Wu1*, Mark Whitaker, Anthony D Person1, Vassili Kalabokis1 1Bio-techne, R&D Systems, Inc. 614 McKinley Place N.E. Minneapolis, MN, 55413, USA *Correspondence: Phone: 612-656-4544. Email: [email protected], bioRxiv preprint doi: https://doi.org/10.1101/2020.01.28.919860; this version posted January 29, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract Like sialylation, fucose usually locates at the non-reducing ends of various glycans on glycoproteins and constitutes important glycan epitopes. Detecting the substrate glycans of fucosyltransferases is important for understanding how these glycan epitopes are regulated in response to different growth conditions and external stimuli. Here we report the detection of these glycans via enzymatic incorporation of fluorescent tagged fucose using fucosyltransferases including FUT2, FUT6, FUT7, and FUT8 and FUT9. More specifically, we describe the detection of substrate glycans of FUT8 and FUT9 on therapeutic antibodies and the detection of high mannose glycans on glycoproteins by enzymatic conversion of high mannose glycans to the substrate glycans of FUT8. -
Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase -
(12) Patent Application Publication (10) Pub. No.: US 2003/0082511 A1 Brown Et Al
US 20030082511A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2003/0082511 A1 Brown et al. (43) Pub. Date: May 1, 2003 (54) IDENTIFICATION OF MODULATORY Publication Classification MOLECULES USING INDUCIBLE PROMOTERS (51) Int. Cl." ............................... C12O 1/00; C12O 1/68 (52) U.S. Cl. ..................................................... 435/4; 435/6 (76) Inventors: Steven J. Brown, San Diego, CA (US); Damien J. Dunnington, San Diego, CA (US); Imran Clark, San Diego, CA (57) ABSTRACT (US) Correspondence Address: Methods for identifying an ion channel modulator, a target David B. Waller & Associates membrane receptor modulator molecule, and other modula 5677 Oberlin Drive tory molecules are disclosed, as well as cells and vectors for Suit 214 use in those methods. A polynucleotide encoding target is San Diego, CA 92121 (US) provided in a cell under control of an inducible promoter, and candidate modulatory molecules are contacted with the (21) Appl. No.: 09/965,201 cell after induction of the promoter to ascertain whether a change in a measurable physiological parameter occurs as a (22) Filed: Sep. 25, 2001 result of the candidate modulatory molecule. Patent Application Publication May 1, 2003 Sheet 1 of 8 US 2003/0082511 A1 KCNC1 cDNA F.G. 1 Patent Application Publication May 1, 2003 Sheet 2 of 8 US 2003/0082511 A1 49 - -9 G C EH H EH N t R M h so as se W M M MP N FIG.2 Patent Application Publication May 1, 2003 Sheet 3 of 8 US 2003/0082511 A1 FG. 3 Patent Application Publication May 1, 2003 Sheet 4 of 8 US 2003/0082511 A1 KCNC1 ITREXCHO KC 150 mM KC 2000000 so 100 mM induced Uninduced Steady state O 100 200 300 400 500 600 700 Time (seconds) FIG. -
Dissertation / Doctoral Thesis
DISSERTATION / DOCTORAL THESIS Titel der Dissertation / Title of the Doctoral Thesis “In-depth mass spectrometry-based proteome profiling of inflammation-related processes” verfasst von / submitted by Andrea Bileck, MSc angestrebter akademischer Grad / in partial fulfilment of the requirements for the degree of Doktorin der Naturwissenschaften (Dr.rer.nat.) Doctor of Sciences (Dr.rer.nat.) Wien, 2016 / Vienna 2016 Studienkennzahl lt. Studienblatt / degree programme code as it appears on the student A 796 605 419 record sheet: Dissertationsgebiet lt. Studienblatt / Chemie / Chemistry field of study as it appears on the student record sheet: Betreut von / Supervisor: Univ. Prof. Dr. Christopher Gerner II This doctoral thesis is based on the following publications and manuscripts: Comprehensive assessment of proteins regulated by dexamethasone reveals novel effects in primary human peripheral blood mononuclear cells Andrea Bileck, Dominique Kreutz, Besnik Muqaku, Astrid Slany, Christopher Gerner Journal of Proteome Research, 2014, 13, (12), 5989-6000 Impact of a synthetic cannabinoid (CP-47,497-C8) on protein expression in human cells: evidence for induction of inflammation and DNA damage Andrea Bileck, Franziska Ferk, Halh Al-Serori, Verena J. Koller, Besnik Muqaku, Alexander Haslberger, Volker Auwärter, Christopher Gerner, Siegfried Knasmüller Archives of Toxicology, 2015, doi:10.1007/s00204-015-1569-7 Shotgun proteomics of primary human cells enables the analysis of signaling pathways and nuclear translocations related to inflammation Andrea Bileck, Rupert L. Mayer, Dominique Kreutz, Tamara Weiss, Astrid Slany, Christopher Gerner Journal of Proteome Research, 2015, manuscript under revision Contribution of human fibroblasts and endothelial cells to the hallmarks of inflammation as determined by proteome profiling Astrid Slany, Andrea Bileck, Dominique Kreutz, Rupert L.