1 Integrin to Regulate Cell Proliferation and Adhesion in Colorectal Cancer Cells Causing Liver Metastasis

Total Page:16

File Type:pdf, Size:1020Kb

1 Integrin to Regulate Cell Proliferation and Adhesion in Colorectal Cancer Cells Causing Liver Metastasis Oncogene (2014) 33, 1658–1669 & 2014 Macmillan Publishers Limited All rights reserved 0950-9232/14 www.nature.com/onc ORIGINAL ARTICLE Cadherin-17 interacts with a2b1 integrin to regulate cell proliferation and adhesion in colorectal cancer cells causing liver metastasis RA Bartolome´ 1, R Barderas1,5, S Torres1, MJ Fernandez-Acen˜ ero2, M Mendes1, J Garcı´a-Foncillas3, M Lopez-Lucendo4 and JI Casal1 Liver metastasis is the major cause of death associated to colorectal cancer. Cadherin-17 (CDH17) is a non-classical, seven domain, cadherin lacking the conserved cytoplasmic domain of classical cadherins. CDH17 was overexpressed in highly metastatic human KM12SM and present in many other colorectal cancer cells. Using tissue microarrays, we observed a significant association between high expression of CDH17 with liver metastasis and poor survival of the patients. On the basis of these findings, we decided to study cellular functions and signaling mechanisms mediated by CDH17 in cancer cells. In this report, loss-of-function experiments demonstrated that CDH17 caused a significant increase in KM12SM cell adhesion and proliferation. Coimmunoprecipitation experiments demonstrated an interaction between CDH17 and a2b1 integrin with a direct effect on b1 integrin activation and talin recruitment. The formation of this complex, together with other proteins, was confirmed by mass spectrometry analysis. CDH17 modulated integrin activation and signaling to induce specific focal adhesion kinase and Ras activation, which led to the activation of extracellular signal-regulated kinase and Jun N-terminal kinase and the increase in cyclin D1 and proliferation. In vivo experiments showed that CDH17 silencing in KM12 cells suppressed tumor growth and liver metastasis after subcutaneous or intrasplenic inoculation in nude mice. Collectively, our data reveal a new function for CDH17, which is to regulate a2b1 integrin signaling in cell adhesion and proliferation in colon cancer cells for liver metastasis. Oncogene (2014) 33, 1658–1669; doi:10.1038/onc.2013.117; published online 22 April 2013 Keywords: Cadherin-17; a2b1 integrin; adhesion; proliferation; liver metastasis; colorectal cancer INTRODUCTION Tumor metastasis depends on different factors, such as growth Together with E-cadherin, CDH17 is specifically expressed in factors, receptors, proteases, chemokines and cellular adhesion basolateral plasma membrane of enterocytes and goblet cells,11,12 molecules.1 These adhesion molecules include cadherins, integrins and seems to be localized exclusively in cholesterol-rich fractions, and immunoglobulin superfamily molecules, which have been where it is supposed to keep tissue integrity. Interestingly, implicated in many steps of the metastatic cascade.2 Adhesion transgenic mice showed that enterocytes remained attached molecules can mediate adhesion between cells (that is, cadherins) despite the loss of E-cadherin, demonstrating that intercellular or to components of the extracellular matrix such as laminins, adhesion does not depend exclusively on E-cadherin.13 Weak collagens or fibronectin (that is, integrins).3 During metastasis, homotypic interaction mediated by other molecules (that is, cell–cell adhesion suffers different changes in signaling, loss of CDH17) might explain cell clustering. Classical cadherins like contact inhibition, cell migration and stromal interactions.4 E-cadherin bind catenin proteins through their cytoplasmic However, how adhesion molecules regulate cell phenotype or domains to initiate the signaling cascade. Intriguingly, CDH17 proliferation in cancer metastasis is not fully understood. has a very short cytoplasmic domain of only 24 amino acids, which In a previous proteomic analysis of the highly metastatic seems not to interact with catenins or cytoskeleton proteins,14 derivative human colorectal cancer cell line KM12SM and its raising questions about its mechanism of action. parental, poorly-metastatic, KM12C cell line,5 we found CDH17 is mainly expressed in fetal liver and gastrointestinal cadherin-17 (CDH17) as one of the top upregulated proteins in tract during embryogenesis,15 being overexpressed in several KM12SM cells, suggesting that CDH17 might have an important types of cancer: hepatocellular carcinoma,16,17 gastric cancer,18 role in late metastatic events.6 We also found a2 integrin ductal pancreatic cancer19 and colorectal cancer,20,21 where 96% overexpressed in KM12SM cells.6 Integrin a2 has been reported of tumor samples show expression of this molecule.22 CDH17 has to mediate selective metastasis to the liver.7 been proposed as an oncogene and as a disease marker for CDH17, also known as liver-intestine-cadherin, is a distinctive hepatic and gastrointestinal malignancies.16 The precise member of the cadherin superfamily.8 It closely resembles kidney- involvement of CDH17 in colorectal cancer metastasis, as well as specific-cadherin (cadherin-16), and they form a subgroup termed the mechanisms for pathway signaling, remains unclear and 7D-cadherin, because of their seven extracellular domains.9,10 contradictory. Some studies reported a reduced expression of 1Department of Cellular and Molecular Medicine, Centro de Investigaciones Biolo´ gicas (CIB-CSIC), Madrid, Spain; 2Pathology Department, Fundacio´n Jime´nez Dı´az, Madrid, Spain; 3Oncology Department, Fundacio´n Jime´nez Dı´az, Madrid, Spain and 4Proteomics Core Facility, CIB-CSIC, Madrid, Spain. Correspondence: Dr JI Casal, Department of Cellular and Molecular Medicine, Centro de Investigaciones Biolo´ gicas (CIB-CSIC), Ramiro de Maeztu, 9, Madrid 28040, Spain. E-mail: [email protected] 5Present address: Department of Biochemistry and Molecular Biology I, Universidad Complutense, Madrid, Spain. Received 20 November 2012; revised 19 February 2013; accepted 25 February 2013; published online 22 April 2013 CDH17 interacts with a2b1integrin in colon cancer RA Bartolome´ et al 1659 CDH17 associated only with lymph node metastasis but not to analyses showed that less than 10% of the original protein liver metastasis, based on immunohistochemical analysis,23 or expression levels were detected after knockdown with shRNA no. with an increase in metastatic behavior of LoVo cancer cells.24 60 and shRNA no. 58 in both cell lines. Both shRNAs were used for However, in the first study, the number of analyzed samples was further experiments to avoid off-target effects of the shRNAs. relatively low (o30), with only 11 liver metastasis.23 In the case of Given the reported coexpression of CDH17 and E-cadherin in LoVo cells, these cells derived from a metastatic nodule in the enterocytes, we tested for the presence of E-cadherin in KM12 supraclavicular region, which might imply different colonization cells using flow cytometry. No E-cadherin surface expression was capacities that metastatic cells isolated from liver. In another detected in parental or in silenced cells (Supplementary Figure S1). immunohistochemical study, Kwak et al.25 reported that reduced So, CDH17 expression appears to be independent of E-cadherin expression of CDH17 was associated with tumor dedifferentiation levels in metastatic cancer cells. and poor overall survival, but not with lymph node or distant We assessed the tumorigenic (proliferation and colony forma- metastasis. However, in this case, the number of stage IV cases tion) and metastatic (adhesion, migration and invasion) properties was only 6%. In contrast, another recent study described a clear of the KM12 cells transfected with vectors containing CDH17 association of high expression of CDH17 with either primary shRNAs compared with cells transfected with scrambled shRNA. tumors or lung metastasis in colon cancer.21 Then, the association CDH17-silenced cells showed a clear reduction in cell proliferation. of CDH17 expression with liver metastasis still requires further This reduction was more significant for KM12SM cells and was clarification. proportional to the silencing of CDH17 (Figure 2c). In KM12SM In this manuscript, we observed a clear association of high cells, the doubling time increased from 32 to 58 h (Figure 2d). In CDH17 expression to liver metastasis in colorectal cancer. At the addition, colony-forming ability of KM12-silenced cells was nearly molecular level, a strong reduction in cell adhesion, proliferation completely abolished (490%) after CDH17 silencing (Figure 2e). and liver metastasis was noticed after CDH17 knockdown in KM12 Then, we analyzed the adhesive properties of the cell lines metastatic colorectal cancer cell lines. These effects were using Matrigel assays. Adhesion capacity of scramble KM12SM mediated by an interaction between CDH17 and a2b1 integrin, overexpressing CDH17 was three fold higher than that of KM12C through the regulation of b1 integrin activation. The modulation cells. After CDH17 silencing, there was a striking decrease in the by CDH17 of the integrin-triggered signaling pathway led to the adhesion capacity for KM12SM cells (50%) with both shRNAs and activation of the focal adhesion kinase (FAK) and the Ras pathway, negligible for KM12C cells (Figure 2f). In contrast, no significant including mitogen-activated protein kinases and cyclin D1. In effect was observed on migration (Supplementary Figure S2A) and summary, our results demonstrated the capacity of CDH17 to invasion (Supplementary Figure S2B) after CDH17 silencing. To regulate a2b1integrin activity for cell proliferation and adhesion in confirm these results we used other colorectal cell lines: Caco2, colorectal cancer cells with high
Recommended publications
  • Screening and Identification of Key Biomarkers in Clear Cell Renal Cell Carcinoma Based on Bioinformatics Analysis
    bioRxiv preprint doi: https://doi.org/10.1101/2020.12.21.423889; this version posted December 23, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Screening and identification of key biomarkers in clear cell renal cell carcinoma based on bioinformatics analysis Basavaraj Vastrad1, Chanabasayya Vastrad*2 , Iranna Kotturshetti 1. Department of Biochemistry, Basaveshwar College of Pharmacy, Gadag, Karnataka 582103, India. 2. Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad 580001, Karanataka, India. 3. Department of Ayurveda, Rajiv Gandhi Education Society`s Ayurvedic Medical College, Ron, Karnataka 562209, India. * Chanabasayya Vastrad [email protected] Ph: +919480073398 Chanabasava Nilaya, Bharthinagar, Dharwad 580001 , Karanataka, India bioRxiv preprint doi: https://doi.org/10.1101/2020.12.21.423889; this version posted December 23, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Clear cell renal cell carcinoma (ccRCC) is one of the most common types of malignancy of the urinary system. The pathogenesis and effective diagnosis of ccRCC have become popular topics for research in the previous decade. In the current study, an integrated bioinformatics analysis was performed to identify core genes associated in ccRCC. An expression dataset (GSE105261) was downloaded from the Gene Expression Omnibus database, and included 26 ccRCC and 9 normal kideny samples. Assessment of the microarray dataset led to the recognition of differentially expressed genes (DEGs), which was subsequently used for pathway and gene ontology (GO) enrichment analysis.
    [Show full text]
  • Supplementary Table 1: Adhesion Genes Data Set
    Supplementary Table 1: Adhesion genes data set PROBE Entrez Gene ID Celera Gene ID Gene_Symbol Gene_Name 160832 1 hCG201364.3 A1BG alpha-1-B glycoprotein 223658 1 hCG201364.3 A1BG alpha-1-B glycoprotein 212988 102 hCG40040.3 ADAM10 ADAM metallopeptidase domain 10 133411 4185 hCG28232.2 ADAM11 ADAM metallopeptidase domain 11 110695 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 195222 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 165344 8751 hCG20021.3 ADAM15 ADAM metallopeptidase domain 15 (metargidin) 189065 6868 null ADAM17 ADAM metallopeptidase domain 17 (tumor necrosis factor, alpha, converting enzyme) 108119 8728 hCG15398.4 ADAM19 ADAM metallopeptidase domain 19 (meltrin beta) 117763 8748 hCG20675.3 ADAM20 ADAM metallopeptidase domain 20 126448 8747 hCG1785634.2 ADAM21 ADAM metallopeptidase domain 21 208981 8747 hCG1785634.2|hCG2042897 ADAM21 ADAM metallopeptidase domain 21 180903 53616 hCG17212.4 ADAM22 ADAM metallopeptidase domain 22 177272 8745 hCG1811623.1 ADAM23 ADAM metallopeptidase domain 23 102384 10863 hCG1818505.1 ADAM28 ADAM metallopeptidase domain 28 119968 11086 hCG1786734.2 ADAM29 ADAM metallopeptidase domain 29 205542 11085 hCG1997196.1 ADAM30 ADAM metallopeptidase domain 30 148417 80332 hCG39255.4 ADAM33 ADAM metallopeptidase domain 33 140492 8756 hCG1789002.2 ADAM7 ADAM metallopeptidase domain 7 122603 101 hCG1816947.1 ADAM8 ADAM metallopeptidase domain 8 183965 8754 hCG1996391 ADAM9 ADAM metallopeptidase domain 9 (meltrin gamma) 129974 27299 hCG15447.3 ADAMDEC1 ADAM-like,
    [Show full text]
  • Learning from Cadherin Structures and Sequences: Affinity Determinants and Protein Architecture
    Learning from cadherin structures and sequences: affinity determinants and protein architecture Klára Fels ıvályi Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2014 © 2014 Klara Felsovalyi All rights reserved ABSTRACT Learning from cadherin structures and sequences: affinity determinants and protein architecture Klara Felsovalyi Cadherins are a family of cell-surface proteins mediating adhesion that are important in development and maintenance of tissues. The family is defined by the repeating cadherin domain (EC) in their extracellular region, but they are diverse in terms of protein size, architecture and cellular function. The best-understood subfamily is the type I classical cadherins, which are found in vertebrates and have five EC domains. Among the five different type I classical cadherins, the binding interactions are highly specific in their homo- and heterophilic binding affinities, though their sequences are very similar. As previously shown, E- and N-cadherins, two prototypic members of the subfamily, differ in their homophilic K D by about an order of magnitude, while their heterophilic affinity is intermediate. To examine the source of the binding affinity differences among type I cadherins, we used crystal structures, analytical ultracentrifugation (AUC), surface plasmon resonance (SPR), and electron paramagnetic resonance (EPR) studies. Phylogenetic analysis and binding affinity behavior show that the type I cadherins can be further divided into two subgroups, with E- and N-cadherin representing each. In addition to the affinity differences in their wild-type binding through the strand-swapped interface, a second interface also shows an affinity difference between E- and N-cadherin.
    [Show full text]
  • Pan-Cancer Genomic Amplifications Underlie a WNT Hyperactivation Phenotype Associated with Stem Cell-Like Features Leading to Po
    1 Pan-cancer genomic amplifications underlie a WNT hyperactivation phenotype 2 associated with stem cell-like features leading to poor prognosis 3 4 5 6 Running title: Prognosis of a 16-gene signature of WNT hyperactivation in six cancers 7 8 Wai Hoong Chang and Alvina G. Lai 9 10 11 Nuffield Department of Medicine, University of Oxford, 12 Old Road Campus, OX3 7FZ, United Kingdom 13 14 For correspondence: [email protected] 15 List of Abbreviations 16 TCGA The Cancer Genome Atlas KEGG Kyoto Encyclopedia of Genes and Genomes GO Gene Ontology ROC Receiver operating characteristic AUC Area under the curve HR Hazard ratio TNM Tumor, node and metastasis HIF Hypoxia inducible factor TF Transcription factor EMT Epithelial-to-mesenchymal transition 17 18 Abstract 19 20 Cancer stem cells pose significant obstacles to curative treatment contributing to tumor 21 relapse and poor prognosis. They share many signaling pathways with normal stem cells that 22 control cell proliferation, self-renewal and cell fate determination. One of these pathways 23 known as Wnt is frequently implicated in carcinogenesis where Wnt hyperactivation is seen in 24 cancer stem cells. Yet, the role of conserved genomic alterations in Wnt genes driving tumor 25 progression across multiple cancer types remains to be elucidated. In an integrated pan-cancer 26 study involving 21 cancers and 18,484 patients, we identified a core Wnt signature of 16 genes 27 that showed high frequency of somatic amplifications linked to increased transcript 28 expression. The signature successfully predicted overall survival rates in six cancer cohorts 29 (n=3,050): bladder (P=0.011), colon (P=0.013), head and neck (P=0.026), pan-kidney 30 (P<0.0001), clear cell renal cell (P<0.0001) and stomach (P=0.032).
    [Show full text]
  • Molecular Characteristics of Circulating Tumor Cells Resemble the Liver Metastasis More Closely Than the Primary Tumor in Metastatic Colorectal Cancer
    www.impactjournals.com/oncotarget/ Oncotarget, Vol. 7, No. 37 Research Paper Molecular characteristics of circulating tumor cells resemble the liver metastasis more closely than the primary tumor in metastatic colorectal cancer Wendy Onstenk1, Anieta M. Sieuwerts1, Bianca Mostert1, Zarina Lalmahomed2, Joan B. Bolt-de Vries1, Anne van Galen1, Marcel Smid1, Jaco Kraan1, Mai Van1, Vanja de Weerd1, Raquel Ramírez-Moreno1, Katharina Biermann3, Cornelis Verhoef2, Dirk J. Grünhagen2, Jan N.M. IJzermans2, Jan W. Gratama1, John W.M. Martens1, John A. Foekens1, Stefan Sleijfer1 1Erasmus MC Cancer Institute, Department of Medical Oncology and Cancer Genomics Netherlands, Rotterdam, The Netherlands 2Department of Surgery, Erasmus University Medical Center, Rotterdam, The Netherlands 3Department of Pathology, Erasmus University Medical Center, Rotterdam, The Netherlands Correspondence to: Wendy Onstenk, email: [email protected] Keywords: circulating tumor cells, CTCs, CellSearch, colorectal cancer, gene expression profiling Received: April 06, 2016 Accepted: May 29, 2016 Published: June 20, 2016 ABSTRACT Background: CTCs are a promising alternative for metastatic tissue biopsies for use in precision medicine approaches. We investigated to what extent the molecular characteristics of circulating tumor cells (CTCs) resemble the liver metastasis and/ or the primary tumor from patients with metastatic colorectal cancer (mCRC). Results: The CTC profiles were concordant with the liver metastasis in 17/23 patients (74%) and with the primary tumor in 13 patients (57%). The CTCs better resembled the liver metastasis in 13 patients (57%), and the primary tumor in five patients (22%). The strength of the correlations was not associated with clinical parameters. Nine genes (CDH1, CDH17, CDX1, CEACAM5, FABP1, FCGBP, IGFBP3, IGFBP4, and MAPT) displayed significant differential expressions, all of which were downregulated, in CTCs compared to the tissues in the 23 patients.
    [Show full text]
  • Monoclonal Antibodies Directed Against Cadherin RGD Exhibit Therapeutic Activity Against Melanoma and Colorectal Cancer Metastasis Ruben A
    Published OnlineFirst September 15, 2017; DOI: 10.1158/1078-0432.CCR-17-1444 Biology of Human Tumors Clinical Cancer Research Monoclonal Antibodies Directed against Cadherin RGD Exhibit Therapeutic Activity against Melanoma and Colorectal Cancer Metastasis Ruben A. Bartolome1, Carmen Aizpurua2, Marta Jaen 1, Sofía Torres1, Eva Calvino~ 1, Juan I. Imbaud2, and J. Ignacio Casal1 Abstract Purpose: New targets are required for the control of advanced vascular-endothelial (VE)-cadherin–mediated b1 integrin activa- metastatic disease. We investigated the use of cadherin RGD tion in melanoma and breast, pancreatic, and colorectal cancer motifs, which activate the a2b1integrin pathway, as targets for cells. Antibodies provoked a significant reduction in cell adhesion the development of therapeutic monoclonal antibodies (mAb). and proliferation of metastatic cancer cells. Treatment with mAbs Experimental Design: Cadherin 17 (CDH17) fragments and impaired the integrin signaling pathway activation of FAK in peptides were prepared and used for immunization and antibody colorectal cancer, of JNK and ERK kinases in colorectal and development. Antibodies were tested for inhibition of b1integrin pancreatic cancers, and of JNK, ERK, Src, and AKT in melanoma and cell adhesion, proliferation, and invasion assays using cell and breast cancer. In vivo, RGD-specific mAbs increased mouse lines from different cancer types (colorectal, pancreatic, melanoma, survival after inoculation of melanoma and colorectal cancer cell and breast cancer). Effects of the mAbs on cell signaling were lines to cause lung and liver metastasis, respectively. determined by Western blot analysis. Nude mice were used for Conclusions: Blocking the interaction between RGD cadher- survival analysis after treatment with RGD-specificmAbsandmetas- ins and a2b1 integrin with highly selective mAbs constitutes a tasis development.
    [Show full text]
  • Pan-Cancer Genomic Amplifications Underlie a Wnt Hyperactivation Phenotype
    bioRxiv preprint doi: https://doi.org/10.1101/519611; this version posted January 13, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Pan-cancer genomic amplifications underlie a Wnt hyperactivation phenotype 2 associated with stem cell-like features leading to poor prognosis 3 4 5 6 Wai Hoong Chang and Alvina G. Lai 7 8 9 Nuffield Department of Medicine, University of Oxford, 10 Old Road Campus, Oxford, OX3 7FZ, United Kingdom 11 12 For correspondence: [email protected] bioRxiv preprint doi: https://doi.org/10.1101/519611; this version posted January 13, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 13 List of Abbreviations 14 TCGA The Cancer Genome Atlas KEGG Kyoto Encyclopedia of Genes and Genomes GO Gene Ontology ROC Receiver operating characteristic AUC Area under the curve HR Hazard ratio TNM Tumor, node and metastasis HIF Hypoxia inducible factor TF Transcription factor EMT Epithelial-to-mesenchymal transition 15 bioRxiv preprint doi: https://doi.org/10.1101/519611; this version posted January 13, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • Association Between Inflammation and Function of Cell Adhesion Molecules Influence on Gastrointestinal Cancer Development
    cells Review Association between Inflammation and Function of Cell Adhesion Molecules Influence on Gastrointestinal Cancer Development Hsiang-Wei Huang 1, Cheng-Chih Chang 2, Chia-Siu Wang 2 and Kwang-Huei Lin 1,3,4,* 1 Department of Biochemistry, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; [email protected] 2 Department of General Surgery, Chang Gung Memorial Hospital at Chia-yi, Chia-yi 613, Taiwan; [email protected] (C.-C.C.); [email protected] (C.-S.W.) 3 Liver Research Center, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan 4 Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan * Correspondence: [email protected]; Tel./Fax: +886-3-211-8263 Abstract: Gastrointestinal cancer is highly associated with inflammatory processes inducing the release of cytokines from cancer or immune cells, including interferons, interleukins, chemokines, colony-stimulating factors, and growth factors, which promote or suppress tumor progression. Inflammatory cytokines within the tumor microenvironment promote immune cell infiltration. Infiltrating immune, and tumor-surrounding stromal cells support tumor growth, angiogenesis, metastasis, and immunosuppression through communication with inflammatory cytokines and cell adhesion molecules. Notably, infiltrating immune and tumor cells present immunosuppressive molecules, such as programmed death-ligand 1 (PD-L1) and CD80/CD86. Suppression of cytotoxic T cells promotes tumor avoidance of immune surveillance and greater malignancy. Moreover, glycosylation and sialylation of proteins hyperexpressed on the cancer cell surface have been shown to enhance immune escape and metastasis. Cytokine treatments and immune checkpoint inhibitors Citation: Huang, H.-W.; Chang, C.-C.; are widely used in clinical practice.
    [Show full text]
  • Supplement, Table 12
    Supplement, Table 12. Genes affected by Celecoxib in "cell adhesion" Gene Ontology category Geometri UniGene HUGO Parametric Gene c mean of Cluster ID Symbol p-value ratios P/F Hs.93029 SPOCK sparc/osteonectin, cwcv and kazal-like domains proteoglycan (testican) 0.623 0.00192 Hs.166011 CTNND1 catenin (cadherin-associated protein), delta 1 0.665 0.00006 Hs.334131 CDH2 cadherin 2, type 1, N-cadherin (neuronal) 0.677 0.00280 Hs.423 PAP pancreatitis-associated protein 0.683 0.00400 Hs.85266 ITGB4 integrin, beta 4 0.727 0.02171 Hs.407546 TNFAIP6 tumor necrosis factor, alpha-induced protein 6 0.736 0.00532 Hs.432855 LAMC1 laminin, gamma 1 (formerly LAMB2) 0.751 0.00334 Hs.436593 LMAN1 lectin, mannose-binding, 1 0.754 0.00156 Hs.222 ITGA9 integrin, alpha 9 0.759 0.00809 Hs.8037 TM4SF9 transmembrane 4 superfamily member 9 0.759 0.00146 Hs.25051 PKP2 plakophilin 2 0.774 0.07266 Hs.89436 CDH17 cadherin 17, LI cadherin (liver-intestine) 0.774 0.00173 Hs.48998 FLRT2 fibronectin leucine rich transmembrane protein 2 0.776 0.04264 Hs.173548 NRP1 neuropilin 1 0.784 0.00752 protein tyrosine phosphatase, receptor type, f polypeptide (PTPRF), interacting Hs.128312 PPFIA1 protein (liprin), alpha 1 0.785 0.00002 Hs.436042 CXCL12 chemokine (C-X-C motif) ligand 12 (stromal cell-derived factor 1) 0.788 0.01889 Hs.409546 ARHGAP5 Rho GTPase activating protein 5 0.789 0.01338 Hs.445120 LAMA2 laminin, alpha 2 (merosin, congenital muscular dystrophy) 0.792 0.00052 Hs.436494 JAM2 junctional adhesion molecule 2 0.81 0.01923 Hs.296049 MFAP4 microfibrillar-associated
    [Show full text]
  • Research Article Prognostic and Predictive Value of Cadherin 11 for Patients with Gastric Cancer and Its Correlation with Tumor
    Hindawi BioMed Research International Volume 2020, Article ID 8107478, 16 pages https://doi.org/10.1155/2020/8107478 Research Article Prognostic and Predictive Value of Cadherin 11 for Patients with Gastric Cancer and Its Correlation with Tumor Microenvironment: Results from Microarray Analysis Zhijun Feng , Xue Li , Zhijian Ren , Jie Feng , Xiaodong He , and Chongge You Lanzhou University Second Hospital, No. 82, Cuiyingmen, Chengguan District, Lanzhou, Gansu, China Correspondence should be addressed to Xiaodong He; [email protected] and Chongge You; [email protected] Received 30 March 2020; Accepted 3 June 2020; Published 26 June 2020 Academic Editor: Osamu Handa Copyright © 2020 Zhijun Feng et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Gastric cancer is a disease characterized by inflammation, and epithelial-to-mesenchymal transition (EMT) and tumor-associated macrophages (TAMs) both play a vital role in epithelial-driven malignancy. In the present study, we performed an integrated bioinformatics analysis of transcriptome data from multiple databases of gastric cancer patients and worked on a biomarker for evaluating tumor prognosis. We found that cadherin 11 (CDH11) is highly expressed not only in gastric cancer tissues but also in EMT molecular subtypes and metastatic patients. Also, we obtained evidence that CDH11 has a significant correlation with infiltrating immune cells in the tumor microenvironment (TME). Our findings reflected that CDH11 likely plays an important role in tumor immune escape and could provide a prognostic biomarker and potential therapeutic target for patients with gastric cancer.
    [Show full text]
  • Genetic Influence on Scar Height and Pliability After Burn Injury in Individuals of European Ancestry: a Prospective Cohort Study
    The University of Notre Dame Australia ResearchOnline@ND Medical Papers and Journal Articles School of Medicine 2019 Genetic influence on scar height and pliability after burn injury in individuals of European ancestry: A prospective cohort study Hilary J. Wallace The University of Notre Dame Australia, [email protected] Gemma Cadby Phillip E. Melton Fiona M. Wood Sian Falder See next page for additional authors Follow this and additional works at: https://researchonline.nd.edu.au/med_article Part of the Medicine and Health Sciences Commons This article was originally published as: Wallace, H. J., Cadby, G., Melton, P. E., Wood, F. M., Falder, S., Crowe, M. M., Martin, L. J., Marlow, K., Ward, S. V., & Fear, M. W. (2019). Genetic influence on scar height and pliability after burn injury in individuals of European ancestry: A prospective cohort study. Burns, 45 (3), 567-578. Original article available here: https://doi.org/10.1016/j.burns.2018.10.027 This article is posted on ResearchOnline@ND at https://researchonline.nd.edu.au/med_article/1063. For more information, please contact [email protected]. Authors Hilary J. Wallace, Gemma Cadby, Phillip E. Melton, Fiona M. Wood, Sian Falder, Margaret M. Crowe, Lisa J. Martin, Karen Marlow, Sarah V. Ward, and Mark W. Fear This article is available at ResearchOnline@ND: https://researchonline.nd.edu.au/med_article/1063 ©2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 International license http://creativecommons.org/licenses/by-nc-nd/4.0/ This is the accepted manuscript version of an article published as: Wallace, H.J., Cadby, G., Melton, P.E., Wood, F.M., Falder, S., Crowe, M.M., Martin, L.J., Marlow, K., Ward, S.V., and Fear, M.W.
    [Show full text]
  • Novel Target Genes of ZEB1 and Snail1 in Triple- Negative Human Breast Cancer
    Novel target genes of ZEB1 and Snail1 in triple- negative human breast cancer Fredrik Kristoffersson 2016-08-21 Bachelor thesis 30hp; Biomedicine Programme 2016. Department of Medical Biochemistry and Microbiology. Ludwig Institute for Cancer Research. Uppsala University. Supervisor: Varun Maturi (Phd Student), Aristidis Moustakas (Professor). Contents Abstract ................................................................................................................................ 2 Introduction .......................................................................................................................... 3 Aim of the study .................................................................................................................................. 7 Materials and Methods .......................................................................................................... 7 Cell culturing with TGFβ stimulation................................................................................................... 7 TGFβ pathway inhibition ..................................................................................................................... 7 Protein extraction ............................................................................................................................... 8 SDS-PAGE ............................................................................................................................................ 8 Western Blot ......................................................................................................................................
    [Show full text]