GEORGIA INSTITUTE OF TECHNOLOGY OFFICE OF CONTRACT ADMINISTRATION SPONSORED PROJECT INITIATION

Date: 8/10/78

Project Title: Continuous Operation of the French Meteor Radar on Puerto Rico, 1978-79

Project No: G-35-640

Project Director: Dr. R. G. Roper

Sponsor: National Science Foundation, Washington, D.C. 20550

Agreement Period: From 6/15/78 Until 11/30/79* * Includes 6 month flexibility period.

Type Agreement: Grant No. ATM 78-10089

Amount: $74,000 NSF Funds (G-35-640 3 ,252 GIT Contribution (G-35-331) $77,252 TOTAL

Reports Required: Annual Summary Reports; Final Technical Report.

Sponsor Contact Person (s):

Technical Matters Contractual Matters (thru OCA)

Dr. Herbert C. Carlson, Director Ms. Mary Frances O'Connell Aeronomy Program Grants Specialist -'Area 4 Division of Atmospheric Sciences National Science Foundation National Science Foundation 1800 G Street, N.W. 1800 G Street, N.W. Washington, D.C. 20550 Washington, D.C. 20550 Phone: (202)632-2858

Phone: (202)632-4185

Defense Priority Rating: ilia

Assigned to: Geophysical Sciences (School/Laboratory)

COPIES TO:

Project Director Library. Technical Reports Section Division Chief (EES) EES Information Office Scho of/ Laboratory Director EES Reports & Procedures Dean/Director— E ES Project File (OCA) Accounting Office Project Code (GTR1) Procurement Office Other Security Coordinator COCA) Reports Coordinator (OCA),"

SPONSORED PROJECT TERMINATION

Date: June 23, 1981

Protect Title: Continuous Operation of the French Meteor Radar on •Puerto Rico, 1978-80

Project No: G-35-640

Project Director: Dr. R. G. Roper

Sponsor: National Science Foundation

Effective Termination Date: 1/31/81

Clearance of Accounting Charges: 1/31/81

Grantr`Contract Closeout Actions Remaining:

Final Invoice and Closing Documents x Final Fiscal Accounting (FCTR) x Final Report of Inventions Govt. Property Inventory & Related Certificate Classified Material Certificate Other

Assigned to: Geophysical Sciences (School/p,m)

COPIES TO:

Administrative Coordinator Legal Services (OCA) Research Property Management Library, Technical Reports Accounting Office EES Research Public Relations (2) Procurement Office Project File (OCA) Research Security Services Other: __B.eVorts Coordinator (OCA) GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL OF GEOPHYSICAL SCIENCES Atlanta, Georgia 30332 ( 404 IX(X9C1X20G41 October 3, 1979 894-3892

Dr. H. C. Carlson Atmospheric Research Section (Aeronomy) National Science Foundation Room 644 1800 G Street, N.W. Washington, D. C. 20550

Dear Herb:

While I believe I have done a pretty good job in keeping you informed about progress (or lack of same) with the French meteor radar, I did forget to submit an "Annual Technical Letter." It is enclosed herewith.

Best wishes,

Dr. R. G. Roper Professor

RGR+ap

Enclosure fr L0 ' GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL OF GEOPHYSICAL SCIENCES Atlanta, Georgia 30332 MAIAIMO_MYX October 3, 1979 894-3892

To: Dr. H. C. Carslon Atmospheric Research Section (Aeronomy) National Science Foundation Room 644 1800 G Street, N. W. Washington, D. C. 20550

From: Dr. R. G. Roper

Subject: Annual Technical Letter, Grant No. ATM78-10089 (Georgia Tech Contract No. G-35-640) "Continuous Operation of the French Meteor Radar at Ramey, Puerto Rico, 1978-79"

Background: In 1977, the French National Center for Telecommunications Studies (CNET) installed a portable meteor wind radar at Ramey, Puerto Rico. Their purpose was to run four two week campaigns in the fall, winter, spring, and summer 1977-78. After installation, and the first highly successful run in August of 1977, some changes proposed at CNET placed the future of the meteor group in doubt. Subsequently, the principal investigator was involved in discussions with NSF and CNET which eventually resulted in the subject grant. In order to meet the grant objective of continuous operation, conversion of the system from analog tape output (requiring a tape change every 6 to 8 hours, and subsequent analog to digital conversion) to digital tape output--in fact, the reproduction of the system already operated by the French at Montpazier in France--was proposed.

Text: Prior to the commencement of this grant on July 1, 1978, a visit was made to Puerto Rico in March of that year to familiarize myself with the equipment. While there, I interviewed Stanley Henson, who was then employed in Mayaguez, for the position of resident research engineer with the project. Stanley was subsequently hired as of July 1, 1978, and left immediately for two weeks orientation and training on the Montpazier system. He returned to Ramey with two of the French research staff for the July- August, 1978 run. I was able to join them for three days, to plan the finer details of continued operation. The data from this run has been forwarded to John Mathews, of Case Western Reserve, for incorporation with his simultaneously measured Arecibo incoherent scatter data into a joint publication.

The French had hoped to bring the system interface circuitry with them in August, but had detected some faults during checkout, and the interface delivery was delayed until January '79. This timing coincided with the delivery to Tech of the HP21ORM computer, which had been delayed by computer Page 2 Dr. H. C. Carlson October 3, 1979 purchasing procedures required by the State of Georgia. Subsequent on campus testing of the system, using software provided by the French, revealed that economies in hardware purchase had compromised system performance to a greater extent than planned--direct memory access was found to be a necessity, rather than the initially considered luxury! In addition, an original assumption that the French interface circuitry performed the analog to digital conversions proved to be false. The direct memory access circuitry was purchased using funds which had not been required for transmitter AC power (again, with considerable delay because of State purchasing procedures), and the A/D conversion problem was sloved by "borrowing" a converter from the School of Aerospace Engineering.

Meanwhile, in addition to familiarizing himself with the meteor radar, Stan Henson was able to assist Dr. Ralph Dyce, of the Arecibo Observatory, with the upper atmosphere heating facility, and also Dr. David Rind, of Lamont Observatory, with the installation and checkout of an infrasound facility at the Ramey receiving site.

In March '79, Stan Henson and I carried out an eight day run (analog), in conjunction with observations being made by John Mathews at Arecibo. The analog tapes were subsequently reduced and analyzed by the French, and the results will be incorporated in the next report.

A further setback to the program occurred with the resignation of Stan Henson at the end of the contract year. Stan had done an excellent job during a very frustrating period, but for personal reasons wished to return with his family to the U.S. I was fortunate to find as his replacement, Bill Cyphers, who was then a Research Associate in the Instrumentation Lab in Aerospace Engineering. Bill's background in the construction and main- tenance of equipment used in ionspheric research in , Greenland, and the Bahamas while in the Navy suits him ideally for the task which, incidentally, he hopes will be long term! He has, of course, had to spend considerable time familiarizing himself with the equipment since he went to Ramey in July.

We were most fortunate to have Michel Glass of CNET with us for the instal- lation of the computer in August. Without him, the job would have taken months instead of weeks. He worked with Bill for ten days before I took the computer down on August 22. Unfortunately, final system checkout was delayed by Hurricane David. With both Michel and I obliged to leave because of other commitments, Bill has been proceeding at a somewhat slower pace (compared to the six man weeks the three of us put in in six days). Bill first job was to clean up the minimal damage--fortunately, the trailer survived unscathed, and the four antennae blown over were able to be repaired in the field. Dave Rind's gear did not fare quite as well--Bill is currently relaying cable, prior to installation of some new sensors.

Bill has not been able to remove what we hope is the last "bug" from the Page 3 Dr. H. C. Carlson October 3, 1979 digital system, but has plenty to keep him busy in that the Coastguard, who took over our transmitter site from the Navy early this year, wants to use the site as a Little League baseball field! We have stalled as long as we can on this issue (hoping that they might make other arrange- ments). Since we do not have all the documentation on the French inter- face, and Rene Bernard is bringing it with him when he visits Tech October 14-17, I hope we can solve the "bug" problem when I go to Ramey again at the end of this month.

The first year of this grant has been frustrating to the extreme--however, it would have been much worse without the support given by Hal Craft, Jim Walker and Ron Woodman, in particular, and other members of the Arecibo Observatory staff. Without their help, the road to Ramey would have been much longer.

While I realize that the grant goal of continuous operation has not yet been met, this objective is now in sight, and I am looking forward to a good year coming up.

Finally, while I have no official word yet, it appears that the French radar will be available for use at Ramey at least through the end of MAP (1985).

Respectfully submitted,

Dr. R: G'. Roper Profesor

RGR+ap GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL OF GEOPHYSICAL SCIENCES Atlanta, Georgia 30332 (4041 894-2857

September 9, 1980

Dr. Vincent Whitmore Atmospheric Research (Aeronomy) National Science Foundation Room 644 1800 G Street, N.W. Washington, D.C. 20550

Annual Technical Letter: Grant No. ATM78-10089 "Continuous Operation of the French Meteor Wind Radar at Ramey, Puerto Rico"

Dear Dr. Whitmore:

This has not been a good year for meteor wind radars, and, unfortunately, the Ramey radar is no exception. Internationally, I know of four facilities, in addition to that at Ramey, which have, or are about to move to new field sites. But first things first:

The contract year started out with a change in field site per- sonnel July 1, 1979. Stan Henson, who had been my resident engineer at Ramey, returned to the States with his family. I was fortunate to be able to replace him with Bill Cyphers, one of the technicians who had worked with me on the meteor radar here at Tech, but, because of the more complex nature of the French system at Ramey, considerable on the job training (mostly self-taught) has been required.

We were fortunate to have Michel Glass of CNET with us at Ramey for the month of August, which coincided with the installation of the HP2108 computer. His presence, and knowledge of the sister system in operation at Montpazier, France, enabled the installation to proceed far more swiftly than had he not been present. However, there were some prob- lems with the hardware interface which were not sorted out when he left. Bill Cyphers had most of these solved by early October when a lightning strike on the powerline took out some 30 integrated circuits and a fistful of diodes in the radar control module, and the direct memory access and one memory board in the computer (lightning arresters have been installed which will hopefully prevent a recurrence of this problem). Considerable time (for which we were not charged) was wasted while the HP service engi- neer from San Juan familiarized himself with our magnetic tape based system (he had not seen one before). The bill for replacement boards was still substantial. Dr. Vincent Whitmore September 9, 1980 Page Two.

In early November, we received an ultimatum from the Coastguard, who had taken over from the Navy the land on which the transmitter was located, to move the transmitter. To make a long story short, through the good graces of the FAA and PRIDCO (the government Puerto Rico Industrial Development Company), with both of whom Bill Cyphers had been able to estab- lish rapport, we were able to relocate the transmitter just outside the air- port fence adjacent to Gate 5 at Ramey Base. Antennas were set up and the property fenced.

When the system was brought up again in early February, several problems developed. Bill proceeded to completely realign the master oscil- lator in the receiving trailer, the S band link to the transmitter, the transmitter itself, and finally the whole receiving system. This involved some rebuilding of the equipment, and the discovery that, unless the receiv- ing trailer was kept at 25 + 2°C, the pilot frequencies were attenuated by drift in the respective passive filters (the discovery was made when one of the air conditioners failed - Bill subsequently replaced a drive motor bearing). Tests were run in late March, and I went down to Ramey in April. A problem with the echo date/time clock was solved, and what was hoped to be routine observation was commenced. The first data tape was dispatched to France for assessment in May.

In July, Dr. J-L. Fellous, of CNET, and I met at the Equatorial Aeronomy Conference in Aguadilla, P.R., and discussed the results of the first tape reduction. Because of gaps in the data caused by a lack of adequate documentation on the start up procedures after a power failure (not a week goes by without a P.R. Power Company outage!) the tape was marginal for wind reduction, although the individual echo statistics were excellent.

Dr. Fellous spent some time with Bill at the fieldsite, reviewing startup procedures and echo acceptance limits, and we were all set for a site visit by Conference participants when the computer failed (a classic example of Murphy's Law!). The fault was traced to the computer power sup- ply mother board, but without knowledge of the equivalents to the HP brand numbers on the chips, could not be fixed. (A new mother board was subse- quently flown in from the States and installed by HP - unfortunately, well after the Conference was over).

Since Bill had worked non-stop for over a year, he took a few days off at the end of August. On his return, one of the air conditioners in the receiver trailer would not start up, and without it the trailer temperature cannot be maintained within the required tolerance. Bill is now in the process of fixing the air conditioner.

To help overcome part of the power failure problem, a memory pro- tect board for the computer has been purchased, and was mailed to P.R. last week. Dr. Vincent Whitmore September 9, 1980 Page Three.

Once the air conditioner is fixed, we anticipate being able to proceed with our goal of routine continuous operation. Having survived the last twelve months, Bill and I feel we can survive anything. We just hope we don't have to!

Yours sincerely,

Dr. R. G. Rdper Professor

RGR/spz NA I ION 1L SCIENCE FIR NI) i LION Yvislitil.;too, D.C. 211i50 FINAL PROJECT REPORT N-,1 I OI0.1 '041 PLE.ISE RE in IVSTR( C170.\S (1.• REVER`;2 - RLFORE ( .01PLETING 1, .\ RI' I -pRowc -r IDE.NnFi(Ari()N INFORM \ HON libliut•..)0 and \ Udres5 I. 2. NSF Prkwram 3. NSF kart1 Numucr Georgia Institute of Technology Atmospheric Res.(Aeronomy) ATM78-10089 School of Geophysical Sciences 4. Award Penod 5. CumuLaro. AnNahl Amount Atlanta, Ga. 30332 From 6/15/78 To 1/31/81 $127,000 0 eth-t,,t itth, Continuous Operation of the French Meteor Radar on Puerto Rico, 1978-80

PART ll—SI \I\I.\RY OF COMPLETED PROJECT (FOR Pf131/C (SE) This grant resulted from an offer to the National Science Foundation by the French National Center for Telecommunication Studies (CNET) to leave the portable meteor:wind radar which they had installed at Ramey, Puerto Rico, on site if it could continue oper- ation. As installed by the French, the system recorded realtime data in analog form, at the rate of some 7200 feet of tape a day. Subsequent processing of these tapes was a time consuming operation. It was decided that, if the system was to operate continuously (highly desirable from the scientific point of veiw), computer control of the radar, with iigital tape output (approximately 2400 feet of tape a week, with rapid subsequent pro- :essing) was essential.

During the grant period, analog data was gathered in August, 1978, and March, 1979. The computer was installed in August, 1979; final system checkout was interrupted in )ctober by a lightning strike on the receiver trailer, which decimated part of the inter- Face circuitry, and two boards in the computer. Subsequent repair was interrupted by a iirective from the U.S. Coastguard, who had assumed control of the Navy land on which the transmitter was located, to remove same. A new site was found, the transmitter relocated intennnae re-erected, and the receiving site refurbished. Operation recommenced in April 1980. The long term continuous operation has been prejudiced by the frequent outages and ow voltage of the power lines. Data was gathered from April through June, 1980, and (gain August through September,1980. Low line voltage significantly affected the quality If the data through February, 1981. The system has been in continuous operation since larch, 1981, when a new powerline was installed, at no cost to the project, by the tuerto Rican Electric Power Company.

rut c HI -It cliNi(I.‘i iNvoioi, ■ lioN • •on p..;()GR t.vt .11 I.\ 1(;,ctIEVr LSES 10 liE I i RNISill D ITI '.11(7,,, , i. PREVIOFSL'i SF/' \ RA 11 LY 10 PR )(.R \\1 jporopo.Ife bOc( o NONE \ ETACIILD I l'RNISIII D — ( l'"-k 1 6 I \PP ,0 `.. [)it ,2 . \ 1).tt 1,t, of 11.,,,,5 X __ _ _---.--_ P.ini,,Iti.,n ( 1(1(0,1,

DILI II 1,,cn(111.: ■ “VI II),)f,lt,r, X . ‘111 , )(tl II, , ,11 1(1 inv. rit:,,I1', — X 1.:_nin .i I) ,.: —rip'' , HI .,( l'•.)1,-L t ,nd lt,.. nllii X 5/31/81 ott,,,.,,,,,,t o

1 , ;;;;:i„titt-,ti t tc.tt t t t-k 7 t ti ( ) link i“i • i (III.' / I i , , l) 1 CI ■ 11 , ip il 141, / 1 . 1 , 11. 1.1 1 , 11 (k i411 SIFII UM , 1, illtC Dr. R. G. Roper 4/29/81 Publication Citations:

R. G. Roper, "Dynamics of the Equatorial Mesopause," presented at the Sixth International Symposium on Equatorial Aeronomy, Aguadilla, Puerto Rico, July, 1980.

Data on Scientific Collaborators:

The following French scientists from the French National Center of Telecommuni- cations Studies (CNET) have contributed significantly to this project:

Dr. Rene Bernard, data reduction and interpretation

Dr. Jean-Louis Fellous, with insights into equipment operation, and data analysis and interpretation

Dr. Michel Glass, who arranged to vacation with his family in Puerto Rico in August, 1979, and spent most of that time ensuring the satisfactory installation of the computer in the receiver trailer at Ramey

CNET itself, for providing use of the portable meteor wind radar. FINAL TECHNICAL REPORT GT/PROJECT NO. G-35-640

CONTINUOUS OPERATION OF THE FRENCH METEOR WIND RADAR AT RAMEY, PUERTO RICO, 1978-80

By R. G. Roper

Research Supported by THE ATMOSPHERIC RESEARCH SECTION (AERONOMY) NATIONAL SCIENCE FOUNDATION

Under Grant No. ATM78-10089

Contract Period July 1, 1978 — January 31, 1981

November 1981

GEORGIA INSTITUTE OF TECHNOLOGY A UNIT OF THE UNIVERSITY SYSTEM OF GEORGIA SCHOOL OF GEOPHYSICAL SCIENCES ATLANTA, GEORGIA 30332 CONTINUOUS OPERATION OF THE FRENCH METEOR WIND RADAR AT RAMEY, PUERTO RICO, 1978-80

R. G. ROPER

Georgia Institute of Technology School of Geophysical Sciences Atlanta, Georgia 30332

Final Technical Report on Research Supported by the Atmospheric Research Section (Aeronomy) of the National Science Foundation, under Grant No. ATM78-10089

Georgia Tech Project No. G-35-640 Contract Period July 1, 1978 - January 31, 1981

November, 1981 The modification and operation of the meteor wind radar at Ramey, Puerto Rico, is a joint venture of the French Nation- al Center for Telecommunications Studies (CNET) and the Geo- rgia Institute of Technology. The generosity of CNET in ma- king the radar available for operation beyond its original 1977-78 dedication to the measurement of equatorial meso- pause level winds, and the cooperation shown by the French engineers and scientists, particularly Drs. Michel Glass, Rene Bernard, and Jean-Louis Fellous, is gratefully acknow- ledged. CONTENTS

ABSTRACT

1.1 INTRODUCTION 1.2 The CNET Portable Meteor Wind Radar 1.3 Georgia Tech Operation of the Ramey Radar 1.4 Routine Operation of the Ramey Radar

2. RESULTS 2.1 May 15 - June 11, 1980 2.2 August 11 - August 23, 1980 2.3 Comparison of the Results of 2.2 with Arecibo Observations 2.4 October 6 - October 15, 1980

3. FUTURE OPERATION REFERENCES APPENDIX I CNET SYSTEM BIBLIOGRAPHY APPENDIX II DYNAMICS OF THE EQUATORIAL MESOPAUSE (Paper presented at the Sixth International Symposium on Equatorial Aeronomy, Aguadilla, Puerto Rico, July, 1980) APPENDIX III THE DATA ACQUISITION COMPUTER PROGRAM

APPENDIX IV THE DATA REDUCTION COMPUTER PROGRAMS Continuous Operation of the French Meteor Wind Radar at Ramey, Puerto Rico, 1978-80

ABSTRACT

The objective of this two year grant was to obtain con- tinuous measurements of equatorial atmosphere winds between al- titudes of 85 and 105 kilometers, using the meteor wind radar installed by the French National Center for Telecommunications Studies (CNET) at Ramey, Puerto Rico (18°N, 67°W) in 1977. The proposed continuous operations involved conversion from the analog recording mode used by the French in their 1977-78 cam- paigns to computer control and digital data recording. The con- version was completed, and the first digigal tape recorded in April, 1980. Continuous records were obtained in 1980 from May 15 through June 11, August 11 through August 23, and October 6 through October 15, and these have been reduced to winds. Two major problems were encountered. The first, due to F region backscatter of the radar signal folding back into the range gate interval, is obvious in the records, and blanketed what would have been useable echoes. This backscatter is a "daytime" phenomenon, commencing soon after sunrise and persisting into the evening hours: it is decreasing as solar activity decreases. The second was due to incorrect sampling of the received noise level, resulting in rejection of additional echoes for what was interpreted by the system as an insufficient signal to noise ratio. 2

A continuous problem has been line power outages, and more seriously, undervoltage, leading not only to system mal- function, but also to hardware failure. A new power line, in- stalled by the Puerto Rican Power Company, has eliminated the low voltage problem. Power outages continue to be the major source of system downtime. The system has been in continuous operation since late February. 1981, but these tapes have not yet been Processed. 3

1.1 Introduction

In the spring of 1977, the French Centre Nationale d' Etudes de Telecommunications (CNET) installed a portable me- teor radar system at Ramey, Puerto Rico, to measure equato- rial mesopause level winds. The site was chosen for its prox- imity to the Arecibo Observatory, and its accessibility (direct flights between San Juan and Paris, necessary since the system was operated in a campaign mode, with approximately 10 days data being gathered every three months). The radar system had been well tested, being used not only in France, but at Kiruna in Sweden, observing high latitude mesopause level winds. Ex- cellent technical manuals describing the system have been pub- lished (see Appendix I for list).

In late 1977, CNET suggested to NSF that the system could remain in Puerto Rico after their planned program was over, pro- vided someone was interested in operating it. This grant re- sulted from these deliberations. One disadvantage of the system as operated by the French was that all recording was done on analog tape in real time. The thirty or forty tapes resulting from each ten day campaign were taken back to France. replayed at a four times real time rate, useable echoes digitized, and subsequently processed to produce winds. A similar system operated by CNET at Montpazier France, was computer controlled, and produced digitized echoes 4 in real time, one digital tape being the equivalent of twenty analog tapes. It was decided that the most desirable mode of operation of the system was to record data continuously, in order to in- vestigate the synoptic dynamics of the equatorial mesopause. For such operation. computer control with digitized output was essential.

1.2 The CNET Portable Meteor Wind Radar

This radar evolved from the Garchy system described in de- tail by Spizzichino (1972). The original Garchy system was con- tinuous wave (CW), with three frequencies transmitted simultan- eously in order to measure range. In order to gate out aircraft interference (the major disadvantage of CW operation), a long pulse system was developed. The system measured only one compo- nent of the wind; as installed at Ramey (18°N, 67°W), it measures the zonal component, looking eastward so as to sample a volume of the atmosphere in common with the incoherent scatter radar at the Arecibo Observatory (see Figure 4, Appendix II). As originally installed by the French in the summer of 1977, the transmit and receive sites were separated by a few km, with the transmitter on Navy land on the edge of a recreational area in the town of Ramey, and the receivers on the grounds of the U.S. Air Force Ramey Solar Observatory. All the radio frequen- cies required by the system are generated at the receiving site; 5 those required by the transmitter are beamed to the transmit- ting site on a microwave link. An exhaustive calibration of the system is performed automatically every ninety minutes - receiver linearity is checked as are the antenna-receiver - phase meter echo arrival angle determinations, and the cali- brations recorded for use in subsequent data reduction. As originally installed by the French, all receiver outputs were written in analog form on A continuously running magnetic tape.

1.3 Georgia Tech Oneration of the Ramey Radar

The hiring of Stanley Henson on July 1, 1978, marked the commencement of Georgia Tech involvement with the French Meteor Radar at Ramey under the subject grant. Stan left illanediately for France for two weeks orientation and training on the Mont- pazier system, a "twin" to the analog recording Ramey radar, but with comnuter control and digital output. He returned to Ramey with two of the French CNET research staff for the July- August, 1978 campaign. The winds deduced from this run have been published. (Mathews, et al, 1981). The French had hoped to bring the system-to-computer inter- face circuitry with them in July, but had detected some faults during checkout, and the interface delivery was delayed until January, '79. This timing coincided with the delivery to Tech of the HP2108M computer, which had been delayed by purchase 6

procedures required by the State of Georgia. Subsequent on- campus testing of the system, using softwave provided by the French, revealed that economy in hardware purchase had compro- mised system performance to a greater extent than planned - di- rect memory access was found to be a necessity rather than the initially considered luxury. In addition, an original assump- tion that the French interface performed the analog to digital conversion proved to be false. The direct memory access cir- duitry was purchased using funds which had not been required for transmitting AC power, and the A/D conversion problem was solved by "borrowing" a converter from the School of Aerospace Engineer- ing (this HP 5610A A/D converter was subsequently purchased by the project). In March, 1978, Stan Henson and the Principal Investigator carried out an eight day run (analog), in conjunction with obser- vations being made by Dr. J. D. Mathews of Case Western Reserve University, using the 430MHz Arecibo radar for D region drift measurement. The analog tapes were subsequently reduced at CNET, and the results presented at the Sixth International Symposium on Equatorial Aeronomy, Aguadilla, Puerto Rico, July, 1980. (see Appendix II). Because of the delay in computer installation, Stan was able, during this period, to assist Dr. Rolph Dyce, of Arecibo Observa- tory with the installation of the HF Heating Facility at Arecibo, and Dr. David Rind, with the installation at the Ramey Solar Ob- servatory, of an infrasound detection system designed to measure winds in the upper stratosphere and the lower thermosphere. 7

At the end of the first contract year, (in June, 1979), Stan Henson resigned and returned with his family to the U.S. Stan had done an excellent job during a very frustrating per- iod. He was replaced by Bill Cyphers, a Research Associate in the Instrumentation Lab in Aerospace Engineering. Bill's background in the construction and maintenance of equipment used in ionospheric research in , Japan, Greenland, and the Bahamas while in the U.S. Navy suited him admirably to the task. The installation of the computer took place in August, 1979, We were most fortunate to have Dr. Michel Glass of CNET available at this time. He arranged to vacation with his family in Puerto Rico, and spent most of this vacation in the receiver trailer. He worked for ten days with Bill preparing the trailer, before the principal investigator arrived with the computer on August 22. Without Dr. Glass' assistance, and his intimate knowledge of the French system, the computer installation would have taken months instead of weeks. Unfortunately, final system checkout was delayed by Hurricane David. With both Dr. Glass and the principal investigator obliged to leave because of other commitments, Bill proceeded to clean up the (fortunately) minimal damage. The trailers were unscathed. The four uprooted antennae were able to be repaired in the field. The infrasound equipment did not fare as well. Bill had to relay cable, and replace sensors, and repair amplifier input circuitry destroyed by lightning. 8

The last "bug" had almost been removed from the system when, in October,a lightning strike on the power lines destroyed some 30 integrated circuits and a fistful of switching diodes in the radar controller, as well as the direct memory access circuitry of the computer. No sooner was this damage repaired, than the U.S. Coastguard, which had obtained possession of the transmitter site from the Navy, requested the removal of the transmitter trailer and antennae. With the considerable help of Arecibo Observatory personnel, the Federal Aviation Admini- stration, and the Puerto Rican Industrial Development Organiza- tion, a new site near Gate 5 of Ramey was identified and, with Coastguard help, the equipment was moved. By the time power was connected, and the new site fenced, it was not until March 1980, that preliminary runs to determine system performance were resumed. The first reliable data was recorded in April, and was sent to CNET for assessment.

1.4 Routine Operation of the Ramey Radar

The aim of this project was to continuously record meas- opause level winds over Ramey, Puerto Rico. During 1980, con- tinuous records were obtained for the periods:

May 15 - June 11 August 11 - August 23 October 6 - October 15

Winds produced from these data are presented in Section 2. 9

Two major problems have arisen in attempting to maintain continuous operation of the system. Frequent "brownouts", power outages and lightning strikes not only resulted in lost data, but also in equipment failure. Maintenance of an equita- ble temperature and humidity environment requires continuous air conditioning of the receiver trailer. "Brownouts" have caused air conditioning failures and, because of lack of avail- ability of replacemnt parts, have taken time to fix. Problems with the computer related to both power and environment, coup- led with distance from the nearest field representative (in San Juan) have also resulted in considerable downtime. coltauination of data by F region backscatter folding back into the acceptable echo range gate has resulted in a marked decrease in useable echo rate. This interference is decreasing as sunspot activity decreases. Incorrect sampling of the receiver noise levels also resulted in data loss because of an apparently low signal to noise ratio. This fault has been rectified. 10

2. Results

The results produced by the CNET meteor radar at Ramey, Puerto Rico, represent the first concerted attempt to obtain reg- ular measurements of equatorial mesopause level dynamics since that made by the Soviet Union over Somalia (Africa) in the late 1960's (Babadzhanov et al., 1970). The preliminary results pre- sented here have been produced by the application of the wind analysis of Groves (1959). Each continuous run is broken down into intervals ranging in length from two to eight days, depending on acceptable echo rate. A third order polynamical (cubic) vari- ation with height for the mean zonal wind, and for the amplitudes and phases of the diurnal and semidiurnal zonal wind components, was found in all cases to provide the best fit of the Grove's model to the data. It should be noted that these are preliminary results only - contamination of the meteor echoes by F region backscatter has proved to be a problem during this sunspot maximum; attempts are being made to devise a better signature recognition and echo pro- cessing algorithm to minimize the effects of this interference on the results.

2.1 Results for May 15 - June 11, 1980 The wind results for the intervals May 15 - 22 May 22 - 29 May 29 - June 2 June 2 - June 6 and June 6 - June 11

• 11

Vein, PUERTO RICO. ZONAL PEAK WIND 1980

IDS

100

95

90

85

18 25 1 8 MY JUNE

WV, PUERTO RICO ZONAL 9I11RIU1 WIND PAY-JUNE, 1980

VELOCITY PHASE 105 A I r( \ o M'ir 0 a N:,. ■ 100 el ...... A 1 t 7 A 1 \ El . • a m A / I A I g II I A t 0 • so . As...... 4 ‘,0 90 ...--i' CI' •

20 40 so 6 12 18

WET, PUERTO RICO Mt SENIDIURIAL WIND NAY - JUNE, 1980

105 PRASE .71 ./ ? . tt ril ' ' 100 ...... - 1,1 / .• Ao 0 \ I of

1 ,.1 nn.u • • /1 41;(*. 1, la 0 ......

85

20 40 3 6 9 12 Figure 1. Ramey radio meteor wind results for May 15 - June 11, 1980. Zonal mean wind countours are plotted at 20m sec -1 intervals, with the full contours representing eastward flow (westerly wind). • May 15 - 22 0 May 22 - 29 A May 29 - June 2 June 2 - 6 June 6 - 11 12

are shown in Figure 1. The structure with both height and time of the zonal mean wind over the four week interval shows a variation in keeping with the existence of synoptic "weather" at these altitudes, in keeping with similar results from mid latitudes. The vertical structure of the diurnal wind is highly variable also, in keeping with mid latitude measurements, while the phase (local mean solar hour of maximum eastward amplitude) shows a mo- notonic decrease with time, which could be interpreted as measure- ment of a periodic wind with a period closer to 23 than 24 hours. Note that amplitudes as high as 60m sec -1 are observed, a common feature of the equatorial mesopause level circulation. The variation with time of the semidiurnal wind amplitude could possibly be coupled with the synoptic "weather" indicated by the zonal mean, but its phase variation would favor mode changes. May 15-22 and May 29-June 2 evidence decreasing phase with height (upward propagation), while the other intervals are characterized by a phase increase with height, possibly indicating an energy source in the thermosphere above.

2,2. Results for August 11-23, 1980

This somewhat shorter interval again reveals the complexity of the dynamics of this region. The zonal mean is predominantly westward, modified by the presence of a short lived eastward cell at 90km, and a longer lived eastward flow above 100km. 13

MU, P.R. ZONAL PEAR WIND 1980

105 ;Li

100

95

90

11 MUST

WY, PUERTO RICO 2OIl4L DIUMUI VIM AU5051, 1980 VELOCITY • • • • • • • 71. ri . A 95 / cy

■ • A 85

20 AO 60

IMEY, PUERTO RICO ZONAL SEPIIDIUMAL WIND N161151, 1980

105

100

95

90

R5 20 60 6 9 12

Figure 2. As for Figure 1, for August 11-23, 1980

August 11 - 13 0 August 13 - 16 A August 16 - 23 14

In contrast with the May - June 1980 results, the diurnal wind is less variable. The relatively constant phase with height would indicate the presence of a basically evanescent mode over this interval. The semidiurnal wind amplitude is again characterized by a waxing and waning, particularly at the 92km level. The minimum in amplitude at 103km are all associated with a retardation of phase with heights of some 2 to 3 hours.

2.3. Comparison of the Results of 2.2 with Arecibo Observations

Figure 3 presents D region wind measurements made by a group from the Japanese Radio Atmospheric Science Center, University of Kyoto (under Dr. S. Kato) using the 430MHZ radar and the 300m dish at Arecibo. This is an application of a technique developed by Dr. John Mathews (Case Western Reserve University) and Dr. S. Ganguly for the measurement of D region drifts, and is applicable around noon when D region electron densities are high enough to produce scatter returns. Several profiles of the zonal wind are produced each hour, and hourly means have been compared with those measured by the Ramey meteor radar (see Appendix II). The complexity of the dynamics of the equatorial mesopause are well illustrated by Figure 3. In addition to considerable height structure at a given time, day by day variations are obvious - for example, there is a complete reversal of the wind pattern at 90km between August 2 and 3, with the August 2 pattern returning on 15

ZONAL WIND 2 RUG 1980 100

9 12 IS 16 LOCAL TIME MUM

ZONAL WIND 3 RUG 1980 100

90 (KM) 80 TITUDE AL 70

60 9 12 IS 18 LOCAL TIME IHOURI

ZONAL WIND 6 RUG 1980 ioo

90 M (K

DE 80 TITU AL 70

60 0 12 15 " 18 LOCAL TIME (HOUR)

Figure 3. Hour by hour zonal wind values measured by the Arecibo 430MHZ incoherent scatter radar for the days and time shown. Contours are at 10m sec - 1 intervals, shaded areas represent eastward flow (westerly wind).

16

MAL VIII INSUST 11 - 13, 1980

80 9 12 15 LOCAL TINE (HOUR)

ZONAL WM AU6UST 13 - 16, 1980 ZONAL HIND 111 RUG 1980

SO 9 12 -15 LOCAL TIME (HOUR)

• 12 LOCAL TIME (MOURI

ZONAL HIND AUGUST 16 - 23, 1980 100

90

SO 12 15 LOCAL TIME (HOUR)

Figure 4. Plots on the left are the result of compounding the mean, diurnal and semidiurnal components as deter- mined by the Ramey meteor wind radar; on the right, as for Figure 3. 17

August 6. It is a pity that days 4 and 5 are missing, but never- theless one would guess that such a time dependence might result from the presence of a 2 day wave (which has been well documented as appearing in summer at mid latitudes, and had been seen pre- viously by the French at Ramey in August '77). In Figure 4 we see a comparison between the radio meteor winds reconstructed from the zonal mean, dirunal and semidiurnal winds as averaged over the three intervals indicated, and the total zonal wind measured by the Arecibo radar from 0830 to 1600 hours local time. Note that the meteor results could have been plot- ted for the full 24 hours of the "typical day" within each inter- val, but have been restricted to the around noon period for ease of comparison with the Arecibo results. A pattern closely approximating the gross features of the Arecibo measurement on August 14 is indicated in the relatively highly smoothed progression of meteor wind results. An attempt is being made to subtract the mean plus tidal components as de- termined by the meteor radar from the Arecibo results (attempts to extract the tides from the 7 hours of Arecibo data have not proved fruitful) in order to isolate the short-period (gravity wave) component.

2.4. Results for October 6-15, 1980

During this period, the zonal mean gradually changed from west- erly to easterly flow (see Figure 5).

18

RANEY, ►.R. Mit REAM VIRD

105

100

95

90

95 6 10 15 OCTOBER, 1980

ROPEY, PLUTO RICO ZCIPAL DIURIPAL WHO OCTOBER, 1980 , 4, o VELOCITY PRASE / 5 /1 105 ► ...... +11". • jr/7 `ate .. J./ " 13 I PC a 0 100 1 5 • :14 2\0 /'-' O 0 \\ i \ .• A\ 1 1 .80 a A 0 0 . I • ,it a - 95 0 V / I \ O & • 0 1 /\•C I I \ I ...,43 I I O A • a a 0 1 • III i A SO - a N00 a 1 / cl' t 7 / 'N. I / 04 • a o it a • I/ •I / \ I / • 00 • 13 16 at 0 •. 20 12 18

1AREY, PUERTO R1CG ECM SERIDIURKA1 110 OCTOBER, 1980

VELOCITY PR! ;E oo 105 ▪ I \ an o • if er 100

95

90

15 20 3 6 9

Figure 5. As for Figure 1, for October 6-15, 1980.

• October 6 - 10 0 October 10 - 11 A October 11 - 13 O October 13 - 15 19

The diurnal wind amplitude underwent a large change toward the end of the observation interval with a node in amplitude and phase change at 103 km, consistent with a reflection from above. This reflection is even better established in the semidiur- nal wind in the same October 13-15 interval. The node in ampli- tude occurs at 98 km, with a complete (6 hour) reversal in phase at this altitude. Further observations of this type could lead to a better understanding of thermospheric models, which could be "tweaked" to produce the measured reflections by varying the model temperature profiles and wind fields. 20

3. Future Operations

In addition to results reported here, data has been gathered from February 24 - May 1, 1981, and represents the longest inter- val of equatorial mesopause level dynamics data ever collected. Final wind analysis of this data is not yet complete. Inability to find a full or even part time replacement for Bill Cyphers when he returned from Ramey to Atlanta in July, 1981, has necessitated the proposal of a campaign schedule for 1981-82. The first campaign will be from November 10 through November 25, 1981, to coincide with measurements being made at Jicarmarca, Peru by the University of Kyoto Radio Atmospheric Research Center, and at Arecibo (using VHF scatter) by the Max Planck Institute, Lindau. This period has been designated as a global measurement interval by IAGA's Global Radio Meteor Wind Studies Project and the URSI/IAGA Cooperative Tidal Observations Program. Campaigns have also been scheduled for February 12 - 22, 1982 April 9 - 19, 1982 and June 11 - 21, 1982. These campaign intervals have been chosen with due regard to the 1982 GRMWSP/CTOP Calendar. 21

References

Babadzhanov, P., B. N. Kalchenko, B. L. Kascheev and V. Fed- ynsky, Vestnik Academia Nauk, S.S.R., Moscow, 40, 36, 1970.

Groves, G. N., "A theory for determining upper atmospheric winds from radio observations on meteor trails," J. Atmos. Terrest.-Phys., 16, 344, 1959.

Mathews, J. D., M. P. Sulzer, C. A. Tepley, R. Bernard, J-L. Fellous, M. Glass, M. Massebeuf, S. Ganguly, R. M. Harper, R. A. Behnke, and J.C.G. Walker, "A Comparison Between Thomp- son Scatter and Meteor Radar Wind Measurements in the 65 to 100 km Altitude Region at Arecibo," Planet Space Sci., 29, 341-348, 1981.

Spizzichino, A., "Meteor Winds Over Europe," Chapter 7 of Thermospheric Circulation, ed. Willis L. Webb, pp.117-180, MIT Press, 1972.

22 APPENDIX I CNET System Bibliography

(1) BELBEOCH G. Project d'etude CNET-DRME, 1274/RSR/AS (1970)

(2) GLASS M., REVAH I., SPIZZICHINO A. Radars meteoriques mo- biles pour l'etude des vents dans la haute atmosphere (Note techn. 1969) EST/RSR/4

(3) REVAH I. Etude des vents de petite echelle observes au moyen des trainees meteoriques (These de Docteur es Sciences, 1968) GBI/NT/77

(4) SPIZZICHINO A.Etude des interactions entre les differentes composantes du vent de la haute atmosphere (These de Docteur es Sciences, 1969) Annexes 22 er 23.

(5) SPIZZICHINO A., DELCOURT J., GERAUD A. et REVAH I. A new type of continuous wave radar for the observation of meteor trails. Proc. IEEE 53 1084-1086, (1965).

(6) BANNEROT G. Etude d'un radar meteorique a frequences al- termees (memoire de Diplome d'Etudes Super- ieures, 1971) Laboratoire de Physique de 1'Ecole Normale Superieure (Paris).

(7) BELBEOCH G. Depouillement automatique d'echoes meteorique (Note techn. a paraitre, 1972) CNET/RST.

(8) DEBERNE D., GLASS M., BOULLET B., et BELBEOCH G. Systeme d'Exploitation par calculateur des radars meteoriques du CNET (Note techn. 1972) GRI/NTP/97 23

APPENDIX II

DYNAMICS OF THE EQUATORIAL MESOPAUSE

R. G. Roper School of Geophysical Sciences Georgia Institute of Technology Atlanta, Georgia 30332 U.S.A.

ABSTRACT

Until recently, our view of the neutral atmosphere dynamics of the equatorial mesopause has been restricted to "snapshots" resulting from either one time campaigns, or intermittent observations. Rockets flown from , the "big gun" launches from Barbados, meteor wind radar data from Somalia and Jamaica, and VHF radar observations from Peru, while producing much information on the nature of motions with periods of up to a day, provided only meager details of the synoptic seasonal meteorology of the region. More recent observations have resulted from the extension to lower altitudes of the incoherent scatter technique at Arecibo, the installation of a partial reflection drift station at Townsville, , and the establishment by the French of a meteor wind radar at Ramey, Puerto Rico. The incoherent scatter and partial reflection facility operate in the "campaign" mode while the French meteor radar is operati-mg continuously. Because of the limited amount of synoptic data available, this review concentrates on results produced by those techniques most likely to be used for synoptic observations in the future. However, since even these promising techniques may not be able to be used in other than a campaign mode (for reasons ultimately financial), a rationale for their use in winter months (on the basis that northern hemisphere winter polar stratospheric warmings are probably a global phenomenon at mesopause altitudes) is presented.

INTRODUCTION the mesopause level over the equator have been of the "snapshot" variety, with a few days of Many observational techniques have been observation, very occasionally repeated sea- used to measure winds at mesopause heights sonally. (The same can also be said for other over the tropics - chemical trails from pro- latitudes, with the exception of the meteor jectiles launched by the "biggun" on radar network in the U.S.S.R. operated by the Barbados (Murphy, et al., 1966), rocket Hydrometeorological Service, which operates grenades over Natal, Brazil (Groves, 1974), continuously, but unfortunately does not mea- radio meteor measurements over Somalia sure wind structure with height.) These (Babajamov, et al., 1970), and Jamaica "snapshots" have revealed considerable vari- (Alleyne, et al., 1974, Scholefield and ability in the winds, but with indications of Alleyne, 1975), VHF radar observations predominant easterlies at the equator, in (Woodman and Guillen, 1974), and incoherent contrast to the predominantly westerly flow scatter observations (Mathews, 1976; Harper, observed at mid latitudes. et al., 1980). More recently, a partial reflection drift station has been set up at RADIO METEOR WINDS Townsville, Australia by the Department of Physics of the University of Adelaide An example of one of these observations, (Dr. R. A. Vincent), and a meteor radar by obtained by a collaborative effort between the French National Center for Telecommuni- the French National Center for Telecommunica- cations Studies (Dr. M. Glass) at Ramey, tions Studies, and the Georgia Institute of Puerto Rico. The various techniques have Technology, using the French meteor radar been reviewed most recently by Woodman located at Ramey, Puerto Rico (18'N), is pre- (1977) and Evans (1978). sented in Figure 1. The zonal wind component Woodman places particular emphasis on of Figure la is predominantly easterly (wind equatorial measurements and the need for vector directed toward the west), for the more observational data. His paper at this first four days of observation, but a strong meeting concentrates on small scale struc- westerly intrusion then develops from above. ture (gravity waves and turbulence), and The intrusion weakens and ascends toward the so this present work will confine itself to end of the observational period. While this tidal and planetary waves and the prevailing phenomenon can be associated with the simul- winds. taneous spring reversal of the zonal strat- spheric circulation, it may also be evidence OBSERVATIONS for the mean flow acceleration by tidal interaction proposed by Miyahara (1979) - as To date, all observations of winds at can be seen from Figures lb and c, both the

24

LONG PERIOD VARIATIONS OF THE ZONAL Itlwal(nee,17.4) remAL wimp RAMEY -RUG- 5EP T 1977

-24125426127,28,2943013111 1213 a 141 I a ir 1 ALT I TUDE a 1 1 1 1 1 I 1N11) .3 20 .. 0 4 /4 4 1 101 20 1 1 1 1 1

4S 11 OS It II rs 24 11.a1Ar1 o ' i ii4Niv/F\': 98

1 0 1 A/ (11.11,41'w) nook 24Ile111t AnrurOt 95 6)

be 92 vs

89

IS ' 86 1r 1 1 1 a. u u SI SS nom n 1 1 I .Itillott

24 1 25 1 26 1 27'29 1 23' 301 31' 1 1 2 '3 9 1977 StAttay (seli,ces) saw/Atm. PoirLOOE 1 1 1 i 1 1 1 . c) TIME (DAY) Figure 2. Radio meteor winds - long period variations. ts

yek

IS •s

n m m le k 12 11 'Oaten Figure 1. Radio meteor winds from 85 to 105 km for the period March 17-24, 1979, over DO Puerto Rico. a) zonal wind; b) 24 hour tidal amplitude; c) 12 hour tidal amplitude.

diurnal and semidiurnal tidal amplitudes have large amplitudes coinciding with the reversal. S O One phenomenon which has received SO SOUTHWARD VELOCITY linissel considerable attention at middle latitudes is the 2 day wave, which has been observed in week to 10 day meteor radar winds in both Figure 3. Meridional winds from the Arecibo the northern and southern hemisphere. By incoherent scatter radar (from Harper, et al., using a low pass filter to remove periods 1980). shorter than 30 hours from 8 days of meteor wind radar data obtained at Ramey in August- September 1977, Glass (private communica- tered in winds at the mesopause level. Note tion, 1978) produced the results shown in that these are meridional winds and that Figure 2. The presence of a wave with a speeds of ±100 m/sec occur - zonal and merid- quasi-2 day period is well illustrated. ional wind speeds are comparable at altitudes above the mesopause, in contrast to the pre- INCOHERENT SCATTER WINDS dominantly zonal flow in the stratosphere and mesosphere below. Some recent results from Harper, et al. (1980), taken using the Arecibo incoherent METEOR/INCOHERENT SCATTER WIND COMPARISONS scatter radar from September 1 to 14, 1977, are shown in Figure 3. The 14 noontime Mathews, et al. (1980) presents several profiles illustrate the variability encoun- comparisons between meteor winds from the

2 5

TOR( OF METEOR TRAIL ACC AAAAA CT IF T ENDS FROM 50 NII TO - 220 RADIUS FROM MAGNETIC EAST AT SO - 105 A.. ALT IT UDE

It 31 . II SAN ALAN Of

11301J•DILL• 0 LOCAT OF 430 MN, • AO RADAR SEAM AT S5 Ern ALTITUDE FOR NT TA IR' N PUERTO RICO Or 45' • 1

liATAIIIN 7 . 7 20 Irn

FORCE

Figure 4. Location and sampling regions of Ramey meteor and Arecibo incoherent scatter radars (from Mathews, et al., 1980).

-NO ••• • • 112222

I 4

a '''' l

il i .4.4C •

..-I. 4r - .• ,....

....

la . •

.sacral(. Ea Iva .NT. a, MOH TIKE RCA►WN: n ONSM:

Figure 5. Comparison between Arecibo incoherent scatter radar winds (dashed lines) and Ramey meteor radar winds (full lines), August 3, 1978 (from Mathews, et al., 1980).

French radar at Ramey and winds from the using this technique. However, there are no incoherent scatter radar at Arecibo. The incoherent scatter winds below 100 km at locations and "zones of echo acceptance" of night, whereas the radio meteor technique the two instruments are shown in Figure 4. produces winds over the 80 to 100 km height One comparison, from 0900 to 1600 hours on range both day and night. August 3, 1978 (Figure 5), shows quite good agreement between the two techniques, with the incoherent scatter winds showing more PARTIAL REFLECTION DRIFTS structure because of better height resolu- tion. Between 1000 and 1400 hours, the inco- This relatively inexpensive technique is herent scatter winds are significant down to capable of measuring winds between 60 and 100 60 km - a real breakthrough when one remem- km by day, and 90 to 100 km by night. The bers that just a few years ago 110 km was first partial reflection drifts experiment the lower limit of reliable wind measurement operating on a routine basis was installed at 26

Townsville, Australia (20°S) by Dr. R. A. continuous data, the association between the Vincent of the University of Adelaide, polar winter stratospheric warming and the Australia. This equipment is capable of con- reversal in the zonal wind at mesopause alti- tinuous operation, but for financial reasons tudes would not be nearly as convincing. is run in the campaign mode. Results from While this data is for mid-latitudes (Atlanta, this experiment are eagerly awaited. 34°N), the effect is so pronounced that it would not be surprising if it extends as far VHF SCATTER RADARS south as Puerto Rico (18°N).

The most recently developed tool cap- CONCLUSIONS able of continuous monitoring of mesopause dynamics is the VHF Scatter Radar. These No mention has been made here of radars have the capability, shared by the satellite remote sensing to monitor meospause partial reflection drift technique, of mea- dynamics. Because winds at these altitudes suring periodicities in wind profiles down to are ageostrophic, conversion of temperature the Brunt Vaissala, and therefore represent fields to winds is well nigh impossible. For powerful tools for gravity wave and turbu- many years to come, and certainly through the lence studies, in addition to planetary waves, Middle Atmosphere Program period, 1982-85, mean winds and tides. Details of this tech- ground based radio techniques will be our nique are to be presented at this meeting by primary source of data on mesopause dynamics Ben Balsley. at all latitudes.

AIRGLOW DRIFTS AND TEMPERATURES ACKNOWLEDGEMENTS

While unable to provide continuous mea- Radio meteor winds from Ramey have been surements (nighttime only, no clouds), air- measured by the French National Center for glow measurements can supplement our know- Telecommunications Studies, and, under a grant ledge of winds (see, for example, Hernandez from the Atmospheric Research Section and Roper, 1979) and provide temperature data (Aeronomy) of the National Science Foundation, of use in modeling mesopause dynamics. by the Georgia Institute of Technology. Pre- paration of this paper has been supported by POLAR STRATWARM EFFECTS AT MESOPAUSE HEIGHTS the Planetary Atmospheres Branch of the National Aeronautics and Space Administration. The necessity for continuous monitoring The Arecibo Observatory is funded by the of mesopause dynamics is illustrated in National Science Foundation through a grant Figure 6 (from Roper, 1978). Without to Cornell University.

REFERENCES 1001.l WOW 114,11406 II • 2, in .01 I, •• • Alleyne, H., Keenliside, W., Kent, G. S., MacDougall, J. W. and Scholefield, A. J., 1974: J. Atmos. Terr. Phys., 36, 171.

Babajanov, B. N., Kalchenko, B. N., Kascheev, B. L., and Tedynsky, V., 1970: Vestnik Academia Nauk, S.S.R., Moskau, 40, 33. fa Evans, J. V., 1978: Rev. Geophys. Space Phys., 16, 195.

Groves, G. V., 1974: J. Br. Interpl. Soc., 27, 499.

Harper, R. M., Fukao, S., Sata, J., Yamasaki, N., and Kato, S., 1980: Submitted to J. •• Atmos. Sci.

Mathews, J. D., 1976: J. Geophys. Res., 81, 4671.

Mathews, J. D., et al., 1980, in preparation. •••• Miyahara, S., 1979: Paper presented at the U.S.-Japan Seminar on Atmospheric Tides and Figure 6. Comparison between zonally aver- Related Phenomena, Fukuoka, Japan, 14-16 aged satellite radiance data and the zonal November 1979. wind at meteor heights over Atlanta (from Roper, 1978). 27

Murphy, C. H., Bull, G. V., and Edwards, H. D., 1966: J. Geophys. Res., 71, 4535.

Roper, R. G., 1978: Preprint volume, 18th Conference on Radar Meteorology, Atlanta, March 28-31, 1978, pub. by the American Meteorological Society, Boston, Mass.

Scholefield, A. G. and Alleyne, H., 1975: J. Atmos. Terr. Phys., 37, 273.

Woodman, R. F., 1977: J. Atmos. Terr. Phys., 39, 491.

'Woodman, R. F. and Guillen, A., 1974: J. Atmos. Sci., 31, 493.

added in proof: Hernandez, G. and R.G. Roper, J. Geomag. Geoelect.,31, 419. 28

Appendix III

The Data Acquisition Computer Program

The Ramey radar is computer controlled, with echo recognition, preliminary data reduction, and digitization being performed in real time. Each echo which satisfies the recognition cri- teria is then written digitally on magnetic tape. A single 2400 foot tape can hold 5,000 digitized echoes, and will need to be changed every 5 to 10 days, depending on the echo rate. Calibrations are also performed automatically at a pre-selected interval (usually every 90 minutes) and the results are also taped. The program keeps a running count of echo statistics, including reasons for rejection, and these are available on the online printer at the push of a button. The statistics are also dumped to tape before every (operator selected) end of file. The programs are written in FORTRAN and Hewlett Packard Assembly Language, compiled under HP-BCS, and written to magnetic tape. The computer system in the field is mag. tape based, and consists of: HP2108 minicomputer, with 32K memory and DMA HP7970B magnetic tape drive, for program loading (with Internal Binary Loader ROM in the 2108) and data writing HP2635A printing terminal, for interactive I/O HP5610 analog to digital converter, for digitization of 8 channels of echo data. Various IO boards in the main frame accept output from a digital clock for echo times of occurance, provide signals to initiate and control the calibration procedure, and monitor the system perfor- mance. All software used, with the exception of the power fail 29 subroutine, was provided by the Groupe Radar Meteorique, Centre Nationale d'Etudes de Telecommunications, France, and has under- gone only minor modification to make it compatible with magnetic tape, rather than paper tape, program and diagnostic input. The program consists of MAIN PROGRAM SUPVS and Subroutines

MINIT COREC CODE TRAIT COMP TBGIO VISU AMPLI RCEOF ETAL TRANS TEMPO MESUR IDIST BYE ENTRE IPHAS WAIT SORT STATS DINIT ALARM MAXIM DCBBI IDETC CORFA INIT NIMT CONAD ALLCO ITRCO RAZ PFAIL

The A/D Converter DMA Driver L5610 must also be loaded 30

PACE 0881 FTH. 4:05 PM THU., S FEB., 1981

0001 FTA4,L 0002 PROGRAM SUPVS 0003 C 0004 C 0005 C SUPERVISEUR DE TACHES 0006 C TASK SUPERVISOR 0007 C (woe C IOUT:BUFFEP D'ENTREES-SORTIES 0009 C I/O BUFFER 0010 C 1V:TABLEAU DES 7 NIVEAUX EN VOLTS 0011 C TABLE CONTAINING 7 AMPLITUDES IN VOLTS 0012 C II: DES PHASES 0 DEGRE 0013 C TABLE CONTAINING ZERO DEGREE PHASES 0014 C 1360; • DES PHASES 360 DEGRES 0015 C TABLE CONTAINING 360 DEGREE PHASES 0016 C IAZ: DES PHASES AZIMUT DES DOUBLETS 0017 C TABLE CONTAINING AZIMUTH PHASES OF THE DIPOLES 0018 C 1ST: DES PHASES SITE DES DOUBLETS 0019 C TABLE CONTAINING THE ELEVATION PHASES OF THE DIPOLES 0020 C 12E,ZEROS ELECTRIQUES 0021 C ELECTRONIC ZEROS 0022 C In.:ZEROS DE DISTANCE 0023 C DISTANCE ZEROS 0024 C IA:POINTS AMPLITUDES 0025 C AMPLITUDES OF THE POINTS 0026 C ICONV:SORTIE DU CONVERTISSEUR A/D DES 7 VOLES 0027 C OUTPUT OF THE 7 CHANNEL A/D CONVERTER 0028 C B4POINTS AMPLITUDE EN DBM 0029 C AMPLITUDES OF THE POINTS IN DBM 0030 C BRR:BRUIT INSTANTANNE A FFP 0031 C INSTANTANEOUS NOISE IN FFR 0032 C IPHIIPOINTS DES 5 PHASES 0033 C POINTS CONTAINING 5 PHASES 0034 C NECO4NUMERO DE L'ECHO ENTRE 2 ETALONNAGES 0035 C NUMBER OF ECHOS BETWEEN 2 CALIBRATIONS 0036 C IRJT:TABLEAU MEMORISAHT TOUS LES REJETS 0037 C TABLE SAVEING ALL THE REJECTS 0038 C IFIMD,MOYENNE DES 4 PHASES 0039 C AVERAGE OF 4 PHASES 0040 C 0041 DIMENSION 81100> 0042 C 0043 COMMON IOUT(300),IV(7),1(5),I360(5),IAZ(4),IST(4), 0044 112E<2),I2D(2),IA(100),ICONV(8),IPHI(5,35), 0045 2NECO,IRJT(12),IFIM0(4),ITR(3),IALF0 0046 COMMON IRRF,IRR2,IEMAX(4),IKNI,IRR3 0047 C 0048 EQUIVALENCE (8(1),IOUT(97)) 0049 EQUIVALENCE (BRR,IOUT(297)) 0050 C 0051 WRITE(6,600) 0052 600 FORMAT(/////,• PROGRAMME SUPERVISEUR 0053 • /, JOB CONTROL . , 0054 1/////) 0055 GO TO 120 31

PACE 0002 SUPVS 4:05 PM THU., 5 fEb., 1 981

0056 78 WRITE(6,1 1 00 0057 110 FORmAT(/,'INIT ECART 0058 /,'INIT PHASE SHIFT..._') 0059 READ<1,.) 1E11AX 0060 GO TO 500 0061 120 IEMAX(1)•40 0062 tEMAX(2)•15 0063 IEMAX(3)•15 0064 IEMAX(4)•10 0065 C 0066 500 CALL RAZ 0067 C 0068 CALL BYE(1024) 0069 C 0070 WRITE(6,100) 0071 REAO(1,.) NTASK 0072 IF (N0ASK)250,250,800 0073 800 IF(NTASK-6) 850,850,60 0074 850 ITASK.NTASK-1 0075 CO TO (10,20,20,40,50,70),NTASK 0076 10 WRITE(6,1) 0077 IREA416 0076 C 0079 CALL ALARWIREP) 0080 C 0081 GO TO 200 0082 20 CO TO(15,25),ITASE 0083 15 WRITE(6.2) 0084 GO TO 1000 0085 25 WRITE(6,3) 0086 C 0087 1000 CALL MONIT(1TASK,8,8RP) 0088 C 0089 GO TO 200 0090 40 9R/TE(6,4) 0091 C 0092 CALL TRAIT 0093 C 0094 GO TO 200 0095 50 WRITE(6,5) 0096 C 0097 CALL VISU 0098 C 0099 200 WRITEc6,300) 0100 GO TO 500 0101 250 WRITE(6,350) 0102 C 0103 REWIND 10E1 0104 C 0105 STOP 7777 0106 C 0107 60 WRITE(6,400) 0108 GO TO 500 0109 100 FORMAT(//,"DUELLE TACHE VEUX-TU EFFECTUER... 0110 /,'WHAT TASK IS TO BE PERFORMED..• _")

PAGE 0003 SUPVS 4:05 PM THU., 5 FES., 1981

0111 1 FORMAT(//,'08008 MAINTENANCE DE LA CANINE DE RECEPTION', 01)2 1' 0113 • /,"***** RECEIVER MAINTENANCE ***** ") 0114 2 FORMAT(//,' 00000 DEPOUILLEMEN1 TEMPS DIFFERE ***** 0115 /,410000 OFF LINE DATA REDUCTION 0116 3 FORMAT(//,"***** DEPOUILLEMENI TEMPS REEL 00000', 0117 /,'00000 REAL TIME DATA REDUCTION *****") 0118 • FoRMAT(//,' ** * ** TRAITEMENT DES DONNEES *0000", 0119 /,'1111*** TREATMENT OF THE DATA ***** ") 0120 5 FORMAT(//,' ***0* GESTION DE LA SANDE NUMERIOUE *0100", 0121 /,'0008* MANAGEMENT OF A DIGITAL TAPE WON") 0122 300 FORMAT(//,•TRAVAIL TERMINE", 0123 /,'STOP WORK") 0124 350 FORMAT(//,•TRAVAIL TERMINE-AU RENOIR", 0125 /,'STOP WORK - GOOD BYE") 0126 400 FORMAT(//•ERREUR LANS LE NUMERO DE LA TACHE-RECOMMENCE", 0127 /"ERROR IN THE TASK NUMBER - RESTART") 0128 END

FTN4 COMPILER: HP92060-16092 REV. 2001 (791101)

.. NO WARNINGS NO ERRORS PROGRAM • 00605 COMMON • 00641

32

PACE 0004 FTN. 4:05 PM TNU., 5 FEB., 1981

0129 SUBROUTINE MONITCHUMER,B,BRRJ 0130 C 0131 C 0132 C MON/TEUR DE DEPOUILLEMEHT 0133 C MONITORS THE DATA REDUCTION 0134 C 0135 C NUMER.1 TEMPS DIFFERS 0136 C OFF LINE 0137 C NWER•2 TEMPS REEL 0136 C REAL TIME 0139 C IER,ETALONNAGES DE REFERENCE EN VOLTS 0140 C REFERENCE CALIBRATION IN VOLTS 0141 C JEINF,SORNES INFERIEURES DES ETAL, DE REFERENCE 0142 C LOWER LIMIT OF THE REFERENCE CALIBRATION 0143 C JESUP;BORNES SUPERIEURES 0144 C UPPER LIMIT OF THE REFERENCE CALIBRATION 0145 C IEP:ETALONNAGES DE LA SERIE PRECEDENTE 0146 C CALIBRATION OF THE PREVIOUS RUN 0147 C JET.vOIES A MULTIPLEXER POUR LE TEMPS REEL 0148 C muLTIPLEYEP CHANNELS FOR REAL TIME DATA REDUCTION 0149 C ITRLu: .1 51 ECHO RECONHU APSES TOUS LES TESTS 0150 C IF AN ECHO IS ACCEPTED AFTER ALL THE TESTS 0151 C [FLAG: •1 CODE 14 PENDANT OU JUSTE APRES UN ETAL. 0152 C CODE 14 DURING OR JUST AFTER A CALIBRATION 0153 C 0154 DIMENSION IER(17),JEIHF(17),JESUP(17),IEP(19), 0155 IJET(29),13(100) 0156 C 0157 COMMON IOUT(300),Iv(7),I0<5),1360(5),IAZ(4),IST,4), 0159 112E(2),120(2),IA(100),ICONv(8),IPNI(5,35), 0159 2NECO,IRJT(12) 0160 COMMON IBAFE(8),IRR1,IRR2,1EMAK<4),IKHI,IRR3 0161 C 0162 BRITE(6,300) 0163 300 FORMAT(//,"NONTE LA SANDE", PAGE 0005 MONIT 4:05 PM TAU- 5 FEB.. 1981 0164 /,•MOUNT THE TAPE") 0165 WRITE(6,5000) 0166 5000 FORMAT (// • PRESS RUN WHEN READY.) 0184 WkITEk6,29ii 0167 C 0165 299 FORMATk•DEMARRE L'ALLCO",/, 0168 PAUSE t 4186 "STITCH ON THE ALLCO•, 0169 C 1111 GO TO (3001,3003),NUmER 0170 C INIT DES ECARTS PHASES 0188 3001 WR11E(6,3100) 0171 C INITIALIZE THE PHASE SHIFTS 0189 3100 FORMAT(•DFMAPPE LE MACHET0FACNE 1 ,/. 0172 C 0190 'SWITCH ON THE TAPE RECORDER") 0173 NEC0 ■ 0 0191 3003 WRITE(6,5000) 0174 IDE8.0 0192 C 0175 C 0193 PAUSE f 0176 CALL ENTRE(NUMER) 0194 C 0177 C 0195 VALF0•10UT(15) 0178 WRITE(6,301) 0196 NOmIOUT(13) 0179 301 FORMAT(//,•AFFICHE L'HEURE", 0197 NI.IOUT(9) 0180 /,•SET THE HOUR') 0198 NPRIN=IOUT(10) 0181 C 0199 L1.IOUT(11) 0182 CALL ALLCO(0) 0200 L2•10UT(12) 0183 C 0201 L3.1001. 013) 0202 IPTHO•IOUT(14) 0203 C 0204 C SORTIE DU BLOC DE TETE 0205 C OUTPUT A HEADER BLOCK 0206 C 0207 IOUT(1).08 0208 C 0209 CALL SORT 0210 C 0211 C RAZ DES COMPTEURS STAT1STIOUES 0212 C ZERO THE STATISTICAL COUNTERS 0213 C 0214 DO 302 1.1,12 0215 302 IRJT(I)=0 0216 C 0217 C INITIALISATIONS DE IER ET JET 0218 C INITIALIZE IER AND JET 0219 C 0220 1309 1E0(1).150 0221 IER(2).105 0222 IER(3).70 0223 £ER(4)-20 0224 IER(5).-40 0225 IER(6).-90 0226 IER(7).-150 0227 00 1307 1.8,12 0228 1307 IER(1)•180 0229 DO 1306 1.13,17 0230 1306 IER([).-180 0231 IF(HUMER-1) 1397,1397,1308 0232 1308 00 1 1.1,7 0233 I JET(I)-3 0234 JET(8).1 0235 JET(9).2 0236 JET(13).JET(8> 0237 JET(14)=JET(9) 0238 DO 2 1.10,12 33

PAGE 0006 MOW1T 4105 PM THU., 5 FES., 0981

0239 JETC10.1-5 0240 2 JET(/.5).JETCI) 0241 DO 3 118,21 0242 3 JETC/0.6 0243 DO 4 1.22,25 0244 4 JET(I)•7 0245 JET(26).6 0246 JET(27)•7 0247 JET(28 1.1 0248 JET(291.2 0249 C 0250 C CALCUL DES FOURCHETTES 0251 C CALCULATE THE BOUNDS 0252 C 0253 1397 PFOUR.VALF0/ 1 0 0 . 0254 IVALE.PFOUR.FLOOTCIERC8)/ 0255 DO 30 1.1,17 0256 W(1-1)31,32,31 0257 32 IF(HUMER-1)33,33,34 0258 33 IVALE.IVALE/4 0259 GO TO 31 0260 34 IVALE•5 0251 31 JEINFA.11.1ER(i)-IVALE 0262 JESUP(I)•IER

0349 IOUT(14)-J 0394 SUBROUTINE TRAIT 0350 IOUT(15) ■ IN 0395 C 0351 10UT(16) ■ M 0396 C 0352 IOUT(17) , IS 0397 C NISTOGRAMME CAMPAGNE DE DEPOUILLEMENT 0353 DO 303 1.1,12 0398 C PRINT OUT THE REDUCED DATA FOR THIS DATA SET 0354 303 IOUT(1.1).1RJT(I) 0399 C 0355 C 0400 DIMENSION IOUTI(60),IOUT2(240> 0356 CALL SORT 0401 C 0357 C 0402 COMMON 1010(300) 0358 END FILE 108 0403 C 0359 C 0404 EQUIVALENCE (IOUT1(1),IOUT(I)) 0360 IFLISSW(1)) 34,307 0405 EQUIVALENCE (IOUT2(1),IOUT(61)) 0361 C 0406 C 0362 306 CALL BYE(1024) 0407 WRITE(6,300) 0363 C 0408 300 FORMAT(//,"MONTE LA BANDE", 0364 307 1F(I000(2)) 304,305 0409 • /,"MOUNT THE TAPE•) 0365 C 0410 WRITE(6,5000) 0366 304 REWIND 108 0411 5000 FORMAT (// • PRESS RUN WHEN READY•) 0367 C 0412 C 0368 305 WRITE(6,400) 0413 PAUSE 1 0369 400 FORMAT(//,"DEMONTE LA SANDE', 0414 C 0370 /,•DISMOUNT THE TAPE") 0415 READ(1011>IOUT 0371 WRITE(6,5000) 0416 NO.IOUT(5) 0372 C 0417 H8-100T(7) 0373 PAUSE 3 0418 1000 READ(108) IOUT1 0374 C 0419 C 0375 RETURN 0420 CALL RCEOF(K) 0376 C 0421 C 0377 45 IF (IREP)100,75,100 0422 IF(K) 10,10,72 0378 73 IF (IDE8)100,100,85 0423 10 READ(108) IOUT2 0379 C 0424 'F(1001(1)-1777778) 13,12,13 0380 85 CALL MESUR(NUMER,NO,NI,NPRIM.LI,L2,L3,IPT*10,1TROU,B,FIRR) 0425 12 WRITE(6,11) NO,N8 0381 C 0426 11 FORMAT(//,5X,'SLOC STATISTIOUE,CAMPAGNE ",15," BANDE ".15, 0382 C RA2 ALLCO APRES DETECTION 0427 /,5)(,'STATISTICAL 8LOCK,DATA SET',5X," TAPE* ",//) 0383 C RESET THE ALLCO AFTER A RECEPTION 0428 WRITE(6,14) (IOUT(I),I.2,11) 0384 C 0429 GO TO 1000 0385 CALL ALLCO(0) 0430 14 FORMATC'ECHOS DETECTES 0386 C 0431 'ECHOS DETECTED",/, IF(ITROU) 101,100,101 0432 1 6 REJET E'ER .",17,/, 0388 101 IOUT(1).1555559 0433 .•REJECTED FOR FFR',/, 0389 C 0434 2' 0 EPSILON ■ ',I7,/, 0390 CALL SORT 0435 ."REJECTED FOR EPSILON",/, 0391 C 0436 3' * > 250 KM .",I7,/, 0392 CO TO 100 0437 ."REJECTED FOR > 250 KM",/, 0393 END 0438 4• 0 PHASE D A",I7,/, 0439 .•REJECTED FOR PHASE D • ,/, 0440 5' 0 0 Dv 0441 ."REJECTED FOR PHASE DY",/, FTN4 COMPILER, 9P92060-16092 REY. 2001 (791101) 0442 6" 0 0 AZ .",I7,/, 0443 ."REJECTED FOR PHASE 142',/, 0444 7' 0 0 ST ",I7./, 0445 . • 44 HO WARNINGS 44 NO ERRORS 4. PROGRAM 01006 COMMON - 00641 REJECTED FOR PHASE ST",/, 0446 9"ECHOS RECONNUS .",I7,/, 0447 .'ECHOS ACCEPTED",/, 0440 v"poIHTs INSUFF/SANTS ..,17,/, PAGE 0011 FTN. 4105 PAL THU., 5 FEB., 1981

0469 SUBROUTINE VISU 0470 C 0471 C 0472 C VISUALISATION DES DOWNEES 0473 C DATA VISUALIZATION 0474 C 0475 C POST/TONACMENT BANDE 0476 C POSITIONING OF THE TAPE PAGE 0010 TRAIT 4:05 PM THU., 5 FEB.,1981 0477 C 0478 DIMENSION B(100) 0479 DIMENSION 1OUT1(60),I0UT2(240) 0449 ."INSUFFICIENT POINTS",/) 0480 C 0450 13 IF,IOUT11)-1555558, 30,1000,30 0481 COMMON IOUT(300),IBUFE(313),IRJT(12) 0451 30 1F(IOUT(1)-1333338) 31,1000,31 0482 C 0452 31 IF(IOUT(1)) 32,1000,32 0483 EQUIVALENCE (IOUTt(I)..10UT(1)) 0453 32 WRITE(6,2) 0484 EQUIVALENCE (IOUT2(1),IOUT(61)) 0454 2 FORMAT(//," BLOC ERPONE", 0485 EQUIVALENCE (IOUT(97),B(1)) 0455 /,' BLOCK ERROR') 0486 EQUIVALENCE (BRR,101.1T(297)) L.) 0456 72 IF(ISSW(2)) 74,73 0487 C 0457 C 0488 URITE(6,1965) 0458 74 REWIND 1011 0489 1965 FORMAT(//"MONTE LA BANDE' 0459 C 0490 /"MOUHT THE TAPE') 0460 73 URITE(6,400) 0491 WRITE(6,5000) 0461 400 FORMAT(//,'DEMONTE LA BANDE', 0492 5000 FORMAT (// " PRESS RUN WHEN READY") 0462 /...DISMOUNT THE TAPE.) 0493 C 0463 UPITEk6,5000 , 0494 PAUSE 1 0464 C 0495 C 0465 PAUSE 3 0496 IRITE(6,7) 0466 C 0497 7 FORMAT(//,"QUELLE SOUS-TACNE VEUX-TU EFFECTUER...". 0467 RETURN 0498 /,°61NAT FUNCTION DO YOU WANT PERFORMED... 2) 0468 END 0499 READ(1,.)1TASK 0500 GO TO (1,101,701),ITASK 0501 I WRITE(6,8) 0502 8 FORMAT(//,"TYPE DE POSITIONNEMENT•..", FTN4 COMPILER: HP92060-16092 REV. 2001 (791101) 0503 /,"TYPE OF POSITIONING... 2) 0504 READ(1,.)1REP 0505 GO TO(3,50),IREP HO WARNINGS NO ERRORS PROGRAM 00555 commow 007;00 0506 3 WRITE(6,1569) 0507 1569 FORMAT(//,'HOMBRE DE F1CHIERS A SAUTER AV OU AR', 0508 /,"NUMBER OF FILES TO SKIP AV OR AR _.) 0509 READ(1,.) NFICH 0510 C 0511 CALL PTAPE(1013,NFICH2O) 0512 C 0513 WRITE(6,5) 0514 5 FORMAT(//,"BANDE POS/TIONNEE DERRIERE UN EOF', 0515 /,"TAPE POSITIONED AFTER AN EOF') 0516 CO TO 1000 0517 50 URITE(6,6) 0518 6 FORMAT(//,'HOMBRE DE BLOCS EMS A SAUTER EN AV°, 0519 /,"NUMBER OF BLOCKS EMS TO SKIP TO AV 2) 0520 READ(1,.)NBLOC 0521 1.1 0522 54 READ(10111) /OUT' 0523 C PAGE 0012 VISU 4105'PM THU., 5 FEB., 1981 PACE 0013 VISU 4:05 PM THU., 5 FEB., 1981

0524 CALL RCEOF(II) 0579 WRITE(6,5) 0525 C 0580 GO TO 1000 0526 IF (11-1)52,51,52 0581 C 0527 Si WRITE(6,199) 0582 C VISUALISATION 0528 GO TO 1000 0583 C VISUALIZATION 0529 52 READ(108) IOUT2 0504 C 0530 IF(1-148LOC) 33,2 0585 101 WRITE(6,140) 0531 2 WRITE(6,1966)HBLOC 0586 140 FORMAT(//,•LISTING DES BLOCS", 0532 1966 FORMAT(//*BANDE PRETE ',50,15," BLOCS EN AVANT", 0587 . ° ,10X, • BLOCKS FORWARD . ) /.."LISTING OF THE BLOCKS") 0533 . /"TAPE READY 0588 114 IF(ISSIHI» 120,1968 0534 CO TO 1000 0589 120 WRITE(6,197) 0535 53 1.1.1 0590 197 FORMAT(//,•FIN DE VISUALISATION•, 0536 GO TO 54 0591 . /,"END OF THE VISUALIZATION•) 0537 C 0592 IF(1Ssw(2)> 1964,1000 0538 C POSITIOHNEMENT APRES PANNE SECTEUR 0593 C 0539 C POSITIONING AFTER A BAD RECORD 0594 1964 REWIND 1011 0540 C 0595 C 0541 701 WRITE(6,702) 0596 GO TO 1000 0542 702 FORMAT(//,'POSITIONHEMENT APRES PANNE SECTEUR", 0597 1968 READ(108) IOUTI 0543 . /,"POSITIONING AFTER A BAD RECORD•,//, 0598 C 0544 I'NUMERO DU FICHIER EN PAHNE",/ 0599 CALL RCEOF(11) 0545 ..NUMBER OF THE BAD FILE _0) 0600 C 0546 READ(1...) HOF IC 0601 IF(11-1) 511,198 0547 WRITE(6,6) 0602 511 READ(108) IOUT2 0548 READ(1,.) HBLOC 0603 GO TO 115 0549 705 IF(HOFIC-1) 703.703,704 0604 198 WRITE(6,199) 0550 C 0605 199 FORMAT(//,•EOF DETECTE", 0551 704 CALL PTAPE(108,1,0) 0606 /,•EOF ENCOUNTERED•) 0552 C 0607 GO TO 1000 0553 WRITE(6,199) 0608 115 1F(100T(1» 105,200,105 0554 WRITE(6,5000) 0609 105 IF(IOUT(1)-1333338) 106,300,106 0555 C 0610 106 IF(10UT(1)-1555558) 101,400,107 0556 PAUSE 3 0611 107 /F(10UT(1)-1777778) 133,500,133 0557 C 0612 133 WRITE(6,134) 0558 HOFIC•NOFIC-1 0613 134 FORMAT(//,•ERREUR 0 INDICATIF•, 0559 GO TO 703 0614 . /,"ERROR SENSED•) 0560 703 READ(I08) IOUT1 0615 CO TO 1000 0561 C 0616 C 0562 CALL RCEOF(I1) 0617 C BLOC DE TETE 0563 C 0618 C HEADER BLOCK 0564 IF(T1-1) 706,51,706 0619 C 0565 706 READ(108) IOUT2 0620 200 WRITE(6,201) IOUT(16),(10117(1),12,15) 0566 NBLOC-HBLOC-I 0621 201 FORMAT(///,. BLOC DE TETE .....•, 0567 IF(NBLOC) 703,711,703 0622 . /, ..... HEADER BLOCK 0.** . ///, 0568 711 IOUT(1)=1777778 0623 I" ANNEE . .14,3X,I3,. JOUR • ..12," HEURE ',I2," MINUTE "/, 0569 C 0624 .. YEAR ', 10X, II DAY ',2X,' HOUR ',EX," MINUTE "//, 0570 CALL LIRENCIOUT(14),IOUT(15),IOUT(16),I0UT(17)) 0625 2" CAMPAGNE ..,14/, 0571 C 0626 .. DATA SET "/, 0372 DO 710 1.1.12 0627 3' BANDE HUMERIOUE • • ,I4/, 0573 710 IOUT(1.1).112.1T(1) 0628 .. DIGITAL TAPE "/, 0574 C 0629 4" BAHDE ANALOGIOUE w",I4/, 0575 CALL SORT 0630 . 5 ANALOG TAPE ./, 0576 C 0631 5" NIVEAUX N•,12," DB Hlw",12." DB HPRIM=",I2." DEI"/, 0577 END FILE 108 0632 ." AMPLITUDES "/, 0578 C 0633 6" PLACES LI-", 14," L2•",14," L3 w",14./,

PAGE 0015 VISU 4 , 05 PM MU., 5 FEB., 1901 PAGE 0014 VISO 41 17 PM THU., S FEB., 1981 0689 ECHO BLOCK 0 •.... ,///, 0690 11K.13.° 0634 • PHASES '1, JOUR ".12,' NEURE ",12..° MINUTE 'AZ," SECONDE 0635 7• POINTS AMPLITUDE .•,I5/, 0691 40." DAY HOUR ',2X.. 0692 MINUTE ',20," SECOND •,/,) 0636 • AMPLITUDE POINTS missw<3» 114,116 B' FOURCHETTE • WV, 0693 116 WRITE(6,403) (IOUT(1),I-7,76) 0637 0630 .• BOUNDS ') 0694 403 FORMAT(• PHASE D ",15410,13),//,' DV • 0695 , 1 5(1X,13),//, 0639 GO TO 114 2• A2 • ,15(1X,I3),//,• ST • ,15(134.13),//, 0640 C 0696 3• cop ",10(1)4,13)) 0697 WRITE(6, 0641 C BLOC ETALONNAGES 4 00)(10UT(I),1.77,06) 0642 C CALIBRATION BLOCK 0698 408 FoRMAT(9X,10(04,13),/) 0699 064 3 C WRITE(6,404)(IOUT(1).1.07,90) 0700 404 FORMAT(• PHASES MOYENNES 1 0644 300 WRITE(6,30I) (IOUT(I),I=2.6) D 1",I3," DV :•,I3," AZ 1 • .13, 0645 301 FORMAT(///' BLOC ETALONNACE HO 1",13,' ..•••, 0701 3' ST 1•.13,1, 0646 /• CALIBRATION BLOCK HO ..... ///, 0702 • AVERAGE PHASES •,//) 0647 II3,' JOUR ',I2,' NEURE ".12,' MINUTE ".12," SECONDE ",/, 0703 WRITE 4 6, 4 05N/OUT(1),1-95,96) 0648 • DAY ',2X," HOUR ',2X," MINUTE ".20, - SECOND ',/, 0704 405 FORMAT(• NOMBRE PTS PHASES $ • ,13,/, 0649 2) 0705 • NUMBER OF PHASE POINTS 0706 0650 IF(IOUT(7)-1)303,304,303 • NOMBRE PTS DOPPLER 1° ,13,/,' 0651 303 WRITE(6.307) 0707 • NUMBER OF DOPPLER POINTS•,//) 0652 307 FORNAT(10X, • TEMPS REEL './. 0700 WR ITE(6,406)10UT(91 ). 1 0UT(94),IOUT492),IOUT(93) 0653 IOX,• REAL TIME ") 0709 406 FoRMAT(• NBRE PTS AMPLITUDE 1',I3,/, 0654 GO TO 305 0710 • NUMBER OF AMPLITUDE POINTS.,/, 0655 304 ORITE(6,306) 0711 • RANG DERNIER PT AMPL. $•.13,1. 0656 306 FORMAT(100." TEMPS DIFFERE 0712 • STATUS OF THE LAST AMPLITUDE POINT 0713 0657 ION,' OFF LINE ') 4 • RANG FIN FRONT RAIDE 1 • ,I3,/, 0658 305 WR1TE(6,310) (IOUT(1),1-8,40) 0714 • TOO RAPID DECAY STATUS',/, 0659 310 FORMAT(/, 0715 • DISTANCE (KM) $ • ,13,/, 0660 1•1411$EAUX( -211) NI.',14," H2.0 ,14," N3•",14," 0716 • DISTANCE (KM) "..//) 2' 145-",14," /47. • ,16,/, 0717 WRITE(6.604) BOB 0661 0710 0662 .•AmPLITUDES( -214) • .11, 604 FORMAT(' BRUIT FFR DBM•,/, 3•PHASES 0 (-20) [1••,I4,' DV. • ,I4,' AZ-",I4, • ST. I4, 0719 • NOISE FFR •,//) 0663 0720 0664 4. V .•..U./. 1F(ISSV(4)) 114,117 PHASES(-210 • ,/, 0721 II? WRITE(6,409) 0665 0722 0666 5"PHASES 360 D.•,I4," DV••,I4," AZ•"..14,' ST0,14, 409 FORMAT( • ANPLITUDE•,/) 0723 IKAA.IOUT(94) 0667 6• V ...IC/. 0724 0668 .•360 DECREE PHASES•..//, WR/TE(6 ,4 07 )(8(I).11.1KAA) ]•DOUBLETS A2(0) F.", I4," 0••,14, 4 G••,I4,/, 0725 407 FORMAU5(2X,F7.2),/) 0669 0726 0670 .•DIPOLES • ,/, CO TO 114 0671 B .. ST F 40 .1 41. • 0727 C 0672 .'DIPOLES • ,//, 0728 C BLOC FIN DE DEPOUILLEMENT 9•2EROS ELECTRIOUES(D) A2-',14," ST-',14,/, 0729 C END OF PROCESSING BLOCK 0673 0730 0674 .•ELECTRONIC 2ER09(D)•,/, C I" " DISTAHCE(KM) 0731 500 wRITE(6,501) (IOUT(1),1•14,17),(IOUT(1),1.2.11) 0675 0732 0676 ."DISTANCE ZEROS(KM)",21, 501 FORMAT(///, ..... BLOC FIN DE DEPOUILLEMENT 2 'REJETS NIVEAUX••,I5," PHASES- . , I5," TOTAL•", 0733 •.... END OF PROCESSING BLOCK 0677 0734 0678 3I5,/, 4114,13,• JOUR •,I2.• NEURE ',12," MINUTE TOTAL ./ 0735 SECONDE ',/, 0679 . -REJECTS AMPLITUDES ',50," PHASES ",50,* 4X," DAY •,2X,• HOUR MINUTE ',25(,' SECOND ',//, .•ECHOS RECONNUS••,I5,/, 0736 5 • NBRE D ECHOS DETECTES $•,17,/, 0680 0737 0681 .'ECHOS ACCEPTED •) NUMBER OF ECHOS DETECTED•,/, GO TO 114 0730 REJETS SUR FIN FRONT RAIDE $",17,/. 0682 0739 0683 C • REJECTED FOR TOO RAPID DECAY•,/, 0604 C BLOC ECHO 0740 6 • REJETS SUR TEST EPS DIST. :',I7,/. ECHO BLOCK 0741 • REJECTED FOR THE EPSILON DISTANCE TEST•,/, 0685 C 0742 0686 C 7' REJETS SUR DIST. SUP. A 250 KM $ • ,17.1, 0607 400 WRITE(6,401)(10UT(I),I.2,6) 0743 .• REJECTED FOR DISTANCE GREATER THAN 230 KM.,/, 0680 401 FORMAT(///, BLOC ECHO HO $•,14,• ...••,

' :% 2.::::: 41TOOOOC: F NNVNN ...... NNNNNNNNN V Otg:OOO:OggeOggggOgOeOgOgOO:g0Ogg:::getg T 0•••••0000411041101.110 ...... WWWWWWWWWWNNIONNNFONNIM ' 00000000e 0.16.010-.000N•041.4.404.000,00.41. - 00(AO4,10 . ...4, .•&44,,,, N4 0 040.4N-o0mN•04.0N-e00,14.04WN-.o000N.(11461. -. 00 0 V 0. 0444 N -. o 440 .10.04 WA.1-. 9Hd 3.

COMP 0 0 0

onen nnno n n n nonnnnonnnon n ON 00 n noon 0 n N+ 00 -4 0 00 - -- z N e 91 ... • 10 • HM N 0 I a e 4 N LE • 0 0 a r MM V C TC04. • • • • 0 0 ....p ..1 .c. No 0 •-40 •-.0 - om o -40 R ZM P P OMO -...... n ■ 4' m nm p ID 0 D T,0 M 00 MD 000000 D NO G.. T •• 0-4 C 2 NINLI cy C . M. i2 MPPM X , HP 0 ^^ r 040 r rm o C AN CCCCCC r Inz 02 r "" 1,, Da, C 0 -4 2-4-4C04 . MITMM nun -I r.•.r , r DO -. -1 -4 -4 0 ...... r ^z .-.p, p r r ..r. m A M M DMO2M • c c c c pm no o n-40 ,.. ^5 o ,---.^.,,,^ NO MZ 0 D D WO 0 2 ^ -4" WM MmriM r wx - o ■ n n AZ c O mm 0 DC W If" • ...4. ,M v0046410 92 W • "0.-IT 0-40-4 •-• Pp 0 o ^ -c0.-..-. ..., - xo • co.-4 - Dz -4 .. SO • ....MOZIAMAX-40-40 • a 0 S.N4 MCWITMMMM M • 060- n '.. .1 m m 1 - 1 .,- A Zg :"2 mmr;TM .11?, 1" g mg ; T lil 1 :7 e .0 C 2Mcccc00170 0 ■ 000 M. OM m 0 .0 ^ 02 e - 0 , W MD CO X 0 I OC o.4V a-4'00000MM C C 0 O Ov • TV • e ... ..0 N 02 2 M ^ ". < 4.4 OODDD X0 ON 4.004 -1001 0 -40 -4momm c N" DM M402Z2C 0 M W TO . 4.11 M W ...... -.m- x•-• M0X0NN 1 w • vW rm pa mz V 'PO M 0 o • 0 W M. A 6092 cox z .1,1 m A •. A2p z O WO V TO 0 v OM .0 nM ■ 0 ^^ -....0-4 2 Zo .-4-4om000o -. z pa o. ,, m7, :-. o -Ic I o 0- ..mcmm ri:i oz zonn C C-40-4* A. D .... ... s.o am c-. o xnxinex,xo P 0 .4 D , o rn Z gci no ... W VIA -13 n X REV Dm c-moo o m. mm x We r•-• In C 2 0 ^• MIT C 2 C I sl -4 nznommny C -4 0 22 2 CC s. < , TX .02 I C r mox cn o • M x x o A MM M g 2 XM 0 ^ M 00 Om ,D ■ COA,D,D .- MX 4 . • O A MT , v -4 • MD MX. M X nmomxopoompo . . 200 C O OV MM v X MZ D-421 mw -m nmmmm-gzo-4 AM -41 -4 A M 4-4 0 en< 1.; Le, e_ ... •-• 0 r o 1.11 -41 T;;;A'iumum I - 1^. g 1 -IC M 0 -. A 0 i310110 DO ,DOZ X ■ XN0- 0- C 141 lb 441 . VM XMCD.Z ■ 01 •T • T 1 .. to m M V,V00002 . • M T .:-' . m t- • (7 40 0 , M MC.C...... 0

u- , mc m.0 in 0004,1 ... ■ ...- 04.. - -4MNX V • 0 -mm u •c. •0 p. ,..i C m - In -,0 • 91 'I x •o • mm . m -, •m, 10 x -.. 4. n• m- z% , m c DM DZ.+ c - Dm co.-.. . 4. .... 0 . m- 1017 o •Z m MO •N ,....J-4-4-4• •M •4 0 0 5.' 7 T4m PlIr •.. nm • . • . x. x.-4m o Z + Z 0 w 11X 0 inli V. 0 N.N. ‘m‘mn • -4 r -u Z CC :-. :a. " A 2,22 13 WD N. M DN.\ Z - - . mm . m , D.. v N. • 00 M0 M r T D c £9 MM M ■ M 2N 01 Oc A r 0 KM < 2 • ■ ^ -1 DX pampa C e r. D C a ^ r ZW V A -4 . , , M v N ...,0 D. '''',. ■ I ..' O 0 W. MMD 4- 0 • O ■ v CO pant M X • M W • Dr M, . .. -40 •. .7. ' % 0 M OO " . ■ Z 2 M M Cl, 71 a M OX NH 0 ZD C r D

. n -4 HO 4.. .41 0 0 90 , S2

. PAGE 0003 UAL 4:06 PM TNU., 5 FEE., 1981

PACE 0092 ETAL 4106 PK TAU., S FED., 1981 0111 I360(4)=IVAL(5) 0112 GO TO 500 0056 C TEST IF CODE MAR ALREADY BEEN FOUND - IF IT HAS IGNORE IT 0113 103 IWIREP)=IVAL(1) 0057 C 0114 GO TO 500 0058 30 IF CITEST(IREP))40,40,1 0 0 0115 104 I360(1)=IVAL(1) 0059 C 0116 0060 C IVOIE REPRESEHTE LES NUMEROS DES VOHS A ENVOYER 1360(2)=IVAL(2) 0061 C A GONAD POUR ETRE MULTIPLEXEES,LE RETOUR 0117 IV(4)=IVAL(3) 0062 C SE FAIT DANS IVAL 0118 CO TO 500 0063 C IVOIE CONTAINS THE NUMBERS OF THE CHANNELS TO BE SENT TO 0119 108 120(1)=IVAL(1) CONAD TO BE MULTIPLEXED, THEY ARE RETURNED IN OVAL 0064 C 0120 IZ0(2)=IYAL(2) 0065 C 0121 0066 40 CO 1011,2,3.4,3,3,3,8,0.8,8, 1 2 ,8,14),10 EP GO TO 500 0067 1 IVOIE(1)=1 0122 109 IAZ(IREP-8)=IVAL(15 9068 IVOIE(2)•3 0123 IST(IREP-8)=IYAL(2) 0069 IVOIE(3)=5 0124 GO TO 500 0070 1001E01).6 0125 112 12.0(1)=IVAL(1) 0071 1001E050.7 0126 0072 1901E(6).0 IZD(2)=IVAL(2) 0073 GO TO 400 0127 CO TO 500 0074 2 1V0IE(1).2 0128 113 IA2(41=IVAL(1) 0075 IVOIE(2)•3 0129 IST(4)=IYAL(2) 0076 IVOIE(3).5 0130 500 ITEST(IREP)=1 0077 IVOIE(4)-6 0131 0078 IVOIE(77.7 GO TO 100 0079 IVOIE(6)-0 0132 C 0080 GO TO 400 0133 C CODE 14 PENDANT ETALONNACE 0081 3 11,01E(1).3 0134 C CODE 14 DURING CALIBRATION 0082 IVOIE(2).0 0135 C 0003 GO TO 400 0136 14 IFLAG=1 0084 4 IVOIE(1).1 0085 1001E(20.2 0137 C 0086 1901E0).3 0138 C TEST SI ETALONNAGES PRESENTS 0087 11.01E(4/.0 0139 C TEST IF THE CALIBRATIONS ARE PRESENT 0088 GO TO 400 0140 C 0089 9 IV0IE(1/n6 0141 300 DO 1000 1=1,13 0090 I00IE(2).7 0142 0091 1001E(3/.0 IF(ITEST(I)) 301,301,302 0092 CO TO 400 0143 301 IF(I-7) 303,303,304 0093 12 IV0IE11/.1 0144 304 1.1=1-7 0094 1001E(20.2 0145 GO TO (88,89,89,89,92,93),1J 0095 1001E(3).0 0146 88 120(1)=9999 0096 C 0147 0097 400 CALL CONAD(11101E.IVAL,50) 120(2)=9999 0098 C 0149 CO TO 1000 0099 GO 10(101,102.103,104,103.103,103,108, 109 , 109,109,112, 0149 89 IAZ(IJ-1)=9999 0100 7113),IREP 0150 IST(IJ-1)=9999 0101 101 10<11 ■ IVAL(1) 0151 CO TO 1000 0102 IY(1).1VAL(2) 0152 92 0103 I0(5), IVAL(3) I2D(1)=9999 0104 10(3)..IVAL(4) D153 I2D(2)=9999 0105 10(4)•IVAL(5) 0154 GO TO 1000 0106 GO TO 500 0155 93 IA2(4)=9999 0107 102 10(2)•11,11W) 0156 IST(4)=9999 0108 IV(21•1VAL(2) 0157 CO TO 1000 0109 1360(5)•IVAL(3) 0110 1360(3), IVAL(4) 0158 C 0159 C UN CODE TD LE 7 EST ABSENT 0160 C A CODE OF (TD .LE. 7) IS ABSENT 0161 C 0162 303 IBOOL=0 0163 GO TO 307 0164 302 tEl 305,305,1000 0165 C PACE 0005 ETAL 4:06 PM THU., S FEB., 1981

PAGE 0004 ETAL 4:06 PM THU., S FEB., 1981 0221 IF(120(1)-99990 1008,1007 0222 1007 IF(I0E8-1) 1010,1010,i011 0166 C LE CODE TO LE 7 EST PRESENT 0223 1010 WRITE(6,3010) 1 4 , 0167 C THE CODE (TO .LE. 7) IS PRESENT 0224 3010 FORMAT(//,"ZERO DISTANCE ABSENT•,/,"VALEUR 0169 C 0225 /,"VALUE i .2) 0169 305 1800L.1 0226 READ(1,0) 120(1) 0170 C 0227 120(1).420(1).10 0171 C IVOIE PEPPESENTE L INDICE DES ETALOHNAGES DANs 0228 GO TO 1012 0172 C LES TABLEAUX IEP,JEINF,JESUP 0229 1011 12D(1) , IEP(18) 0173 C IVOIE REPRESENTS THE INDICES OF THE CALIBRoTioms 10 0230 GO TO 1012 360(10-10(1)) 0174 C THE TABLES 1EP, JEINF, JESUP 0231 1008 121)(1).-2500..FEOAT(I20(10-10( 1 ))/FLOAT ( I 0175 C 0232 1012 'F(120(2)-9999) 1009,1013 0176 307 GO TO (201,202,203,204,203.203,203),f 0233 1013 IF(I0E9-1) 1014,1014,1015 0177 201 lvOIE(1).8 0234 1014 WRITE(6,3014) 0178 10010(2).1 0235 3014 FORMAT(//..2000 DISTANCE VERNIER A8SENT",/,'VALEUR i ", 0179 IVOIE(3)-12 0236 /,"VALUE _") 0180 IVOIE(4)-10 0237 READ(1,.) I2D(2) 0181 IVOIE(5)•11 0238 170(2)•12D(2)•10 0182 IVOIE(6)•0 0239 CO TO 1020 0103 CO TO 520 0240 1015 I2D(2) , IEP<19) 0184 202 IVOIE(1).9 0241 GO TO 1020 360(2)-10(2)) 0185 0242 1009 120(2)•-312.5.FLOAT(120(2) - 10(2) )/FLOAT

0276 C PACE 0007 ETAL 4,06 PM TAU„ 9 Fee., 1111* 0277 CALL 8YEcO) 0278 C 0331 0279 RETURN 11(.11 0332 CO TO 2014 0280 C 0333 0281 C CAS Du TEMPS-REEL 2036 IF(I-16) 2037,2038 THE CASE OF REAL TIME DATA REDUCTION 0334 2037 1360(5).140Y 0282 C 0283 C 0335 11(•17 0284 200 CALL CODE(IREP) 0336 CO TO 2014 0337 2039 IF(I-19) 2039.2007 0285 C 0338 0286 1F(IREP-15) 2315,200 2039 1360(1-13).H0y 2315 LAM8.40 0339 11(•1-1 0287 0340 0288 1CYCL•10000 GO TO 2014 IACYL•40 0341 2007 IF(I-22) 2000,2009 0289 4342 0290 DO 2000 1.1,29 2008 IA2(1-17).MOY IL.I.LAM8 0343 GO TO 2000 0291 0344 0292 10.1L/10 2009 1F(1-26) 2010,2011 11.1.1L-(10.10) 0345 2010 IST(I-21).MOY 0293 0346 GO TO 2000 0294 10.10.256 0347 0295 IL•10R

PACE 0008 FM. 4,06 PM 'MU., 5 FEB— 1981

036) SUBROUTINE MESURCNUMER.NO,H1,11PRIM,LI,L2,L3,IPTNCITROU,B,BRP) 0362 C 0363 C 0364 C TRAITEMENT DES MESURES 11365 C TREATMENT OF THE MEASUREMENTS 0366 C 0367 C 1T1100.0 ON RETOURHE DANS NOWT 1E61E8 LEO CODES 0368 C IT RETURNS TO TEST TI(1 CODES 0369 C 0370 C ITROU.1 AFRES 0371 C AvOIR VERSE UN BLOC ECHO SUR BANDE 0372 C AFTER 0373 C AN ECHO BLOCK IS PUT OH THE TAPE 0374 C 0375 DIMENSION 11(100),IPHI(5.35) 0376 C 0377 COMMON IOUT(300),IBUFE(29),14(100),ICONV(8),IPHI, 0378 INECO,IRJT(12),IFIM0(4),ITR(3),IALF0 0379 C 0380 ALF00.0,4 0391 AIN.15. 0362 AIV.IBUFE(5)-18UFE(7) 0383 IALFO.(ALFAO.A1v)/AIN 0384 I.I.IDETC(J,NO,NI,L1,L2,L3,NUMER, 0385 IF 150,150,200 0392 150 11882.15 0393 44P882.20 0394 M.M042 0395 MP.MPBA2 0396 13.1TRCO(N,K0,11,J,NF,ID,IPTHO,O,BRR) 0397 IF(IJ) 300,300,200 0398 300 NECO.NEC041 0399 C 0400 CALL STATS(9) 0401 C 0402 CALL LIREN(JOUR,INR,MINUT,ISEC1 0403 C 0404 IOUT(2).NECO 0405 IOUT(3).JOUR 0406 IOUT(4) , INR 0407 IOUTc5/.141NuT 0408 IOUTC61•1SEC 0409 DO 400 K.I,4 0410 DO 400 J•1,MBA2 0411 .11.(K-1)•MBA2.34.6 0412 IF(J—M) 401,401,402 0413 401 IOUT

—PAGE 0009 MESUR 4106 PM THU., 5 FEB., 1901

0416 400 CONTINUE 0417 DO 403 J=1,MPBAZ 0418 J1=4*MBAZ+6+J 0419 IFtJ—MP) 404,404,405 0420 404 IOUTtJ1)=IPHI(5,J, 0421 GO TO 403 0422 405 IOUTcJ1)•0 0423 403 CONTINUE 0424 DO 406 J=1,4 0425 Jf=4*MBAZ+MPBAZ+6*J 0426 406 IOUT(Jt)*IFIMO(J) 0427 IOUT(J1.1)=IPTNO 0428 IOUT(J1+2)=1(0 0429 IOUT(J1+3)*ID 0430 IOUT(.1144)*N 0431 IOUT(J1+5)*m 0432 IOUTtJ1+6)*MP 0433 ITROU=1 0434 RETURN 0435 END

FTN4 COMPILER; HP92060-16092 REV. 2001 (79110)

•* NO WARNINGS ** NO ERRORS ** PROGRAM = 00737 COMMON = 00617 PACE 0001 FN. 4: 07 PS TF(I , 3 FF_S , 1901

0001 FT144,1_ 0002 SUBROUTINE ENTRE( NUMER ) 0003 t, 0004 C 0005 C ENTREE DES DONHEES 0006 C DATA INPUT 0007 C 0000 COMMON IOUT<300) 0009 COMMON IBUFE( 339 ), !KAI 0010 C 0011 WRITE(6,1 ) 0012 READ( 1, • ) IOUT( 16), IOUT( 2 ),IOUT( 3), IOUT( 4 ) 0013 URITE(6,2) 0014 READ( 1, • )IOUT( 5 ) 0015 5 IORITE(6,3) 0016 READ( 1 , • )1OUT(6 I 0017 GO TO( 10,20 ),NUMER 00113 10 WRITE( 6,4) 0019 READ( I , • )IOUT( 7 ) 0020 GO TO 30 0021 20 IOUT( 7).9999 0022 1 FORMAT( ////,•ENTREE DES PARAMETRES" , /, 0023 'INPUT THE PARAMETER9",//, 0024 "DATE DE DEBUT DE CAMPAGNE•••", 0025 • THE STARTING DATE OF THE DATA SET ►►► • ) 0026 2 FORMAT( 1•NUMERO DE CAMPAGNE••••,/, 0 002207 •THE NUMBER OF THE DATA SET••• ) 3 FORMAT< / - FIUMERO DE BANDE NUMERIGUE••••,/, 0029 • THE NUMBER OF THE DIGITAL TAPE ►►► 0030 4 FORMAT( /•NUI3ERO DE BANDE ANALOGIGUE•••" . L,) 0031 • THE NUMBER OF THE ANALOG TAPE ► •• ) 0032 30 WRITE( 6,6 ) 0033 6 FORMAT( I•NIVEAUX 110.141,14' •• ► •,/, 0034 •AMPLITUDES NO, NI, N' • ►• •) 0035 READ( 1,• ) IOUT( 0), IOUT( 9 ), IOUT( 10) 0036 13RITE(6,7) 0037 7 FORMAT( /•PLAGES DE DETECTION LI .L2,L3 0 013 • PHASES DETECTED LI , L2, L3 ••• _" ) 0039 READ( 1, •) IOUT( 11 ), IOUT( 12 ), IOUT( 13 ) 0040 LIRITE(6,8 0041 8 FORMAT( P•MBRE DE PTS AMPLITUDE ►►► •./, 0042 "HUMBER OF AMPLITUDE POINTS••• _" ) 0043 READ( 1, • ) !OUT< 14 ) 0044 URITE(6,9) 0045 9 FORMAT( /•FOURCHETTE ETALONNAGES X ►► ••,/, 0046 "CALIBRATION SOUNDS 5 ••• _'• ) 0047 READ( 1,• )IOUT( 15 ) 0048 UPITE(6,19 ) 0049 19 FORMAT( /•141YEAU ETAL -NI( DB) • ► ••,/, 0050 •CALIBRATION AMPLITUDE -141(D13) 4•• _' ) 0051 READ( 1, • ) (KW 0052 RETURN 0053 END PACE 0004 SORT 4,07 PM PAGE 0003 FIN. 4107 PM THU., 5 FEB., 1981 THU..

0109 C 0954 SUBROUTINE SORT ATTENTE FIN DE SORTIE 0110 C WAIT FOR OUTPUT TO FINISH 0055 C 0111 C 0056 C 0112 0057 C CALL WAIT SORTIES DES BLOCS DE DONNEES 0113 C 0059 C OUTPUT DATA BLOCKS 0114 C 0059 C REMISE A ZERO DU BLOC 0115 C 0060 COMMON 1OUT(300) RESET THE BLOCK TO ZERO 0116 C 0061 C 0117 DO 0062 C TOP ECRITURE BLOC 63 1.1,300 0118 63 IOUT(I)-0 0063 C WRITE A TIME SIGNAL BLOCK 0119 C 0064 C 0120 0065 CALL ALLCO(2) CALL ALLC010) 0121 C 0066 C 0122 RETURN 0067 IF(IOUT(I)) 10,20 0123 ENO 0068 C 0069 C SORTIE DU BLOC DE TETE 0070 C OUTPUT THE HEADER BLOCK 0071 C FTH4 COMPILER: 0072 20 DO 25 1.17,300 HP92060-16092 REV, 2001 (791101) 0073 23 IOUT(I)•0 0074 CO TO 100 ND WARNINGS NO ERRORS 0075 10 IF(IOUT(1)-1777778) 35,40,35 PROGRAM • 00130 COMMON • 00300 0076 C 0077 C SORTIE DU BLOC FIN DE DEPOUILLEMENT 0070 C OUTPUT AN END OF PROCESSING BLOCK 0079 C 0080 40 DO 45 1.18,300 0081 45 IOUT(I)•0 0082 CO TO 100 0003 35 IF(IOUT(1)-1555558) 50.60,50 0084 C 0085 C SORTIE DU BLOC ECHO 0086 C OUTPUT AN ECHO BLOCK 0087 0088 60 DO 65 1.299,300 0089 65 IOUT(I)•0 0090 GO TO 100 0091 C 0092 C SORTIE DU BLOC ETALONNAGES 0093 C OUTPUT A CALIBRATION BLOCK 0094 C 0095 50 DO 55 1.41,300 0096 55 IOUT(I).0 0097 100 WRITE(108)1OUT 0098 C 0099 C INDICATIF 0 BLOC DE TETE 0100 C 133333 BLOC ETALONNAGES 01 01 C 155555 BLOC ECHO 0102 C 177777 BLOC FIN DE DEPOUILLEMEHT 0103 C 0104 C INDICATOR 0 HEADER BLOCK 0103 C 133333 CALIBRATION BLOCK 0106 C 155555 ECHO BLOCK 0107 C 177777 END OF PROCESSING BLOCK 0108 C PAGE 0005 FTN, 4007 PM TAU., 5 FEB., 1941 PACE 0001 FIN. 4107 PM TRU., 5 FEB., 1981

0124 SUBROUTINE ALARM(1REP,LI,L2.L3,40,N1,14PRIM) 0001 FTN4,L 0125 C 0002 FUNCTION IDETC(J,NO,NI,L1,12,13,HUMER) 0126 C 0003 C 0(27 C TRAITEMENT DES ALARMES LIGNE DUPLEX 8B1TS 0004 C 0128 C TREATMENT OF THE ALARM CHANNEL (8 BIT DUPLEX REGISTER) 0005 C DETECTION D UN ECHO METEORIOUE 0129 C (OUTPUT THROUGH THE 40 BIT REGISTER) 0006 C DETECTION OF A METEOR ECHO 0130 C 0007 C 0131 DIMENSION IVOIE(0),IVAL(0) 0008 C J PARAMETRE DE RETOUR 0132 C 0009 C IS THE PARAMETER RETURNED 0133 COMMON IBUFE(613),IRJT(12 1 0010 C IDCCO COMPTEUR DU TEST DETECTION 0134 COMMON IBAFE(8),IRRI,IRR2,IEMAX(4),IKNI,IRR3 0011 C TESTS FOR A DETECTION 0135 C 0012 C IDETC•1 TEST IDC FOIS CONSECUTIVES REJETE 0136 CALL BYE(1024) 0013 C CHECKS IDC FOR CONSECUTIVE REJECTIONS 0137 C 0014 C 0139 1REP.IREP/16 0015 DIMENSION IA(100),ICONV(8) 0139 VRITE(6,1) 1REP 0016 C 0140 1 FORMAT(////,`NUMERO DE L'ALARME °,I6, 0017 COMMON IOUT(300),IV(7),IBUFE<22),IA,ICONV,IPHI(5,35), 0141 . /,'HUMBER OF THE ALARM•) 0018 INECO,IRJT(12),IFIM0(4),ITR(37,1ALF0 0142 500 CO TO (10,20,30,40,50,60,100),IREP 0019 C 0143 10 WRITE(6,11) 0020 IDETC.1 0144 11 FORMAT(//,•CODE DE SORTIEm'.. 0021 IDC•1000 0145 1,•OUTPUT CODE . _') 0022 J.L1.L2+L3 0146 READ(1,4) IKODE 0023 II.L1.L2.1 0147 ID•IKODE/10 0024 12•J-1 0148 IU•IKODE-(ID•10) 0025 IDCC0.0 0149 ID•ID•256 0026 C 0150 IKODE•IORCID,IU) 0027 CALL INIT(NUMER) 0151 C 0028 C 0152 CALL BYE(IKODE) 0029 CALL HUM 0153 C 0030 C 0154 WRITE(6,12) 0031 18•1CONV(4) 0155 12 FORMAT(//,•ENTREE ANALOGIOUE A ANALYSER .., 0032 DO 10 1.1,12 0156 . /,•ENTER THE A/D CHANNEL TO BE ANALYSED 0033 10 IA(1)•I13 0157 READ(1,•) 1VOIE(1) 0034 C 0158 1VOIE(2)•0 0035 15 CALL NUM 0159 C 0036 C 0160 CALL CONAINIVOIE,IVAL,1507 0037 CALL BVE(2049) 0161 C 0038 C 0162 WR/TE(6,13) IVAL(1) 0039 IA(J).1COION3) 0163 13 FORMAT(//,•ETALONNAGE •".(5, 0040 18.1COH.(4) 0164 . /,•CALIBRATION') 0041 NIMOv.0 0165 IF(19SW(1)) 100,500 0042 N3MOY.0 0166 20 WRITE(6,21) 0043 DO 20 I•1,L1 0167 21 FORMAT(//,•LI,L2,L3 .•• _•) 0044 20 NIMOY.NIMOY.IA(I) 0168 READ(1,.) L1,L2,L3 0045 DO 30 I•11,J 0169 GO TO 100 0046 30 143MOV.H3MOY.IA(1) 0170 30 WRITE(6,31) 0047 NIMOY.HIMOY/L1 0171 31 FORMAT(//,•NO,NI,NPRIM •...... ) 0048 N3MOY.N3MOY/L3 0172 READ(1,..) 40,4 1 ,NPRIM 0049 C 0173 C 0050 CALL BYE(0) 0174 CALL PARAM(NO) 0051 C 0175 C 0052 IF((43MOV-NIMOY)-140) 45,40 0176 CALL PARAM(41) 0053 40 IF(10(J)-(I8+141)) 45,50 0177 C 0054 45 DO 60 I.2.J 0178 CALL PARAM(HPRIM) 0055 60 IA(1-1).10(1)

46

PAGE 0002 IDETC 4:07 PM THU., 5 FEB., 1901

0056 IDCCO.IDCCO*1 0057 IF(IDCCO-IDCI 15.90 0058 C 0059 50 CALL STATS(1) 0060 C 0061 C COMMANDE TOP ALLCO 0062 C START THE TIME SIGNAL ALLCO 0063 C 0064 CALL ALLCO(I) 0065 C 0066 IDETC•0 0067 C 0068 RETURN 0069 C 0070 90 CALL DINIT 0071 C 0072 RETURN 0073 END

FTN4 COMPILER: HP92060-16092 REV. 2001 (791101)

NO WARNINGS .. NO ERRORS • 4, PROGRAM 00194 COMMON 00633

PACE 0003 FTH. 4:07 PM THU., 5 FEB.. 1981

4074 FUNCTION NUMT(J,H,IPTHO,HARINAO) 0075 C 0076 C 0077 C NUMERISATION COMPLETE DE L ECHO 0070 C COMPLETE DIGITIZATION OF NH ECHO 0079 C 0080 C NUMT.1 REJET SUR FIN DE FRONT RAIDE 0081 C REJECT FOR TOO RAPID DECAY 0082 C NUMT.0 SIMON 0083 C IF NOT 0084 C 0085 DIMENSION IA(100),IPHI(5.35),ICONY(8) 0086 C 0087 COMMON IOUT(300).14(7),IBUFE(22),IAACON4,1PHI 0088 C 0089 IPTT.4 0090 HOPS.? 0091 IPTRO.16 0092 IPTR.J.IPTRO 0093 1900L.0 0094 I•J 0095 [PRIM•° 0096 JFLAG•0 0097 5 IF(JFLAG) 35,20.35 0098 20 IREP.MAKIM(I) 0099 IF (IREP)25,25.15 0100 15 JFLAG.1 0101 K0•1-2 0102 IOUT(297) , ICONY(4) 0103 GO TO 35 0104 25 IF (I-IPTR)35.30 0105 C 0106 30 CALL DINIT 0107 C 0108 NUMT.1 0109 C 0110 CALL STATS(2) 0111 C 0112 RETURN 0113 C 0114 35 0115 IPRIM•IPRIM41 0116 C 0117 CALL NUM 0118 C 0119 CALL BYE(2048) 0120 C 0121 IN(I)•ICONV(3> 0122 I111.1CONY<4) 0123 IF (IPRIM-35080,00.90 0124 00 11411(1,IPRIM)•ICONV(11 0125 IPHI42,IPRIMI.ICONY(2) 0126 IPHI(3.IPRIM) , ICONY(6) 0127 IPHI(4,IPRIM)•ICONY(7) 0128 IPHI(5.1PRIM),ICONV(5)

47

PAGE 0004 NUMT 4107 PM T148., 5 FE8., 1981

0129 C 0130 90 CALL BYE(0) 0131 C 0132 IF(I-/PTNO) 40,75 0133 40 IFCIAC11-l18.NPRIM))50,50.60 0134 60 1900/•0 0135 GO TO 5 0136 50 IF(IR00t-CIPTT-1)) 70,75 0137 70 IBOOL•IB00L41 0138 Co TO 5 0139 C 0140 75 CALL DINIT 0141 C 0142 N.I 0143 IFCCM-00)-N81.6) 76,77,77 0144 C 0145 76 CALL OTAT8(10) 0146 C 0147 MUMT.t 0148 C 8149 RETURN 0154 C 0151 77 MUMT.0 0152 RETURN 0153 END

FTN4 COMPILER: HP92060-16092 REV. 2001 (791101)

NO WARNINGS •. HO ERRORS PROGRAM 00247 COMMON • 00612

PAGE 0005 FTH. 4:0? PM THU., 5 FEB., 1981

0154 FUNCTION ITRO0<4,40.M,J.Mr,IL,7PTN0.6.8HA , 0155 C 0154 C 0157 C TRAITEMENT DES ECHOS 0156 C TREATMENT OF THE ECHOS 0159 C 0160 C ITRC0.1 REJET ECHO 0161 C REJECT THE ECHO 0162 C ITRC0.0 SINOP, 0163 C IF NOT 0164 C 0165 DIMENSION 8(100) 0164 DIMENSION IV(7),IFIM0(4),I0i5),1340(5),IA3 , 4),ISTt4t. 0167 212E(2),120(2) 0166 C 0169 COMMON IOUT(300),IV.10,7340,IA2.IST,IZE,17DAN(10C), 0170 IICONV(8),IPHI , 5,35).NECO,IRJT,12),IFIMC 0171 C 0172 CALL AMPLI(N,IPTN0,6.6PR) 0173 C 0174 DO 100 0.1,4 0175 C 0176 CALL TRANS

FTH4 COMPILER: HP92060-16092 REV. 2001 (791101) 48

PAGE 0001 FIN. 4:07 PK TRU., 5 FEB., 1901

0001 FTN4,1. 0002 SUBROUTINE COREC(K,M) 0003 C 0004 C 0005 C CORRECTION TENSION—ANGLE 0006 C CONVERTS VOLTAGE TO ANGLE (PHASE) 0007 C 0008 DIMENSION 10(5).1360(5) 0009 C 0010 COMMON IOUT(300),1V(7),10,1360.18UFE(120),IPHIc5.35) 0011 C 0012 A2.1360(K)—I0(K) 0013 DO 10 1=1,M 0014 0015 C 0016 C CORRECTION VALOUR LUE CONVERTISSEUR—TENSION 0017 C CONVERTS THE VALUE FROM THE All) CONVERTER TO VOLTAGE 0018 C 0019 IPHICK,1)•250..FLOAT(IAND(IPHI(K,I),1777000))/3276$ 0020 C 0021 C CORRECTION TENSION—ANGLE 0022 C CONVERTS VOLTAGE TO ANGLE (PHASE) 0023 C 0024 A1•IPHI(K,I)-10

FTN4 COMPILER. HP92060-16092 REV. 2001 (791101)

•• NO WARNINGS •• NO ERRORS •• PROGRAM • 00122 COMMON • 00612

PAGE 0007 FTN. 4:07 PM THU., 5 FEB., 1981

0205 SUBROUTINE COMP(IBOOL,L,JEINF,JESUPAEP) 0206 C 0207 C 0208 C COMPARAISON AUX FOURCNETTES 0209 C COMPARISON OF THE BOUNDS 0210 C 1E1001.•0 ID CODE ABSENT 0211 C TD CODE ABSENT 0212 C 1BOOL•1 TR CODE TOUJOURS PRESENT 0213 C TR CODE ALWAYS PRESENT 0214 C 10001•1 TD CODE PRESENT 0215 C TO CODE PRESENT 0216 C L•IND/CE DANS IEP DE L ETALONNAGE 0217 C THE INDEX OF 1EP FOR THE CALIBRATION 0218 C 0219 DIMENSION JEINF(17),JESUP(17),IEP(19),IV(7),10(5),I360(5) 0220 C 0221 COMMON IOUT(300),IV.10,1360 0222 C 0223 IF(L-12) 10,10,20 0224 10 IF(L-8) 30,40 0225 20 M•L-12 0226 IF(1800L) 25,25,26 0227 26 IF (1360(M)—JEINF(L))25,27 0228 27 IF(JESUP(L)-1360(M))25.100 0229 25 I360(m•IEP(L) 0230 IOUT(38).10UT(38)41 0231 C 0232 RETURN 0233 C 0234 40 M•L-7 0235 IF(IBOOL) 45,45,46 0236 46 IF(10(M)—JEINF(L))45,47 0237 47 IF(JESUP(L)—I0(M))45,100 0238 45 I0(M)•1EP(L) 0239 IOUT(38•/OUT(38)41 0240 C 0241 RETURN 0242 C 0243 30 IF(1800L) 35,35,36 0244 36 IF(IV(L)—JEINF(L)) 35,37 0245 37 IF(JESUP(L)—IV(L))35,100 0246 35 IV(L)•IEP(L) 0247 IOUT(37)•10UT(37).1 0248 100 RETURN 0249 END

FTN4 COMPILER: HP92060-16092 REV. 2001 (791101)

•• NO WARNINGS Am NO ERRORS PROGRAM • 00176 COMMON • 00317

49

PAGE 0002 FTN. 4:07 PM THU., 5 FEB., 1901

0029 SUBROUTINE AMPLI(N,IPTN0,8,8kR) 0030 C 0031 C 0032 C TRANSFORMATION DES AMPLITUDES VOLTS—GSM 0033 C CONVERTS THE AMPLITUDES FROM VOLTS TO DBM 0034 C 0035 DIMENSION IA!1003,8<1005,IY(7),ICONV(8), 0036 IIPHI(5,35),ANIV0(7) 0037 C 0038 COMMON IOUT(300),IV,IBUFE(22),IA,ICONV,IFHI 0039 COMMON /BAFE(27),IKN1 0040 C 0041 C CORRECTION VALEUR LUE CONVERTISSEUR — TENSION 0042 C CONVERTS THE VALUE FROM THE A/D C3NVERTEF TO VOLTAGE 0043 C 0044 IBRR=IOUT(297>.64 0045 IBPP=250*FLOAT(IAND(IBRR,1777008))/32766. 0046 DO 100 I=1,IPTNO 0047 IA(I>=IAcI)*64 0049 100 1A(I)=250.*FLOAT(IAND(IWIL1777008))/3276S, 0049 AKN1=IKN145 0050 DO 10 IP=1,6 0051 P=IP 0052 10 ANIVO

-PAGE 0004 FTN. 4107 PM THU.. 5 FEB., 1981

0083 SUBROUTINE TRANS(KO,M,K.J,N) . 0084 C 0085 C 0086 C TRANSLATION DES INDICES 0087 C CHANGE THE IHDICIES 0088 C 0089 COMMON IOUT(300),IBUFE(29),IA(100),ICONV(8),IPH/(5,35) 0090 C 0091 10-3 0092 0093 IF (K-5)2,1 0094 1 10.IQP 0095 2 K1 ∎1(0-..14.1. 0 0096 IF(<1(14.M-1)-(14-J)) 20,20,10 0097 10 M.H-KO-I12+1 0098 20 DO 30 I.1,M 0099 K2.4(141-1 0100 IPHI(K,I)=IPHI(K,K2) 0101 30 CONTINUE 0102 RETURN 0103 END

FTH4 COMPILER; HP92060-16092 REV. 2001 (791101)

•• NO WARNINGS •* NO ERRORS ♦ • PROGRAM - 00091 COMMON - 00612

PAGE 0005 FTN. 4:07 PM THU., 5 FEB., 1981

0104 FUNCTION IDIS1(10,1F1/.1BET1,1FIDVABET2) 0105 C 0106 C 0107 C CALCUL DES DISTANCES 0106 C CALCULATE THE DISTANCES 0109 C 0110 C 10100.1 1 REJET -0 SIMON 0111 C REJECT, .0 IF HOT 0112 C 0113 EPSIL.10. 0114 ALFA1.0.694 0115 ALFA2.0.087 0116 01.ALFA1.FLOAT(IFID).FLOAT(IBET1)/10. 0117 02.ALFA24FLOAT(IFIDV).FLOAT(IBET2)/10. 0118 IF (D1-62.5)10,20 0119 10 D1.01.250. 0120 20 IF (02)30,40 0121 30 02.02.31.25 0122 40 GAMMA.IFIX(D1/31.25) 0123 IF

FTH4 COMPILER: HP92060-16092 REV. 2001 (791101)

*A NO WARNINGS .4 MO ERRORS 4• PROGRAM 00258 COMMON 00000 PAGE 0006 FIN. 4107 PM THU., 5 FEB., 1981 PAGE 0001 FIN. 4:08 PM THU., 5 FEB„ 1981

0152 FUNCTION IPNAS(M,IFASE,K) 0001 FTN4,L 0153 C 0002 SUBROUTINE STATS(K) 0154 C 0003 C 0155 C CALCUL OES MOYENNES DES 4 PHASES 0004 C 0156 C CALCULATE THE 4 PHASE AVERAGES 0005 C STATISTIOUES SUR LES REJETS 0157 C 0006 C STATISTICS FOR THE REJECTS 0158 C IPHAS.1 REJET 0007 C 0159 C REJECT 0008 C K.1 ECHO DETECTE 0160 C IPHAS.0 SIHON 0009 C ECHO DETECTED 0161 C IF NOT 0010 C K•2 REJET FRONT RAIDE NON DETECTE 0162 C 0011 C REJECT TOO STEEP NOT DETECTED 8), IPNI (5,35) 0163 COMMON IOUT(300),IBUFE(29),IA(100),ICONV( 0012 C K•3 . SUR TEST EPSILON DISTANCE 0164 COMMON I8AFE(23),IEMAX(4) 0013 C REJECT FOR THE EPSILON DISTANCE TEST 0165 C 0014 C K•4 • DISTANCE SUPERIEURE A 250 KM 0166 MR0.(M,03).4 0015 C REJECT FOR DISTANCE GREATER THAN 250 KM 0167 ISOME.0 0016 C K.5 ' PHASE DISTANCE 0168 DO 10 I.1,M 0017 C REJECT FOR THE PHASE OF THE DISTANCE 0169 10 ISOME•ISOME.IPHI(K,I) 0018 C K•6 " " VERNIER 0170 IPSIM.ISOMEJM 0019 C REJECT FOR THE PHASE OF THE DISTANCE VERNIER 0171 MR.M 0020 C K.7 ' ' AZIMUT 0172 MAX•0 0021 C REJECT FOR THE PHASE OF THE AZIMUTH 0173 DO 12 1.1,N 0022 C K.8 ' ' SITE 0174 IECARsIABSCIPHI(1(.1) - IPSIM) 0023 C REJECT FOR THE PHASE OF THE ELEVATION 0175 IF(IECAR-MAX)12,12, 1 6 0024 C K-9 ECHO RECONNU 0176 16 MAX.IECAR 0025 C ECHO ACCEPTED 0177 J.I 0026 C K•10 FIBRE PTS INSUFFISANT 0170 12 CONTINUE 0027 C INSUFFICIENT NUMBER OF POINTS 0179 IF(MAK-IEMAX(K))35,35.1 7 0028 C 0180 17 ISOME.ISOME-IPHI(K,J) 0029 COMMON IOUT(300),IBUFE(29),IA(100),ICONV(8), 0181 MR•MR-1 0030 IIPHI(5,35),NECOARJT(12) 0182 IPSIM.ISOME/MR 0031 C 0183 DO 20 I.1,11 0032 IRJT(K) , IRJT(K)+1 0184 IF(I-J)21,20,21 0033 RETURN 0185 21 IECAR=I1411(K,1)-IPSIM 0034 END 0186 IF(IECAR-IEMAK(K)) 15.15,25 0187 15 IF(IECAR+IEMAK(K)) 25,20 0188 25 ISOME.ISOME-IPHI(K,I) 0189 MR-MR-1 FTH4 COMPILER: HP92060-16092 REV. 2001 (791101) 0190 20 CONTINUE 0191 IF(MR-MR0) 30,35 0192 30 IPHAS-I HO WARNINGS NO ERRORS PROGRAM 00018 COMMON • 00625 0193 C 0194 CALL STATS(K.4) 0195 C 0196 RETURN 0197 C 0190 35 IFASE•ISOME,MR 0199 IPHAS.0 0200 RETURN 0201 END

FT144 COMPILER! HP92060-16092 REV. 2001 (791101) 52

PAGE 9802 FTN. 4,00 PH THU., 5 FEB.. 1981

0035 FUNCTION MAXIM(1) 0036 C 0037 C 0038 C MAXIM-1 FIN DE FRONT RAIDE TROUYE 0039 C FOUND AN ECHO WHICH IS TOO SNORT 0040 C 0041 C RECHERCHE DE LA FIN DU FRONT RAIOE 0042 C SEARCH FOR ECHOS WHICH ARE TOO SNORT 0043 C 0044 COMMON IBUFE(329).1A(100),ITR2(203l,IALF8 0045 C 0046 IF(08(I-11-144(1-3)1-1ALF0) 9,9,20 0047 9 IFC(10(1-11-10(I-2))-IALF0) 10,10,20 0048 10 IF((10(1)-I0(1-1))-IALF0) 30.30.20 0049 30 MAXIN.1 0050 C 0051 RETURN 0052 C 0053 20 MAXIM.0 0054 RETURN 0055 END ,

FTN4 COMPILER: HP92060-16092 REV. 2001 (791101)

*. NO WARNINGS NO ERRORS •• PROGRAM 00076 COMMON • 00633

PACE 0003 FTN 4:08 PM THU., 5 FES., 1981

0056 SUEIRSUTINE CORFAk11,k, 0057 C 0058 C 0059 C CORRECTION DES PHASES PROCRES GE 0 OU 360 0060 C CALCULATE THE PHASES NEN& A OA 360 DECREES 0061 C 0062 DIMENSION IT1(35).1T2(35) 0063 C 0064 COMMON IOUT(300),IBUFE(29),IA<100).1CONY(8),IPH/(5,35) 0065 C 0066 MP.0.6.FLOATCM> 0067 IFIX1.20 0068 IFIO2.340 0069 MU1.0 0070 MU2.0 0071 M03.0 0072 IPS11.0 0073 IPSI2.0 0074 IP8I3.0 0075 DO 100 1.1,M 0076 IF(IPHICK,1)-360) 20,20,30 0077 30 IPHICK,I,.360 0078 GO TO 50 0079 20 IFCIPHI(K,1), 40,50 0080 40 IPHIlK,I>.0 0081 50 IF(IPHI(K,1)-IFIX2) 70,60 0082 60 MU2.MU2.1 0083 IPS12.1P61241PHI(K,I) 0084 ITI(I)-IPHI(K,I)-360 0085 112(I) , IPHI(K,I) 0086 GO TO 100 0087 70 IF(IPHI(K,I>-IFIX1) 00.00,90 0088 80 Mu1.MU141 0089 IPS11.1P6114.1PNICK,II 0090 IT1(1)./PHI(K,I) 0091 1T2(1) , IPHI(K.1).360 0092 GO TO 100 0093 90 MU3.14U3.1 0094 1P613.11.813 4 1PHI(K.1) 0095 IT1(1) , IPHICK,1). 0096 IT2(1).1PHIlK.1/ 0097 100 CONTINUE 0098 IF((MU1.14U2>-MP) 110,120 0099 C 0100 110 RETURN .0101 C 0102 120 IF(MU1)110,110,130 0103 130 IF(MU2)110,110,140 0104 140 IF(11U3) 150,150,160 0105 160 IPS11.IPSIi/MU1 0106 IPS12.IPS12/MU2 0107 IPSI3 ■ IPS13/MU3 0108 IFC(IP813-1P511)-(IP512-IPSI3>) 500,750 0109 150 IF(MUI-11U2) 750,500 0110 500 DO 510 1.1,M 53

PAGE 0444 CORFA 4108 PM TNU., 5 FEB., 1981

0111 0t12 510 CONTINUE 0113 C 0114 RETURN 0115 C 0116 750 DO 760 1.1,M 0117 IPI4I(K,1).112(I) 0118 760 CONTINUE 0119 RETURN 0120 END

FTN4 COMPILER: HP92060-16092 REV. 2001 (791101)

ow NO WARNINGS •• NO ERRORS •• PROGRAM 00428 COMMON 00612

PAGE 0005 FTN. 4:08 PM IHU„ 5 FEB., 1981

0121 SUBROUTINE CONNO(IVOIE,IVAL,KE) 0122 C 0123 C 0124 C MULTIPLEOAGE DES VOLES IVOIE(I) ET CONVERTION A/D 0125 C VALEUR MOYENNE LUE DANS IVAL(I) 0126 C MULTIPLEX THE CHANNELS IVOIE(I) AND THE A/D CONVERSION 0127 C AVERAGE VALUE IN /YAW) 0128 C 0129 DIMENSION IVOIE(8),IVAL(8),ITAMP(200) 0130 C 0131 1.1 0132 300 IF(IVOIE(I)) 100,100,200 0133 200 AMOV•O. 0134 ICANL.IVOIE(I)-1 0135 C 0136 CALL L5610(70.0.1CANLATAMP,ME) 0137 C 0138 ISTAT.-1 0139 C 0140 2 CALL L5610(78,1STAT) 0141 C 0142 IF(ISTAT) 2,3 0143 3 DO 210 J.1.ME 0144 210 AMOY.AM0Y+250 eFLOAT(IAND(ITAMP(J),1777008))/32708 0145 IVAL(I)•AMOY/FLOAT(ME) 0146 1.1+1 0147 GO TO 300 0148 100 RETURN 0149 END

FTN4 COMPILER: HP92060-16092 REV. 2001 (791101)

NO WARNINGS .4. NO ERRORS PROGRAM • 00306 COMMON . 00000 54

PAGE 0001 001 4:08 PM THU., 5 FEB., 1981

0001 ASKS. L. T CODE R 000005 MEMO R 000000 RETO A 000001 HC R 000002 NCP R 000003 PARA R 000004 NOUV R 000014 LIRE R 000032 NO ERRORS PASS01 ASK8 92067-16011..

PAGE 0002 001 4:08 PM THU., 5 FEB,. iSet

0001 ASMB,L,T 0002 00000 HAM PAZ 0003 EAT RAZ 0004. 0005. REMISE A ZERO DU SWITCH REGISTER APRES CHAOUE TACHE 0006. RESET THE SWITCH REGISTER TD 2EPC AFTER EACH TASk 0007. 0008 00000 000000 RETO HOP 0009. 0010 00001 000000 RAZ HOP 0011 00002 162001R LDA 002,1 0012 00003 0720000 STA RETO 0013 00004 002400 CLA 0014 00005 102601 OTA 18 0015 00006 1260008 JNP RET0,1 0016 END NO ERRORS +TOTAL ..RTE ASM8 92067-16011.. 55

PACE 0001 001 4108 PM THU., 5 FEE., 1981

0001 ASMILL,T TBC10 R 000003 ITP1 C 800006 ICONV C 000655 ITP2 C 000665 FLAG C 001965 CAT C 001166 COUP C 001167 SAVE1 R 000000 SAVE2 R 000001 CWAD R 000002 NO ERRORS PASS0I ••RTE ASMB 92067-16011••

PAGE 0002 001 4:0S PM THU., 5 FEB., 1991

0001 ASM8,L,T 0002 00000 NAM CODE 0003• 0004• LECTURE D UN CODE SUR LA L/CHE DUPLEX 178 0005• READ THE CODE FROM THE 8 EIIT DUPLEX REGISTER (NOW 158) 0006• 0007 ENT CODE 0008 00000 000000 MEMO HOP 0009 00001 000000 RETO HOP 0010 00002 174060 NC DEC -2000 0011 00003 000000 MCP HOP 0012 00004 000000 PARA HOP 0013• 0014• 0015 00005 000000 CODE HOP 0016 00006 103100 CLF 0 0017 00007 1620056 LDA CODE,I 0018 00010 07200I8 STA RETO ADRESSE DE RETOUP 0019• RETURN ADDRESS 0020 00011 036005R 162 CODE 0021 00012 162005k LDA CODE,1 0022 00013 072004R STA PARA 0023 00014 016032R HUN, JSB LIRE LECTURE SUR 178 0024. READ FROM 158 0025 00015 072000R STA MEMO 0026 00016 0660020 LDB NC 0027 00017 076003k STB ACP 0026 00020 016032R JSB LIRE 0029• READ FROM 15B 0030 00021 052000R CPA MEMO CODE IDEM PRECEDENT 0031• CODE IDEA PRECEEDS 0032 00022 0260240 JMP •.2 OUI 0033• YES 0034 00023 026014R JMP NOUV NON 0035• NO 0036 00024 036003R 152 NCP 0037 00025 026020R JMP 140U9*4 0038 00026 0620008 LDA MEMO 0039 00027 1720040 STA P000,0 0040 00030 102100 SIP 0 0041 00031 1260098 JMP RET0,1 0042• 0043 00032 000000 LIRE MOP 0044 00033 103715 STC 158,C 0045 00034 102515 LIA 158 0046 00035 1260320 JMP LIRE,I 0047 END NO ERRORS •TOTAL ••RTE ASMB 92067-16011•• 56

--PAGE 0002 *01 4:08 PM THU., 5 FEE., 1981

0001 ASM6,L,T 0002 00000 NAM T8C10 0003 ENT T9G10 0004 COM ITP1(429),ICONV(8),ITP2(192),FLAG,CAT,COUP 0005 00000 000000 SAVE1 NOF 0006 00001 000000 SAVE2 HOP 0007 00002 060000 CWAD OCT 60000 0008* 0009* HORLOGE TEMPS REEL 0010* REAL TIME CLOCK 0011* 0012 00003 000000 T8G10 HOP 0013 00004 103110 CLF 100 0014 00005 037166C 182 CNT 0015 00006 126003E JMP T86.10,1 0016 00007 103100 CLF 0017 00010 072000P STA SAVE1 0018 00011 076001P STS SAVE2 0019 00012 062002R LDA CHAD 0020 00013 102611 OTA 116 0021 00014 103711 STC 118,0 0022 00015 103706 STC 6E,6 0023 00016 0371650 182 FLAG 0024 00017 0631670 LDO COUP 0025 00020 0731660 STA CNT 0026 00021 062000R LOA SAVE1 0027 00022 066001R LDE SAVE2 0026 00023 102306 SFS 66 0029 00024 026023R JMP 4-1 0030 00025 106706 CLC 66 0031 00026 102100 STF 0 0032 00027 126003R JMF 186.10,1 0033 END 4. NO ERRORS *TOTAL **RTE ASP* 92067-1601144

PAGE 0001 001 4:09 PM IMO., 5 FOR., 1981

0001 ASM8,L,T .IOC. 0 000001 RCEOF R 000000 T1 R 000016 RET R 000021 PARA R 000022 NO ERRORS PASS111 ••RTE ASM8 92067-16011.• PACE 0002 1101 4:09 PM THU., 5 FEB., 1981

0001 0002 00000 HAM RCEOF 0003 EXT .10C. 0004 ENT RCEOF 0005. 0006. TEST FOR END OF FILE ON MAG-TAPE 00074 0008 00000 000000 RCEOF HOP 0009 00001 162000R LDA RCEOF,I 0010 011002 0720210 STA RET 0011 00003 036000R 152 RCEOF 0012 09004 162000R LDA RCEOF,1 0013 00005 072022R STA PARA 0014 00006 016001X JSB .10C, 0015 00007 040010 OCT 040010 0016 00010 001727 ALF,ALF 0017 00011 002020 SSA 0018 00012 026016R JMP TI 0019 00013 002400 CLA 0020 00014 172022R STA PARA,I 0021 00015 12602IR JMP RET,I 0022 00016 002,104 TI CLA,INA 0023 00017 172022R STA PARA,I 0024 00020 126021R JMP RET,I 0025 00021 000000 RET HOP 0026 0'022 000000 PARA HOP 0027 END 0• NO ERRORS +TOTAL 040TE ASMEI 92067-160114.

PAGE 0002 001 4109 PM THU,, 5 FEB., 1981

0001 ASMB.L.T 0002 00000 NAM TEMPO 0003 ENT TEMPO 0004 00000 000000 RETO NOP 0005 00001 000000 ./CL NOP 00064 00417•TEMPORISATION DE ICYCL FOIS 0446440 CYCLES DE BASE HP 2100 POUR ICYCL•10 00090 0010•11AITING FOR ICYCLE TIMES 0011440 CYCLES OF THE NP 2100 TIME BASE FOR ICYCLE • 10 00124 0013 00002 000000 TEMPO.HOP 0014 00003 162002R LDA TEMPO,I 0015 00004 0720000 STA RETO 0016 00005 036002R ISZ TEMPO 0017 00006 162002R LOA TEMPO,I 0018 00007 160000 LOA 0,1 0019 00010 003004 CMA,INA 0020 00011 072001R STA .ICL 0021 00012 036001R ISZ .ICL 0022 00013 026012R JMP .1.-1 0023 00014 126000R JMP RETO,I 0024 END NO ERRORS •TOTAL •0TE ASM8 92067-16011.6. 58

PAG,E 0002 II•01 4409 PM 7011., 5 FEB., 0981

0001 ASMB,L.T 0002 00000 NAM BYE 0003 ENT BYE 0004 00000 000000 RETO HOP 0005 00001 000000 CODI HOP 0006 00002 000004 BAD OCT 4

0007. LE CODE EHVOYE SUR LA LICK 40 BITS DEVIENT 0009. PERMANENT JUSOU'A L'APPEL BYE(0) 0010. 0011. SEND A CODE TO THE 40 BIT OUTPUT REGISTER 0012. IT LASTS UNTIL BYE(0) IS CALLED 0013. 0014. NOTE: SELECT CODE 218 HAS BEEN CHANGED TO 17B 0015. 0016 00003 000000 BYE HOP 0017 00004 162003R LDA BYE,I 0010 00005 0720000 STA RETO 0019 00006 036003R 1SZ BYE 0020 00007 162063k LDA BYE,! 0021 00010 160000 LDA 0,1 0022 00011 0720010 STA COD! 0023 00012 106717 CLC 178 0024 00013 0620020 LDA SAD 0025 00014 102617 OTA 178 0026 00015 062001R LDA CODI 0027 00016 102617 014 176 0028 00017 103717 SIC 178,C 0029 00020 1260000 JMP RET0,1 0030 END .4 ND ERRORS *TOTAL ..RTE ASMB 92067-16011..

PACE 0002 001 409 PM THU., 5 FEB., 1901

0001 ASMB,L,T 0002 00000 NAM WAIT 0003 ENT WAIT 0004 EXT .IOC. 0005. 0006. ATTENTE FIN SORTIE SUR HAG-TAPE 0007. WAIT UNTIL COMPLETION OF OUTPUT TO MAG-TAPE 0008. 0009 00000 000000 RETO HOP 0010. 0011 00001 000000 WAIT HOP 0012 00002 1620010 LDA WAIT,1 0013 00003 072000R STA RETO 0014 00004 016001X JSB .10C, 0015 00005 040010 OCT 040010 0016 00006 000010 SLA 0017 00007 026004R JI4P 0018 00010 1260000 J11P RET0,1 0019 END •4 NO ERRORS *TOTAL •.RTE A5M8 92067 - 160116a 59

PACE 0002 001 4:09 PM TRU., 5 FEB., 1981

0001 ASMB.L,T 0002 00000 HAM DIHIT 0003 ENT DIHIT 0004• 0005• BLOCAGE DE L'AORLOGE TEMPS REEL 0006• STOP THE REAL TIME CLOCK 0007• 0008 00000 000000 RETO HOP 0009. 0010 00001 000000 DINIT NOP 0011 00002 1620010 LDA DINTT,1 4012 00003 0720000 STA RETD 0013 00004 106710 CLC 108 0014 00005 106711 CLC 118 0015 00006 1260000 JMP RET0,1 0016 END HO ERRORS *TOTAL ••RTE ASMB 92067-16011•.

PACE 0002 001 4:10 PM THU., 5 FES., 1981

0001 ASNEI,L,T 0002 00000 HAM 00801 0003 ENT DC8SI 0004• 0005. TRANSFORMATION DECIMAL CODE IIINPIRE EN !UMPIRE PUR 0006. CHANGE BINARY DECIMAL CODE TO PURE BINARY CODE 0007• 0008 00000 000000 DC881 NOP 0009 00001 006400 CLE 0010 00002 0720240 STA MEM 0011 00003 0120250 AND NSK 0012 00004 072026R STA UNIT 0013 00005 0620240 LDA MEM 0014 00006 001727 ALF,ALF 0015 00007 001700 ALF 0016 00010 012025R AND MSK 0017 00011 0720278 STA DIZ 0018 00012 062024R LDA MEN 0019 00013 001727 ALF,ALF 0020 00014 012030R AND .83 0021 00015 100200 MPY .812 00016 0000310 0022 00017 042027R ADA DIZ 0023 00020 100200 MPY .812 00021 000031R 0024 00022 042026R ADA UNIT 0025 00023 1260000 JMP DCB8I,I 0026 00024 000000 MEM HOP 0027 00025 000017 MSK OCT 17 0028 00026 000000 UNIT NOP 0029 00027 000000 DIZ NOP 00030 000003 00031 000012 0030 END •• HO ERRORS •TOTAL *•RTC ASMB 92067-16011•• 60

PAGE 0002 001 4410 PM TMU., 5 FEB.. 1981

0001 ASMB,L,T 0002 00000 NAM INIT 0003 ENT INIT 0004 EMT T8610 0005 COO ITP11429),ICONWB),ITP2(192),FLAC,CNT,COUP 0006 00000 000000 RETO NOP 0007 00001 177776 .TD DEC -2 0008 00002 177770 .TR DEC -8 0009 00003 000001 FRED OCT i 0010 00004 000655C DATA DEF ICOHY 0011 00005 177770 C83 DEC -8 0012 00006 020011 Cyi OCT 020011 0013 00007 100000 CQI2 OCT 100000 0014 00010 000001 .1 DEC I 0015 00000 ORB 0016 00000 00000IX AI DEF TBGIO 0017 00001 114000B A2 JOB Al,) 0018 00011 ORR 0019 00011 000000 PARA HOP 0020. 0021• INITIALISATION DE LA TBG 0022• INITIALIZATION OF THE TIME BASE GENERATOR 0023• 0024 00012 000000 INIT HOP 0025 00013 162012R LDA 18111,1 0026 00014 0720000 STA RETO 0027 00015 0360120 ISZ INIT 0028 00016 1620120 LDA IHIT,I 0029 00017 072011R STA PARA 0030 0002D 162011R LDA PARA,I 0031 00021 0520100 CPA .1 0032 00022 026027R JMP •.5 0033 00023 062002$ LDA .10 0034 00024 073167C STA COUP 0035 00025 073166C STA CHT 0036 00026 0260320 JAR •.4 0037 00027 0620010 LDA TO 0036 00032 073166C STA CHT 0039 00031 073167C STA COUP 0040 00032 002400 CLA 0041 00033 102611 OTA 118 0042 00034 0731650 STA FLAG 0043 00035 0620060 LDA CYI 0044 00036 102606 OTA 6 0045 00037 106702 CLC 2 0046 00040 062007R LDA CO2 0047 00041 0320040 IOR DATA 0048 00042 102602 OTA 2 0049 00043 102702 SIC 2 0050 00044 062005R LDA C83 0051 00045 102602 OTA 2 0052 00046 102100 STF 0 0053 00047 0620030 LDA FRED 0054 00050 102610 DTA 108 0055 00051 0600018 LDA A2

PAGE 0002 001 4:10 PM THU., 5 FEB., 1981

0001 ASMS,L,T 0002 00000 HAM AtLED 0003 ENT ALLCO 0004. 0005• COMMANDS DU TOP DE MARDUAGE DE L'ALLCOSCRIPT 0006. CARTE 8 BITS DUPLEX EN SORTIE 0007. 0008. CAUSES A TIMING MARK TO BE SENT TO THE ALLCOSCRIPT 0009. USES THE B BIT DUPLEX OUTPUT REGISTER 0010. 0011. NOTE; SELECT CODE 178 HAS BEEN CHANGED TO 158 0012. 0013 00000 000000 RETO HOP 0014. 0015 00001 000000 ALLCO HOP 0016 00002 103100 CLF 0 001'2 00003 1620010 LDA ALLCO 3 1 0019 00004 072000$ STA RETO 0019 00005 0360010 152 ALLCO 0020 00006 I62001R LDA ALLC0.1 0021 00007 160000 LDA 0.1 0022 00010 102615 DTA 158 0023 00011 10371$ STC 150,C 0024 00012 102100 SIR 0 0025 00013 126000R 411P RET0.1 0026 END •• NO ERRORS ' TOTAL • ► RTE ASME1 92067-16011.. PAGE 0002 •DI 4111 PM TNU., 5 FEB., 1901 << POWER FAIL ROUTINE FOR THE METEOR RADAR

0001 ASMB,L,T 0003 00000 NAN PFAIL 0004 ENT PFAIL 0005 ► 0006 00000 000000 PFAIL HOP POWER FAIL AUTO RESTART SUBROUTINE

0007 ► 0008 00001 102106 STF 60 TERMINATES DCPC CHANNEL 1 0009 00002 102107 STF 78 TERMINATES DCPC CHANNEL 2 0010 00003 102204 SFC 40 SKIP IF INTERRUPT WAS CAUSED BY A POWER 0011• FAILURE 0012 00004 0260I18 JAP UP POWER IS BEING RESTORED, RESET STATE OF

0013 ► COMPUTER SYSTEM 0014 00005 003400 DOWN CCA SET SWITCH INDICATING THAT THE COMPUTER 0015 00006 072026R STA SAVR WAS RUNNING WHEN THE POWER FAILED 0016 00007 106704 CLC 48 TURN ON RESTART LOGIC 90 COMPUTER WILL

0017 ► RESTART WHEN POWER IS RESTORED AFTER 0018 ► MOMENTARY POWER FAILURE 0019 ► 0020 00010 102000 HLT

0021 ► SHUTDOWN 0022 ► 0123 00011 0620268 UP LDA SAVR WAS COMPUTER RUNNING 0024 00912 002003 S2A,PSS WHEN POWER FAILED? 0025 00013 0260238 JMP HALT NO IJ 0026 00014 002400 CLA YES, RESET COMPUTER RUN SWITCH TO 0027 00015 072026R STA SAVR INITIAL STATE 0028 00016 062024R LDA FENCE RESTORE THE MEMORY PROTECT 0029 00017 102605 OTA 58 FENCE REGISTER CONTENTS 0030 00020 102704 STC 40 RESET POWER FAIL LOGIC FOR NEXT POWER 0031• FAILURE 0032 00021 102705 STC 58 TURN OH MEMORY PROTECT 0033 00022 I260258 JAP SAVP,I TRANSFER CONTROL TO PROGRAM IN EXECUTION 0034• AT TIME OF POWER FAILURE 4035• 0036 00023 102000 HALT HLT 0037 ► RETURN COMPUTER TO HALT MODE 0030 00024 002000 FENCE OCT 2000 FENCE ADDRESS STORAGE (MUST BE UPDATED 0039• EACH TIME FENCE IS CHANGED) 0040 00025 000002 SWOP OCT 2 STORAGE FOR P (TRANSFER ADDRESS FOR 0041• PROGRAM) 0042 00026 000000 SAVR OCT 0 STORAGE FOR RUN SWITCH 0043 END

► • HO ERRORS •TOTAL • ► RTE ASMB 92067-16011 ► • 62 Appendix IV

The Data Reduction Computer Programs

Because of frequent power outages and brownouts at the Ramey receiving site, it is often necessary to edit the data tapes. As the first data tapes were produced, they were edited on the HP system in the School of Aerospace Engineering (by William Meyer, Research Engineer). More recently, a series of programs to pro- duce edited copies of the data tapes have been developed for use on the School of Geophysical Sciences Data General Eclipse 120 Computer. These programs are summarized as follows: FRENCH1 This program reads the original data tapes, and writes a print file (RAMEY TAPE) detailing the errors (missing bytes, words or records in each echo data block, for example) and their location on the tape. FRENCH2 is then used to edit the tape, writing the edited version to disc, then copying from disc to produce edited tapes, one of which is forwarded to the French Groupe Radar Meteorique at CNET, the other being archived at Tech for further reduction and analysis to produce winds. FRTAPE copies from disc to tape, and can be used to add files to tape. FRENCH3 is simply a listing routine, which reads the edited tape and writes a print file listing the tape contents. 63

FRENCH4 is the echo location and drift velocity routine provided by the French to perform a final editing of the data to weed out those echoes that do not meet the more stringent echo accept- ance criteria which, in the interests of real time processing, could not be applied in the field. This program has undergone minor revisions for execution on the Data General Eclipse 120 Computer. The program writes acceptable echoes to disc file GRODATA for subsequent wind analysis by the method of Groves (1959). The program consists of MAIN PROGRAM FRENCH4 and SUBROUTINES

AMBIAZ METEOR HPDGRL TRACER TIME CALCUL ETALON PROGRAM PRIM 104 FORMATIOX,111,21WHEADER BLOCK',06,6161 OUTLINE OF WHAT IS ON DATA TAPES FROM RAMEY IFIIN111.EILICALISI WRITE(9,1101 NECHOC DOES NOT EDIT 110 FORMATII2X,'NUMBER OF ECHOES SINCE LAST CALIBRATION ■ ',IS) HEADER BLOCK IDENTIFIER IS OCTAL 000000 IFI1N111.10.1CALIBI WRITE111,1051 NCOUNT,IIN(111,11111,61 CALIBRATION BLOCK IDENTIFIER IS OCTAL 113111 103 FORMATI611,15,2X,'CALIBRATION BLOCK',06,61111 ECHO BLOCK IDENTIFIER IS OCTAL 166666 IFIIN111.E0.1E0P1 WRITE19,1101 NECHOC END OF PROCESSING BLOCK IDENTIFIER IS OCTAL 177777 106 FORMATI/12X,'NUMBER OF ECHOES THIS FILE ■ ',111/1 IFIIN111.10.1CALIBI NECHOCIO DIMENSION IPKT171,1PKTZ(71,1N(601 IF(INIII.E0,1E0P1 WRITEI9,1071 NCOUNT,IIN1111,1101,61 DATA IPKT/7010/,IPKTZ/7110/,NBAD/0/.1HEADER/000000KLICALII/11113811/, 107 FORMATIOX,I6,2X,'END OF PROCESSING BLOCK',00,1111 MIECH0/15116611K/JEOP/177777K/,NECH0/0/,NECHOC/0/,NSUM/0/ASUM/0/,L/0/ IFIIN111.E0.1E0P1 WRITE 19,1061 NECHO IFIIN111.E0.1E0P1 NECHOCIO IFIINI11.E0.110P1 NECH0•0 OPEN 1,'OCONSOLE' KSUMEO 112 CALL 000PEN(7,'ONTA0',IPKT,IER1 00 TO 1 IFIIER.NE.11 PAUSE 'UNIT NOT ON LINE' SI NSUM.0 IFIIEN,NE.11 00 TO 112 NCOUNUNCOUNT ► 1 0120 WRITE(6,1021 NCOUNT,ICNT,IER N2'N/2 101 FORMATI'BLOCK NO.'.16,6X,'SYTI COUNU,16,11,'1111',1111 IPKTII71EN GO TO 1 IPKTZ11151 61 NSUM20 NCOUNT'O KSUM:0 OPEN 9,'RAMETTAPE',ATTE , 11, WRITE111,1081 NCOUNT PAUSE 'EOF ENCOUNTERED' READ DATA TAPE WRITEI9,1031 NBAD 106 FORMATII2X,'NUMBER OF BAD RECORDS 10,111 1 CALL ORDB17,1PKTLIN,ICNT,11111 NBAD:0 NSUMOISUM.1 IPKTZ16110 IFINSUM.GT.51 NIUM11 IPKTZI6IRIPITZ151.1 IFIIER.E0.1111 WRITE19,101 WRITE19,10$1 NCOUNT 103 FORMATI//12UEND OF TAPE') 101 FoRMATM2X,16,121,'END OF FILE . /1 IFIIER.E0.1111 STOP 'LOGICAL END OF TAPE' NCOuNTFO IFIIER.E0.271 GO TO 61 NO TO I IFIIER.E0.11 00 TO 21 END WRITE(1,1131 NCOUNT PAUSE WRITEI0,1131 NCOUNT III FORMATI/SX,111,' MI* BAD RECORD ENCOUNTERED *1111'/I WRITEIS 1021 NCOUNT, ICNT,IER IPKTZIOIIIPKT1131.1 NSUM'O KSUMII NBADENBAD ► 1 GO TO I 2$ IPKTZ161111PKTZ181 ► 1 LEO

IFIKSUM.E0.1.AND.M.E0.1HEADIA1 GO TO 1 IFINSUM.NE.I1 1.51 IFIM.NE.IECH0.011.M.NLICAL111.011.M.WIEOPI LEO NSUMRINSUM.1 IFIL.E12.11 WRITE 1I1,1111 NSUMR 111 FORMATI/12X,'PREVIOUS BLOCK HAS',111,' RECORDS IFIL.E0.11 WRITE 11,1111 NSUMR IFIL.E0.11 NSUMN1 L:0 IFINSUM.E0.3.AND.KSUM.E0.01 GO TO SI IFIINIII,NE.IECH01 GO TO 14 NECHO•NECH0+1 NECHOCINECHOC+1 KSUM:0 GO TO I 24 IFINSUM.NE,11 GO TO 1 IFIINI11.10.1HEADER, WRITI111,1041 NCOUNT,11111111.11 1 1,61

a 000000000000000000 V .■■ O 0 0 a M - 0 := 0 0 a * a a.0....1 . -00--7t._..---0107■ a0 ■■ smz 0.0-...----na.ftzzr4-00zoo - o-000-00.mo 00-110.nn 0 .m.son -- aazmoma m -20.029 a a-cas.-o--Or a 3..- ...O. .....3.23-1000E. . . IC 00.r.a- o rm.-a-0 oa. --rot -*PIPIT ...... C ...IP .0 g°V- ='II AWr:; -am M.. MPS m - izaz .... 0 - . 0 „...._. 55 .r..f.1=0.-1. . m --...... 00 .. M. = ...... ii-0 * . r- M*Mi. .2.-=`'.2 ...... t em-•1--m. .om-o.... - --m.. 66t:W. ..- .- m m...,m--zromi- 0 -m mato> .7.e7) o o oommmo -. o- 00. 0 01 00.0.0. nw. 45. 000 . X; A.7.- . 888 0 .0 -- :!::§ .. ■ . 000> ....-*. OM ...... 0 . ..;; Er.1 ■ !"!::1!....-17.:: M. .2 0 00.00.0 . 00 ..... 00 c. .+0.P. 1 -wozmomo r . a 0- ...a...5 . . .* ..-.. 6..z. 4 .e .T. -4 0 . 0 .... Ili -Pi oz. 0.110- : g .0.0*7= - 0 -a. 0 . Ow.* 0> ...0 r. 2.- . ft. ■ COMO Me . ■ . M. . . oz.. 0 - . . ■ > - - m -so `- 0 0 81'r" .- m 00-,-- 0 ...msLa .m -. am o . .- w ... W.m 0m... --7,4, _ . „-1 ....0 CO M O..- = aa ''' A 8' .:8 r 0 . 0 .0 .. .O..* 09,0- . M ft .0 .. . C :: +40.... S\ 00 (7 0 a - 0 . 71Eat . gx- .0 2 P.P.....-..., . O. , 0 on • ■ 0 0 . .- m - 5 0 In 9 82 0 .0. a .0 0 00.r.a0 'x ma.c400 . o PI.P. . .... O. . M...... - 0 0 a, - : -0 0. m 0 m- o ..ay 0. r ..- .0- - . - as - -0 CO ■ ••m ra 0Cm . a RP* . >> 0 a 0 .0 0 007.0 -"A mm . m .0 0 M. 0 0 i .. 0 0 IN . - 0 •-• O• 0. .11.11 O .1 !s; P. 0 .* . .. :. ..- 8M:i.o." MC' OD ...... O y : - e om m . 4.14, * o".= m In 0 a aa - .rx rr m . . 0 -. a a a asoo - 0 . 0 - 0 0 .10 .00 . > 1-Mi.8 00 ■ 0 7.n1 a O0 0 0 0 WS 2.... 0.0 . us 5 0 * -_ „Mg N 0 .0 - 0 0 O . . Pt 0 .0 . . rieTiri 0 r . . 2. M 0 * O . - a 0> ow a : 1770 0 m . 4- re* 0 . 0 2 'A :A 0 • .0 (A 0 - g c m 3: . - .- ..45 10> 0 Pt - . 0 - . 0 - . 0 0 09 gA 0> r 0 . WI .0 . MM . r - mm . o 7.74 8g ga y.. . . a . In as . us -- .mgA re- . 0 In . 0 0 1 = r . . . 0= OC 0 0 .1 PS 00 OM . 0 +I - ■ CM C. M +10 .4 0 z- 0 . - --. - . 0 'V . • 0 • 0 • 0 0 a ■• 0 0 a - . a .• a . a 0 a Pi 0 .

nno 000 O - ..... M v. .. - 0 0 00 0 ...... 0 . . in Ms . : : . .. 0-0 mcsazasmonso-0 M.M.0.0 M :760.° 0.0=0>m0a0mommmmoomoa0a ...... A82AA8A82 g mmmmm 000 mmmmmmmm 0 0=0 ■ - ... Xi. -00*00 . .... ■■ =9*...... *22. ■ ....*. ■ 14 . 2...CM0...... M.... M. . M.. *MOM.. ...010 00000O* ■ *.O. =0=000 tgrzt°tA. - ...0.7: 10.0.00-. - ,..- .- - mmmmm . .00.... -.-.....,.-...-.- in gmort= -.,..... .-. - _ z.....9 . MCCCO .. ...M.. M- M• 5 ... .• • .... 0 IS 3. -..0 1. -• _i .. --.. .. -07.0 . n +-OD ■ 101 ■ ...... 111). -- m .....is,. ..e. 40. PI* ...... • ...I. .0 .. OW u moo comx ■ co pa erne o 00000 PP.- -...... • *0 .4.. .0 = -. M..- ...... 0...... - ...- .... ■ ...... PC 0 -. V. .*.. V-. M... .-.10 .0120..0-01..... -.4... y ....y 0...... In In 0... C . 0> - 000 .mm. - mmmmm O. mm 0000 0 C...... • IS M. . --... - 00 .... -ma- --.0-r-.-a AV . ---aa .0..0000 ...... CO ...- ... * 0= ...... 0 = .0 O y0 .. NO - = T-1 . 004-00 ------0 In -. M. - ...... 5 0 ! 1...7. r .0 ...• 00, 0%0%1 ■ .0 ■ 00 M. 0.* 0 00C. 2 - r. •-• •-•01. .000. 111 . o -0 . 0 -Or :8 ;!::: .Tift .. Pt ..-00..00.... 00 .... ■ 00 . 00 . . Or. 0 - Pi ...i -1 -- .71 ... .. 0 O. .0 00 0 LOO ...... 0 . .e . 0...... 0.14.0.0 0 ..C.. m -o --CO - . n • ° :Agg 8-1 ;AA g:g8174 ZA : IGO' :-.‘. 111713.- ; 0.1 ICC ...... C •'.. .. PM. . .. M 0 CO-)OS ... -1 0-1 0000 4: . 0... -.PP ... 0.- 0 SP. - .. .. 0 ..1, ■ O. .. Pm" . 00-- . C ...... 0 0 . . • • .1 0 '''''-' 0: M. . M > > > . 00 . r .1 . M. .-. ... - ■ .. 0 0....00 > 0 0 . C . C 0 . 00 ..„ . 0 O. 0 ... 0 . - .1 1. 0 4.C i C.9 en .. 8 m .0 a a . 0 . O : 4. . - .‘.. .. Z C .

0

O

0 0 C

59 -

- .0 01e). M. 0 ft a a a a a sal , an ,,,,, n-a-anla---lana-- a anwn-n-a- -rfa-- 06000w.-r.- 0--nm07777 ann-s---m...... 076-607c0000oomen0am.n.4007-nvnnorOn C 07-14,7000,07.7 4 ■ =9.07 77,- 0 ■ 77-0C=707, MC -79-r-707-r- -X0 0 - , ....0 7= -977- i77n EV0i7776aVVV....-OW..-,M=VVae-o.o. . V V,r7-VV7-MOV. wan- 099 7 99= 7.7mMun-0--07-7700 7-...... rr 0 in 0 770--....07rm.- - ■ 7n v00 ey 000 M - 00V-00.V7 rm 1n CM-00C-179- 000 . -T , s alls -4 -10 - -G--- , . 70 UM 0003gaa• a---4 - on--.-- - e.mwmca -1 - - - - -06,1Mu0-“-i. , 77-.0 M 0 7 1 re, u - ■ 0 44-4 - -.--aa 0007.--m. -7 in _ - -.. -n-... no-- Vralmun0 ■ 416- 0 7 --..007m000 Min= 7 - Orr MO-v-100-07+ 7 0-700V-100 70V 0 6-, .- MO---7in- 7 Mm -77. 7000 7-.7-7.-.-.7CC 9.-.- . ■ M. • m. X • m.9 n - na a 7 V VC 9 -• MC 777-97 ■■ i r OM- 0,--77 O.-. C) Mr in V 7-- 0 in RI 0• .-0 -et - - 0• 4- re 9 a 077-1 777 0 0 0=r .- •-• 7 -a C7 ...CO 0 ' ■ 007 9r• •-• ..6 - - 0 07 a - --I1 7 C - Cr 7 -00 - ■ -I r in •-• 0 7x ■ .r 729. 0 7 7 - ■ 0-6 .-.0- 0 ell aC 0 00 ■ ■ 0 0 • 0 . V ■ ■ ..- 4.. V-- 7 in 0 7 On V-. 0 ..- a 9 Cr -• 700 -4 V 7 0 in 0 , 0 at __. -SO. 0 en 0 06 0 -e. 0 -1 0 -sew 0 - Oc a- na a - 0 al 01V ng 1e - CE r 0 I- -4 0 -10 15-6.- In CO OD+ - 0 0 -V 77.7 V PIC . 0 V 07 * 0 0 .-- M-77 0 7 WM.-0 ■ OM 7 v 7 a 0 .0 0 - _. a m -•1 - _ . . . m . V r 7 In '

31 0 1N a a

en 0 0

VII

nnn n ono* ... -. ..I o 0 0 7 0 0 V 0 . . . 0 7 00-1-77-4-10- ■ •• ■ 070 0-070 ■ 0071 ■ 7 07-7---7-0 * 2C7 77---1107 7V7000-4-- -4, -47 0 77 0 ...... 0977.6 0070 ..... 9 Prim 00 ..... 7 ...... 007- 7 , -07,1- 1=Cr7=-7.-v-OX , - 77 00-rrr ■ 7 C77,0,777 i , ...... maze, -lEzFmma-ir -4 ay c0--,,r- 31. ta ...... 0 771 n 07 MM. n... 00770711e. 7 n malnen 7 0 m . 79 -0-4.--.0- ■ -000 ■ -ne. -SS 0 CM a g:l ina . cow OV99010 3.....a.-....0)1100m0 0 -0. 7 i - C.u 0 r:C. 7•49aZ7n • 7.7.7000.- ,TO 0 o.77 ■ 007.7 i 07707 .- 070 07.-- T rT-.01.77uunt0 r 0-- mm, 000 •:-WoMMEZZ . in mmm- . 0., 00P- pat...... 0 • - -4 -40 - m00 m 0 - 0.0 41-.14. -1 .00 •4.-- 7 9 0 .2 3.: a= . am 0 mmm :ft .-. •...... m -.-.0m .. em , ■ ■■ .■ •■■■ 01, ...MO- .. . in X 0 ...“1 /11 . 00,4. C- 0 dll MOM - 7 a 0 9.0.-7 ■ V W -. . - - 07 r in OM i 77 . 0 77 -a 0 0 si -se -• 0 ...- -n r zee, 1 -I - O.-- 00777 . - r ■ ....- 00 040*7 -PC n - 07.- in - 7C7 77 an 0 7 .001.- . VV- V7 7 00 , u CO 0. II f) 0 V ..t 0 NI M it •1 2 - ..... 4 0 7..0 .....0 v 7 V.97 amg -• -1.- - • - K .-.. .. . 0 077.- -et -te a c Cm 0 I 2 ■ .. -n -.1 Tri - i in -I 7V MO 0aMi-I- in -14 M0-I -..- 7-I - -law 0 a .-.--, ...1 0 v-0 - 7C7 07 •C2 In Oh “ . .. C0 _ . 0V .= , 0 0 In• OV A -9 0 00 - . -- . ..(1 0 - -t-- - Ca - nrrl 00 i v .7 ■ 7- 00 7 V 97 7- Ma V C V 2.47 7= -I 7.7 071 V- ✓ 9 -40 ■ I1C - 0-I 0 -0 - C - . -4 • - C. V -4 -7. In -. - 7 . --

3VV1 7 in - M... NI Ni7 CM . - 97 .- 7 in CM 0 79 in ....0 ■ i --9 = ..-..- C - 7 -I - V 1NO I ■

1 0 . 74 0 r. i ' 11 8 1, . (2 . N31 '1 1 113

99

nanoon nonnon r r M 0+ 0 M 0-. a 0 -a 0 O 44 0 r0 0

maommmommm-- 09000 ,100071Mr- as -1 mo -- am0 walmmozomommz -mmx ns ,11--- 0 .- , MMMMM 0a010aMa ...VT= MMMMM n man—, ram,- !0771 m0 MMMMM c0 MMMMMM 0r720 ■ r 7 .0Vr

1001 czmiOmmZomm -z-m CmmICOmmitomma morn -so0-So.0 am O1 mzwimm--mrmm a m-scro-amm.0 mom 01 - mm Oan- Uill MMMMMM ommom mma .---.---mm asoc ■ 044r ■ -■ 07....000 10017- ■ 00.-017 - —.a—ma -mac wm-e00-0. m-m linovo www-00m-m. m- -m - no- no-oo am m r1r...001.-.0

--nm- om-mo s a N110 W .0000O0y. m.om -om-- 0M10 3N WW. V. -040.-.... 0110 - Z000r..-r no-0 0 a 10=C 70.-■ .-.....r0M0 Ono -n ft -n a eammc 3 CO aoam - -r- -r-On r am 0 - .4 +VW- ■ rum-. 0-40— rZZO -wry.. r am-. 14Mr0 Mr0- li 00-0 0.0 a V CM M 9000 Or WM 0 0 . .0 0.0 . roCi Z ■ -• ■ Orr anom - a .Orr 0 O M 1A a-- --O -ma ■ 00 ■ 0...a a --.-0 Cm = - sm m m 0 aV a ....aoa-4

31 -...... - .-o - -.. me a -z ms -7 - -a M .•,IC rier 79.0 ► ▪ mmmm z . . - r.- o 0 7 om man r0 = -■ rer...- -coon 111 00 0 o-- w-- r mm,o a,s- r 0 M. r mmm- 2E-02, 0 - 0 - -am 0 a msoa a a- CO ✓ r -so- : 'a ... ,,= r no o OM a "na 01 Pa

m— 7 001 01

001 1,4 am 0 7 70 O 1111 1

rM 111114 am O 11V1 11V

a $3

MM 03 0 4 M ■I

Ma OD O

0 a a yin a

L9

nnononftnn

PP PO O at 20•00m20---mManemommi--0--m--meza00--z--mz--zamMams(00000 a ...... 0 ...... eamm0mm0mmormmsrmm N .mOmm0a*SW-m m s-aa am wOOrCr-xXsi-00rora-es z-a--rrmar000z---zXZza0 -Sm-rrmiM 0 Mr0E00 - -0 • 80000 ...... C Mm0W00-1 mm mm m- m m m imIMNOMmA000 • mr•r4..nINIrn • MN-. NO AM S - =Ma= - 0 0 -----. M.- - 0 CM ■■■ -5-1...Q0 ■ ■■ M-M.--14 'N M M 0M- W ■ 71Z>-»M>- >> MMIGI ...... orAm0 a ■ ....mm-.10 m -4 -1,---=-40- -0 aM - ■ 7 n 0 - ■ -..1 -- r in 0 `'. --..". ■ Z000 a ■ M .mmz M-420M-00,00- m r! C 7 r 0-.ww-4-4+r r 10140 ■ NN NM... 0 M- am 0--orm Mom-M0-m-m0 mm00-4m 0 0 -0 4:40•13•0 0 - aa0 ----.44. - Sr Om -401-4•-• -440 400mr ■ ft .A 00 a a Oa -42-.0 . 411-414. m ...0...... a orn - -1•1-4.a M - .. Om.-0 m .m .- 74 .-- - m- ...• • 0 -*2.-.4 = . Tr.r.2 C E-ntit..4 . - - 0 M -A -4 maZ - az ■.0-. -4 000-a a MaA Om m es m ca-M 442 m0 N.-70O 0 mo -- m m M X. -0,00 0 0 - 0 .. , .. . .- • -. _. 7t O .-, . - an am --.-o, .-...- .. A -- !I ._. . C .0 . - ao ms-. ..--. . 0=oo . •.. 0 NC -. in 1•1 5 0 ,._•••• - - KM a -MM Z .5 .0 MO :17.74 N ■0 ,lig ■ Z M M ■ - ■ M -- - - 0 co A- W Me m AaM-0 M i Z Mm. A 0-4 a a IC -4 ■ A ■ r 0 MA 0- 1-111 ...72.- 0 a0 M WI - ■ M M •• cimm 0 -.04. --. . . 71.. -- ..- . ap.c r -- (7 010- - -CI IN a co . 71. -44 - Cfrn -4 0 1 •17)19 M a 5 - m m a- - 0 2.-.X. gi -4 - ••M M M-el M ✓ O A s.- 0C M -0 r Sc A - M 0 m M -- m 'GLOM-. -4 - mMN M -0 - - 0 0411 MOO,' ■ M 5 - ■ M Z M OM M 2. -. MO ■ a an Sr Z 5 0 in ■ -4 0 0- A C In Om ■ M ...a - n a ON - OSM a a . a .. - •-• ,.- 0 -nor - 0 .- M M -0 M- :-. non =_ Si-. rn am. 0 m m z SC- S. 0O -m - 0 z zmrem M M N 0 m mem m S. - Seam -- m a - 0 r 0. Om .....,a 0 , m - m a 0.-. a - - a le. 000 ..... - z • eln -...S m m m m • .- > a ... 0 ..-5. 0 - C r a me- ft m gmaa a m S. a -C z 0 m 0 in M ■ 0 S. > -4 Om 0 0 Z m- a - r 0 5 A orn 0 -I 00 i 0 -• O S - m - o

ennonnn

O ...... -- 5MMK050.40M -.= 16

..... o 11( 1

a -soo-s... Wr 01 - . . .... mw 000! O• ..-...... 0.-.. a

...0 3N I If1 o.-. .-o -,- 00 0010-4 ✓ um-4 mm-4 0- 0.40- a Ma-0 0-4a e OM V- . ■ Mx ✓ M M mmmm Primer .7 - M-OM MOM MM- =

n 7t a

-4 m

7f W

O 02 n1 a

0

89

CDCDC14114) ... ... ... ... .... ... a a a 0 0 . 0 • rm. . -4. . . • -60 0 a MavW0m-----V---v-W----v--vvovilv0-mato0 00 000v - v -oe Zm0*00 ,,,,, O7lvv0 ...... Ovv,0*OmOwavmm-livv , 00-.= 0e, *--mm---* 7--0 r9>9--005.4 ...s.z----.1c---s-...----s---s,==z,ssm,.. =mac mmo.-8 *mO*0000-*000*-0 ...... m-* * ■ *mme00z 00 -ow a -4- maCCc--,cccmC-000-m00 -omtmcom-rvmo- -m-.-mm-.-$0.-.-- ...1,171...1.... ■ •• ■•47 O. Co --.% ....1. - - NI - asN 4.* 4----**-a...---m...---.0-- 0 Omwm- --C WO O- ...mmW0m00x* mm1*-00m-Zpv W.... ,„ *-----0000*-.00.-.-0-000 .0•170. - MAX -- 0MAOS- 40M.114 -Cs -Mrs..= -0MM50 -..4 4 -4 • is-w-44 -40•-• 0-\,CM400A.MCW i- 00000>M4000.0- 4,---- MC CM M.- r. 0 M. . . MA -1-4—M0 *WU.= Es --. 0-0055-Wit— -. -W --A0M-W- W-MM. SW M.MMO ...... COMM,C7*.. r• .r ,CM>. M -> MA -400-41CM-100310-4 0005---... m 0- -4-40 - WS- 0 MO R.**. SAS= -4.-.-155011P-41 - • 0.' 0- ...rn 00 SO ..-- ■ rs r0000-000-1114MM+ -m-V- 505 0 IR... -00.-- . ■ 14 -- ■ * M- ■ r 0m - *mit= , * aerif Um —.One *- m SO- - o* ✓ acm*** lexcmcgW- 000*71 ft 0v- - .-4 5 0. * MO- -- -41- - - • m W-IM A 05-4-3/0-00--- -4 +I- 0 -*WA M.* 0 500y -5-455- -4 • 00001 0 MM-4 MO* - 4.4- 000045-• 0.• 0** 50 9 SNO.--M-.•*--- 10 S .-. -• 400-, 00> NV 00 ...... •4000 0 0 , -4 M*-4 A - . ■ 4441412C ■ 144 ■ PI IIS C 0 ... In. O 0 -4 -4 W. 0141 - 400 O 09-1 M * 00 -r S0 - 0 ■ a - Om* *0 ZOOS a -as > a 7 - v SO Z 0 0 ■100 -. v .-... 0-.4.0 ea ■ = 0 ■ 0 ■■ M ■ M 0 0 000 ■ ... W-- • ■ OF 0 0,. 0 8 MO r2IS ••• - NI 00 AM 0 e7.5 a .., 0 AZIN -4 SO 2-4 00 C -- > OD •-• 555 A 06 0-4. -15 -I rr O . 0.- MI - r 0 .4.. M. . -1-4 .4- 0- r •• 0-m O 5 ■ - 0 - 3.- - . 0001 - r 4-0 - - A *IC - Sr • -e r 0 - -4 0 , . 0-,4 • - ... SOS ■ 0 I. , es OiV . A. - w. Oa -4M A .... .4.■ 0 04 44. . - - NI 0 0 ft - 0 44 * - W S -0. - * -44 14 0- ... * 0 0 M-44-4. * -I ■ 5 M 0 ■ 0 * ■ 0 . M .F.4 * f• .1 -4 St4 - A 0 V A 0 - * V - WO - A r -a w. -4 A .. 0 ■ 4- Ws WI o

69 ▪

nonneknonnnonnon

O a ...... 00e0000000nonnon00--00000000 -ns -a - ll s41,- 05=7 -smnmomm0000n0000000rosss-iii 71 71274471117 =216= Ii=76 -7 760.-0 ...... 07CC0S====r0=++ ■47 ...... +0 ■I WO ■ 00000+====Eirg77 0 . M0000000000 00 +07 707-C -7 7 7.--... ■ 7 ■ 00000000000 0 7 -7C ..... 7777 Al r7M .007= --...... '-""..-..... M.-, 770 ...... 07170117 ;CR 7 COO 41 --. 3. . 77+0 00-707+0 -4 M - -4C07 - -..0 ...... 0 ...... 0- ■ 0 NI 00 ...... 00 700007+7-0 7 - 7770.- 079 24-•+•-•6•1217m--- -177m ■-••••• •-•44.11 21717614+++0000 17 1•4••••••• ...... 4-12. =coca +70=0 6." 07..07 • - M --4777 oats - 24 0 Na + 0 0 PO C. 0+ -MS + 7W-4-400+7-M 17+024 -+.420 114=1,0 + 61- 0 .. 0 - m 0I- 700 + -4 -• • 7r. 7420 0 0 ..... 077= . - 7 7X -.0- - a- e 0 -0 3. in 011.+11=0-1. 011707 0,71•-+ ■ 7 • -6 - 4407 0 0+1•. C ■ 0 > • - in mr 0 ■ 24 +77=••••••••om-Ig m- M-0-7 -.0g0 .4 on- - m0 = 0 -0.- -V7-- .-- -..c.a -ma mm .mno Olonl C C >0 - - 7 C +77+> ■ ! - -- -m e 31.2-3.> ■ +111-- 7 ny - -O WM 74n -I... -. -7 - > .--0 7 0- - ■ ■ 44 ■ 4111114.■ . . 00 +CO 37 = 71 7- 0 - - -146724 07+ -611 „ ■ +116- . lie...-. 0-no-..eatteor-- to-- - 2.-. Do maw -am c-C-\2++100• . P .111 ICCI .7 Cm -RI 71+43717 =0 s 2410 70 ++0 171.- ,+I = 0 + 7- 24 •- 11+ .. C= T- ■ -0 •••• + + ■- 70 7 +- ape ■ 7 - o M 0 .■ 71 .-4 0 - 0 m 7m 7- Me 7700 @m ■•• - a\ - . M 700- 0- .4 0 11.• + ..- C 1114 = 4- - + 7. , 0 ,‹ 00 a ... to -o n-.. yro-m.c. mi. 77 774 as 0 . . 141, -41 ■ - CO m 0 .-50 ■• -0-> -.- -.- 3. -7 ..... ■ • 017 77 77 a ■ 0 era 7 •• in- 01- - - 0 s•••••I7 +T-11->O 1+ os nr NI -4 t 07 -71 a int . . 0 4111 C .= ... - a a . -- 055 ----m- Ci ,2 + - co 007 W77 77 -4 CI 71 .7 T ■ 31. Cr 071 a 00 7 . + +0 = 17 17 ■ ft - a 41• a 44 00 ■ ■ +0 0 0 +7 0 C - 26 26 + 0 7040 - MO 7 77 a al .-. 0 O - 7 0 ea r >07 7 ... +70 0 0 e 3. 7 _,.. -. 7 3. m - in Ill m ea TON i 0 - ■-III- -4 aOa o 77Z 0 7 0 O .... 0 m 0 a 0 • =0 ■4 - a. 0 X a m I-a..._ O +, .. 17 ■ 10- 0 7 .4 5- 0 C - 0 ■ 00 - 0 0 ..4 0m 0 ■ 'rat -41 - r 0 7 2641. Oa , = 614 - 11 CP

7 ...... _....7 1

0 O z. 7: 47 . 0 ..- .. ,_..., :... , , . , . 0 ... _. 0 as -. ++ + T 0 00 a - 0 ,... 70 7 7 ' ■ , 70112 ■ ,07 ::"-0 ENE w . .7,-2; ... „, ...... „ ,_,„ 0 ..... 0 -nmm0 ..... 00..0-.00...0f, _ 7 .....m = = '.. - 0--,-09. .---...- .0...--t_.. -C- 9-»9--»>-m-. 1,--,,...... -00 lc MP 7 0 7+ ■07 ■ 267+y76-71 u 417 ...... - .- ■ - 7 nt 07 n -.47 n 0+. C11070+7+070+7+77 ..' 0 .-0;2T.g22ti7.g:1222T; - --Co 7 6600.■0 ■ 0 ■■ 0.11 ■ 31... ■ U.. 06 ■ 14 7+ 7-.7+6+ ...... =.4=M+ ■ 77+=+7,1-472 . 0.... 00- - .- 0 me- bane .1077-77- y - -77 -7- - m. - - - CYO n 7 -7. - -... 0. . - 07 !7 . - .-• - a- - -.-- Pi... •I C.• r... ■■• ■■• a, g.wAT.' 0077 66 7 r a * . ■ • ■ - 02-+ ■ • 00+0000 m -am 0.-.00 . -.seem- . m00. r -...ma-a- ..soosessm >@-PO co-s • • -.sm.-...... - ..-g2-50m +. , 0• • +0 7 +71 +12124 -.44 -.MOP. CO ■ ■ ■ + .. .„ - .0 __.._._ ....-.... 00,, 00 ♦ • a- I . - •. • .-. P ma a. = 12 - 2 707 77 -0 +7 0M-7 se--7 ma-C-7mgt • • 0 .-00:L. "- 0.--+ 05 4110 ■ 7 -3.-. >5 00340 0.-34340 0 ■ 2442 V+ 14 .0 0. . 070a 0 == 0 70 0 72610 0 1111-4070.4, g 2 gegte"TeraTIGt 00 m ■ 0 7: g7. ,:v.70.4so-. a . 007-im .4 = + 0 :7" - a s .-c ..-nt -0 • +7 to -4-4 00C - co 7 7 - c - < . 0 00 MY -47 11 +7 .m + + MI-- - O r - Iii sae mw 7 o low _., - = a....g.p.-T.FE=7.; O 7 1,- Sr -. s:Zg .0 - - ...m .... __. 0 0 OM tr. : O!- -a - 0 w M 7- 7=. - 0 0 - C .. - 0 o !Cr- 5-4594.-..- 0 17.- m g ; - : 0 0. 40mmommm-- m - m M 7 7 7 a -4 -4 -T. 2Pt -0-_-_ - IN M+ g7:4 0 0 0 4 0 v . -4 400 -- M a ...... m it+ 0on 70 • eM 0 a - ' ...... -- . g o- - -7.-. m m --.1-. • a ..... a _ 0 m m T C m- o 7 r- m . --

01V m a - ... • -,I

019 M

1141 7 ■-•

O Z. •

0 ■•• 7 ■• 0 a Sc .... - ■ e ID a PO 0 a 0 0 M 0 a V a a a an a la-. a 0 a a a ..4 MM 0 r - ---0,..- --0.0 , 11.---.00- 05-0- 0----0-0 00 --- Orn. 0-0,00- r 0,0- , 5-00007..0 MMMMM 0s0soapossasposa ,,,,00mm.+ rTMMMMMMMMMM 0 MMMMMMMMM 00 ■ 9---0 -..-- ...... ■... 7.--... 1.1707.4.• - ■■ , 0 - 21 - 07MM -. - 24 1 .-.0CCCC , 74 OM. - ----10v-ropono •, - .- ,=y0y a .... - ---1. -40e ■ M7M -4 - U07M - 000.-- 0 , ...... “ mM. -.00.- ■ - ■ MOmm..-0+-....0..m00 ..mm 00000.M. 4.droMmam mm000 CCCC V----M0 CPMC-10 ■ •• ■ 0- ■ m ■ - . MCMO. Mmms 0-1 , 0 ■■ - ,E.mmm ..C.O. G. -.0, MMM -ImmOZM mam,mmammi ...... v 0 W am - rOr 0 - ■ -m-f. at -. - 00 -. - D... 0_... . -••••• +P r. . V 0 0-• ..... 0000• • - - ■ 0=_.. ■ ■ r NT - e- CCCC5501.00• 0 • • • la 011. 005 00-.40 ON- 000- .-...) ••••• r -• C .--mm ...... m +•-•-••• 0-..0 V 0+00r.+ - 0 -•C M,m0010C.m +OM • ... .. - 0-Mmo-lo-..-....++e_-...- . +++-o -.0 .vo. ... .00. ..- + . = -. oss ...... --0 ..--0 - .2. - 0 - sw ----me ---s -V -.S.C. r ■ . 0 -I Osmo t - s M.• V.--•-0.--. ■ -- 00-040 •-0 ■ • C 0 •-• 4-4009 M -• Ipm • M00 0,,.- ■ It-- -4 •- ■ - ■ A 0 - 0 MMmM 4..0- 7 - CC --0 a 0 - 0 e man . 0 .0 0 C. MO - V. ++++. -1 0 2 7 -4 .ftm -I a a M. 4-1 - NE.- --.... 00 m m r - 040 0 0 ■ 0- 50 NI -1 al.M IF - - .0 •-• - 6 -.-.0 •-• V D. V m CD - + . 0 ..• 00.-0 0 1-0 V - - 0 0+. 0 0 •-• CO g 7 ■• ■ • 7 M M m ,M M C- ■• C M - ■ MMM a 0 0 M M 00 0 t -a 5 -4 0 - -I 0 --0 00 0 a C 0 00 0 _ 7 Da O CO 0 0 ■ .-- 07 ■• ...a. ...a r. - 005 - - 0 M a - 0- V 55 Of ■ DV-. 0 0 CC -- a 0 0 V +V , 0 5 0 00 - 0 Or r C. ■ 4 - 0 -1-4 00 Z -I- + , -4 -+-C 4. 0 o or+ 0 0- - ■ 0 a - rr • -4 - 40 • - ■■ al... r e 0 0 0 0 +C •- a ea• 5 5-1 It a - . 1096 . ... C r r a a ,11.- - r r .... . a a r.... .5. 04•1 - . 7 - - C 0 a ID ,.., 5 C.- 1•1 as y. a ■■ .

n0d30 0 MO • 7 ....0 ... -0 Sr ■- ■ 7 11 0 WM 0 M C Sr ■ - ; -. M , 00 00 N. 0- CM 0 ■ - 0-4 0 MS .0 Y 1N31131 V0VO r 00 la ■

(. - - 0-• .-....0- CM Oa a 0 a 0 1110 a 0 C ■ -4 -4 - 0 - 0 •-• a C 0 M

0

a 0 ■ .-.. ■ -. 0,1, ++++ 0. ...... Cli •-• • ■ ■ ■ 0 00 ...... -.... -.. . i. .... 0 0 0 0 . +a.... 00 .+0v or a + Or V 0 m. a 0. ea.+ + + - - 00 - - --.4,,,..000.0 - ..000 - 0 - cOm • 4105 -•1000 , 460-00-e0 0 - - 4100 ...... 0 ae0=-0=5 ,-0=0 4155m0=Come 050 5 00000 ...... 05MMe0000=97.90-#0 ■ -Clew -..r...r0 1 0.0-.-+-...., .-.. mr-...-- • alaaNa - 00 -I-00 - ■ aareNs-a NI 40 - a - .srel.- m-.-0-i 1c-s- M,c-4 1C-f-o ssr -s E-m-s -- ....s. -m- S ...... ■ an. 111 111 5- .“ - ••• ■•• -. .... = C.MMV MC-\0 00-C+0 • --00 ■ • =M-.r+V.,-. +00 O. 0 - ■ - CV. C. • - a . C 0 0+ r0V 0 a• r - ■ - Os 0010- ..4 - 5 4- y ••• a 07 - 46 • ■ ■■■ ■ ■ - 0 • ■ M r• .-. 7. • 0 -0.-0 5 In 5 -O- •-• 0 050, )4 ,- 0 5 la C -11 ,--10 - NI 0 0 C-. --le ■ e • • • ....4-4..4- + -I+ 0 Is .54 .... DI i. 7 Oa 0 Mal 0 - - 500- al- -.. ■ 5 - 5 Ca C 5 0 •••• 5 0 ..... ()Me a a-- 00 00- - - 0- 0 X - 0 - - .02.0r - onnno-rn .... C - .005- .0-80 •0. -I -40.50V -1 .-. .. ft .-...0 ,M ,.- e•-•CC 51 O g xxxx ■ -M. ..,0 , M0000 ■ •■• M Ma- BM -- 0 0 I 7M M - 4 - .670. ■ ...... 0 411 010 a 11. +0 + s. - MEC - - OD -4 0 7- Sr 09 0 0 Or ■ 0 ... ■ ...40 = 0 M O. 0 M 91171 441145 22 0- m C•-• 0 ..0 - Om- 1110 0 0 MD- 0 ,- r 5 0 0 r- ■ gar as - ISO 4- ■ MCIK r - 0 ■ . - •••• - ru V as. - MC 000r0 , 0 .C-0.. 0-- -. 0 .--C 0+. Da ..17... 0 m-. 0 - + -7,51m ....Or. 000V a 0 S. DBM. 70r 7 - - P. - .... a M 4 ID - MC.. a DI 0 -4 Or -a 0.. a -a a - .- X -• Cm - 0- 0 a• O 1.1 al i C ., X- ■ 31.- 0 ■ - OP •rt 5 5 -4 rn 0 ■ -m -- 0 .-- 0-4- -I. la to 0 o-10 .-- la 0 •5• -a r ■ NI • -a r a•-•- air 0 ■ . al .0+ 0- 5 . 0 .- 0 • 00 Mm . 77111e .■•• . ■ -.... C III CO an-a al& al, ■ SC 0 -..co- -40 ... +fa+ 01. •-5 ca.- -I- It a -I 0.0m ,-. r+ 00-40 V-.. - 00-4 0 0 - mV m4 .. ... \Ms ID C -....40/11 4... D. - , Z. Ma IS ....7•C , NOD 5.- ,-.... -. •.. • CO 0 • - la 5 IT -I - - VI. r - m . r .11. agr WO r II Y. Pr \>00 . yr .... 5 . . 00 5 Mr ... A,. a >QM, la ■ a... - sin- ..-. a o- a -mama. .. DO 7...... ■ 7 50 . -..., .... • al. 5 5 - 0- . + o\ ••••• 0C, ■ -0- I a a e 7 .- 2 M. ■ 0- O. a •-A - In a In - 0 5 \ 11- - CV. ■ 5- ay 0 - - sea 5 ✓ .. . ...... MI- 'VI ■ 4. M M Mm 0 0 IC O. 0 . 0 0 M 0 . C .

IL 202 FORMATI//,40X,12HMEASURES DU,2113,1N/1,15,//,40X, B18HNEURE DE DEBUT ■ ,13.1HH,13,////1 203 FORMATI2A1 1 STOP END

SUBROUTINE AMOIAZIHD,111,02,1TOTO,JAMB,X1,112,11,121 DIMENSION P121 COMMON /AMB/NI21,OLIM,PLIM COMMON /BLOC/ IOUT13001,IFIN,NBAD COMMON /CST/ 011,0AM,GAM2,1AUTO COMMON/TETE/ITET,IETAL,IECNO,IFIND EQUIVALENCE IBR,JOUT11$711 DPIOUT1931 DO 1 121.2 IFIH111.0T.$0.1 00 TO 10 PIIIIEXPI-1100.-111111“21/.0.1 G 1,114111.01.$4.1 GO TO 10 PIII/EXPI-1114.-H111101121/011.1 00 TO 30 10 IFINIII.GT.94.1 00 TO 20 C 10 IFINIII.GT.SCI 00 TO 20 P11111. 00 TO 30 20 P111sEXPI-IIN111-94.10B21/$0.01 O 20 P111 8 EXPI., 1111111-SS.1011121/$0.111 SO IFIND.E0.0.100 TO 1 P1112EXPI-11110-11111-NDMIN1121/$0.1 1 CONTINUE IFIPI21.LT.P111100 TO 40 1111113N121 P1110121 01.02 X1 2 32 Y18Y2 40 IFIABS1111-001.0TALIMI 00 10 BO IFIP111.11E.PLIMIGO TO SO •RITE111,21 IIOUTILI,L 2 4,01,10UTISI,ITOTO,P111,11,1111 3 FORMATIOX,313.14.501,"ECNO AMBIOU ",A2," 1MPR P1112 ',112.5,2,7.21 JAMBE2 RETURN SO CONTINUE WRITEI0,41 ITOTO,P111 4 FORMAT( SX,'ECNO ARM ',A2,' PROBABLI PII12",011.01 RETURN SO WRITE10,21 IIOUTIL1,1. 2 4.11,10UT121,1TOTO,D,BR 2 FORMATIOX,213,14,S0X,'ECNO AMBIOU MIT GAMMA",123,2F7.21 JAMBI12 RETURN END END FILE 34 SUBROUTINE METEOR TYPE 'NUMBER OF BAD READC,NBAD C READS RAMEY DATA TAPE FOR PROCESSING BY FRENCHE TYPE ALL DONE' C STOP DIMENSION IOUTI300),IRECIO0),IPKTI71,1PKTWITI,ADRES11101) C COMMON/BLOC/ IOUT,IEOF,NBAD END COMMON/TAPE/ IPKT,IPKTWOREC DATA NBAD/0/,NCALL/0/ IOUIVALENCEIADRES1(1),IOUT(11711 C SUBROUTINE HPDGRL MEAL) C SET UP FOR READING C C C CONVERTS HEWLETT/PACKARD REAL WORD TO DATA GENERAL REAL WORD 110F60 C IMP mums HAVE BINARY EXPONENT: Do REAM HEXADECIMAL EXPONENT) C C NCALLINCALL41 DIMENSION IOUTI21 IF(NCALLAT.11 GO TO 2 EQUIVALENCEIREAL1,10UTIII) OPEN 11'OCONSOLE' REALIIREAI. IPKTWIIIII 1160 IPKTWI7)6120 1210 I CALL 000PENI11,41MTA0',IPKLIER) C SIGN OF MANTISSA IFIIER.NE.II PAUSE '9 TRACK UNIT NOT ON LINE' FLDII1,1,1)6FLD(IOUT111,1,1) IFIIER.NE.II GO TO I C REPOSITION MANTISSA 2 MUSIC FLDIII,CISIEFLDIIOUTII),1,1) 1010 FLD(12,1,710011OUTIII,10,161 C FLDI12,11,1618FLDIIOUTI2),),81 C READ S OF SO WORD BLOCKS FROM II TRACK TAPE IEXPIO C C SIGN OF EXPONENT DOS I61,6 FLDIIEXP,1,1)6FLDIIOUT(1),16,10) CALL ORDB(II,IPKTW,IREC,ICNT,IER) C RECOVER EXPONENT IPKTWISIIIPKTWIS)•1 FLDIIEXP,10,1616FLDIIOUTI2),1,10) IF(IER.EQ.27) GO TO 4 C RAISE MANTISSA TO THE POWER ZERO IFIIER.10.11$1 GO TO $ FLDI11,2,210 IPIICNT,NE.120) UMW C EXPRESS MANTISSA TO THE POWER ZERO AS A DO WORD ••-.1 4 IOUT(1)611 J20 IOUTI2)II2 U.) 10 46.1.1 C RAISE THE MANTISSA TO THE CORRECT POWER K6K41 REALIREALIMI1.061161EXPI IOUTIK)21REC(J) RETURN IFIJAT,6101 GO TO 20 END S CONTINUE J110 C C UNPACK HP REAL WORDS, AND REPACK IN DATA GENERAL FORMAT C DO $6 161,101 CALL HPDORLIADRESIIIII IS CONTINUE C IFINBOMS,10.01 RETURN NBAD11186041 GO TO S C C END OF FILE ENCOUNTERED 4 110F$1 IPKTWISI'O IPKTM16) 6 1PKTWIS)41 RETURN C C END OP TAPE ENCOUNTERED C REWIND AND EXIT IPKTWIS)60 IPKTWIS)10 CALL ORDSIO,IPKTWORIC,ICNT,IER) SUBROUTINE ETALON WRITEI6,1101 OFIBET111,0FIALF111 INTEGER DOUBLS IFIK.10.101171211 00 TO 3 INTEGER DOUSLT, 3ITE,AZ111,71(2),VALDA,VALDS LOGIC COMMON /ETAL/DOUSLT,K,IFO.NSE,VALDA,VALDS,MOYAZ,M01111,DOUBLS 00 TO 1 COMMON/GEN/TE.DFIBET111,0FIALF121 8 IFILOG,NE.11 GO TO 2 COMMON/BLOC/IOUT13001,IFINABAD 1•1 COMMON /TEST/ JOUM011121,,IN,JF11ANNIE 001013 COMMON /TETE/ ITET,IETAL,11010,IFIND S 1•2 ICADRE(IVI•IV-115/160111360 11 TE110• 1tIOU71311124.10UT1411000.10117161/0160•10UT161 110 FORMAT(10X,'DFISETW,F12.2,101,'DFIALFW,F12.21 OFISET110 • ICADRE(VALDS-SITEI WRITEI6.691 OFIALF(10 • ICADREIVALDA-AZIM1 118 FORMATI1H11 WRITEI6,1101 DFISETIILI,DFIALFII0 IFIIOUT121.101.11 GO TO 12 IFILOG.111.11 GO TO 10 READ15,10011 11OUTIO,02,61,11OUTIKLIAL.250121 LOG ■ 0 LOG•1 GO TO 1 GO TO 6 10 NBE•IOUT(21 11 ((JOUR ■ IOUTI31 WRITEI9,1081 CALL TIMEIJOUR.NJOUR.M01111 106 FORMATI////////,21,2N10,51.5HNEURE,41,1NN,51,2H3 .61,4NY-A,21,614 WRITEI8,10 01 IOUT121.JUR.M0111,110UTILI04,61O , SGAMMA,11.111N,81,1HrY,SX,4HWY.41,11IND,411,4NHO-N,S1,610110,/// 100 FORMATI1H 0,11TALONNAG! NO w,14,3X,"DATI ",216,01, - HIURE ",3161 RETURNETU WRITE16,1011 IOUTIDOUSLS.261,10UTIDOUSLT.14, END 101 FORMATI1H ,61,"DOUBLET SITE*,16,111,*DOUSLIT AZIMUT'.I61 WRITEI6,1101 DFIBET121,DFIALF121 DF11117(1•0F11111121 DFIALF11•DFIALF(11 TEI1)•11121 1 111110 IFIK.10.10UT1111 GO TO 3 READI5,10011 IIOUTILI,•2,61,110UTIKLIA•25.111 GO TO 6 WRITEI6,1011 101 FORMATI1H0,'PAS 01 SEMI ITALONNASI'I IFIL011.11.11 00 TO 10 DFIBET111•DFIBET111 OFIALF1110FIALF111 111200. GO TO 10 1001 FORMAT116161 6 ((JOUR •IOUTI81 CALL TIMIIJOUR,NJOUR,MOIS1 WAIT116,1001 IOUT121,JOUR,110111,11OUT11.1,04,61 WRITE19,1011 IOUTIDOUSLIMS/,10UTIDOUSLT+241 C SITE SITE•IOUT(DOUBLS•2111 IFISITEGT.20001 GOTO 14 1141011 11ASSISITE-M01111,3601 IFIIASSIICADRIIIVII.L1.1F01 00 TO 8 14 111 1.1 SITE I MOYSI WRITEI6,1041 MOYSI 104 FORMATI1H,2011,"BALEUR SITE AIMIRANTE*.201."MOYENNE",181 8 AZIM •1OUT(DOUSLT.241 IFIAZIM.GT.20001 GO TO 16 IVIMODIIABSIAZIM-MOYAZI3601 IFIIABS(ICADREIIIIII.LE.IFOIGO TO 7 IS 11121 AZIM•MOYAZ WRITE18,1051 MOYAZ 105 FORMATUN,201,'VALEUR AZIMUT ABERRANTE',201,110YENNI',16/ 7 IF111.NE.11 GO TO 8 IFILOG.NE.11 GO TO 1 11 1 11 ■ 111OUT131924.10UT1411•60•10UT15111160 +100161 OFIBET11•1CADREIVALDS-SITEI DFIALF111 •ICADREIVALDA-AZIM1 SUBROUTINE TRACER ID4IOUTIJ142 1D411D/41415 DIMENSION LIGNE11101,REEL1101),IR1161,10161 IF1110.0T.1101.0R.11D,LE,011 GO TO 252 INTEGER RDP,DUREE LIONEIIDIEETOILE INTEGER BLANC,TRAIT, POINT,ETOILE 262 DUREE 4 11.1 ■ 87/1161 COMMON/BLOC/IOUTI3001,IFIN IFIDUREE.E41.01 GO TO 255 EQUIVALENCE IREEL111,10U710711 IFIMODIDUREE,00130.01 GO TO 256 DATA BLANC,TRAIT,POINT,ETOILE/111 OH.,1N.,1101, 00 TO 257 266 LIGNE11014TRAIT C TRACER DE LIAMPLITUDE WRITE16,411DUREE,ILION2111,149,1101,10UTIJI GO TO 260 N4 1 41 FORMATI1X,IINTEMPB,12,10241, 14,10.171 31 FORMAT153,13,102A1,141 26$ LIONEI1014TRAIT if FORMAT1110A1,10 WRITE16,311DUREI,ILIGNI111,146,1101,10UTM DO 6 1410,60,10 GO TO 260 101/10 267 WRITEI6,321 LIONE,IOUTIJ1 6 11111J141-160 260 CONTINUE WRITE16,111 II/1111,1 4 1,U WRITEI6,22 1 11 FORMATIM,462," AMPLITUDE",//,73,14,7163,141,// 32 FORMAT( //,22,31400,53,6101EURE,42,11411,63.2142 ,22,411Y.A,22,611 1,63,1114,1415H-411 2GAMMA,62,11414,61,3HTMIX,4MDVIT,42,2NND,4A,4000-1,611,2NOND,/// ROPEIOUT1641 RETURN NBREREEL11011.10.6 END IFIINSR.LE.01.011.1NBR.GT.11011 NBR41 DO 100 141,110,1 1$0 LIONE1114BLANC DO 220 J.l,RDP IFIJAQ.11OUTI$21•31/LIGNE1110146LANC IFIJ,E0.10UT10211 LIGNE11101 411.0114 IFIMODIJ,21.E0,01 GO TO 220 LIGNEINIIBLANC LIONEINBRI4POINT DUREPIIIJ-116$1 11 4 REELIJ14140.5 IFIIN .LE.01.0R.1N.GT.11011 N41 SUBROUTINE TIMEIJO,NJOUR,110121 LIGNEINI.ETOILE COMMON /TEST/ JoU11011121,4110,151,111111111 1116 LIONE11014POINT DO 10 10042,12 IFIDUREE.E0.01 GO TO 200 IP( NJOUR .LEAOUMOIIINDII 00 TO 20 IFIMODIDURIE,601.212.0) GO TO 110 10 CONTINUE GO TO 216 IND4IND.1 200 1.1011211015TRAIT 20 M011151NO-1 WRITE10,121 DUREE,ILIONE111,152.110,11,REKLIJI ,R1111.1.1.11 .105 NJOUR -JOU11011M01111 GO TO 220 RETURN 210 LIONE11014TRAIT END WRITEIS,161 DUREE,ILIONI111,146,110,11,REELM ' MUM) 00 TO 220 215 WRITE(0,171 LIONE,REELIJ1,REELIJ+11 16 FORMATI1X,ENTEMPS,12,102A1,11 7.1,F10.21 10 FORMATI52,13,102A1,F7.2,F10.21 17 FORMAT1110A1.77.2.,10.21 110 CONTINUE LIGNEINER)a6LANC 0 C TRACER DOPPLER NPD4IOUT1961 DO 7 L41,16,1 IRIL1 ■ 1L-111420 WRITE15,40111RILI,L41,19,11 40 FORMATI22,"DOPPLEA",63,11,43,12,17122,131,63,/,03,"4°,2016H.... 4 11 JPD4 674NPD.1 DO 260J'67,JPD DO 250 LT41,110,1 260 LIGNEILT1411LANC LIONE11014POINT SUBROUTINE CALCULI!) LI60 C CALCULATES THE ECHO COORDINATES LHDE.TRUE. RMAXEIOUT1$21 LOGICAL LHD RDP ■ 1OUTIO41 REAL LAMBDA,MONIK,NPB GO TO 5501 DIMENSION 711001,791201.PHI(20),ADRES111011 2602 RMAX6RMAX.1 INTEGER TEM,CARTES,RMAX,RDP,TE121 6601 CONTINUE COMMON/GT/ LH,LM,MSEC,AZIMUTH,HITE.VEL,ELEV,JO.MO,MY,SOURCE141 IFIRMAX.GT.301 GO TO 273 COMMON /0EN/TE,DFIBET121,DFIALF121 IFIIADRE311RMAX.21,07.ADRES1IRMAX.111.0R.1ADRE211RMAX431.0T. COMMON /AMB/ HI,H2,GLIM,PLIM 1ADRES11RMAX.1111 GO TO 6602 COMMON/CALC/A,R,CARTES,VPY,NPB,DALPRI116,481,DBAPRI12,421,JNT.DV,NOHD NT20 COMMON /ANT/ANU,PSIA,P812,PSIE,EPSI JBELERMAX.1 COMMON/BLOC/IOUT13001,1FIN,NBAD IFIIADRESIIJBELI-ADRE81110111.LT.111.1 [N11161811 COMMON /EF/NFD ,NFF ,1111,122,1A1,1A2.DMIN,DMAX 502 FORMATI110,1252,2A1,141 COMMON /TEST/ JOUNI011121,JND,JF1,1ANNEE DO 305 J 6 JBEL,RDP COMMON /KONS/PI,CPI.LAMBDA,DELTAT,CONST,ILIM,D,D1.2,21 IFIADRES1IJIATANPB.ADRE51(101111 GO TO 208 COMMON /CST/ HUM,GAM,GAM2,1AUTO 205 NT6NT*1 COMMON/TETE/ ITET,IETAL,IECHO,IFIND S08 JGER=RMAX.N7 DATA (AZI,1217/2HAZ,2HEL/ IF(IADRES11JBELI-ADRES1(JGER11.1.T.I.161FLOATINT11) LI 6 1 DATA IBLANC,ISTAR,IS2/1H ,11416,1H8/ IFIIADRE311J1111.1.ADRISMGER11.LT.1.05ONT11 GO TO 1272 DATA IST/1HTF,UR/0.0/ TMOYEN60. EQUIVALENCEIADRES1111,10UT1271) TIRMAXI60, INTEIIBLANC SIMAPTIO. INTE1 6 111LANC SIMAP260. IONE61 SIMAT260. HD60. PMOYENRADRE811RMAXI DHD10. DO 310 J6JBEL,JOER BEADRES111011 PMOVENIPMOYEN+ADRES11J1 2161OUT1231 TIJ/ ■ FLOATIJ-RMAXMILTAT )(JOUR sIOUT(11) $10 TMOYENITMOYEN•T14) CALL TIMEIJOUR,NJOUR,M0121 NTENT.1 TEM6 111OUT121924+10UT1411640•10UT1411980+10UT181 PMOYEOPMOTEN/FLOAT11171 IFIITEM.LEATEM1s10.11.AND.11AMODIABSID-011,20.1.LE.1.1.011.1AMOD TMOYENITMOVEN/FLOATINTI 11ABSID-111,30.1,02.12.111 INTIIISTAR JGERERMAX.NT-1 IFITEM.LEATEM14.11 INTIIIST DO 320 JoRMAX,JOER 201 TIMMY SIMAPT0 IADRES11,1)-PMOYENINITIJI•TMOYENI.SIMAPT SIMAT2651MAT2.1TIJI-TMOTENINit C CALCUL DI HD $20 SIMAP2 681MAP24ADRES11J116112 C MONIK6 -4.343921MAT2/21MAPT IFINOHD.NE.01 GO TO 176 IFIMONIKAT.0.1110 TO 273 IFI(INTE.NE.ISTI.AND.IIINTEALISTAR111 GO TO 1444 110 6 1CONST-AL012101MONIK11/0.087 LEMILEMO SIMA2 6 SIMAP24LOATINTINPMOYINM*241MAPT0161/81MATS IFILEM.01.11 0010 1445 IFISIMA2.LT.0.1 GO TO 271 IFIINFA.10.(10UT121-111.0R.IINTI.E0.12TARI) SO TO 1449 FACTOREISIMA2/1FLOATINT-21NSIMAT211 RJ') SIMA268ORTIFACTOR1 GO TO 144$ SPIIIIIIMAPT/SIMAT2.SIMA11/(21111APT/81MAT24111A2) 144$ IF1112-B11.LT.S.I.AND.IABS10-1711.GT.1.11 GO TO 1144 IFI1PI.1.7.0.1 GO TO 271 IFINFA.NE.11OUT121-111 GO TO 1448 DHDEASS(AL001011111 111/0.087 BACKSPACE $4 IFIDHD.LE.2.i GO TO 274 RJ N 1 IFIDHD.L1.3.1 GO TO 271 JNT ■ JNT - 1 1171 CONTINUE 1445 WRITE18,281 IIOUTILI,L24,81.10UT121,0,11 WRITE18,2721 11OUTILI.L64,81.10UT121,HD,OHD,D,ADRES111011 IS FORMAT(' RJT',10,212,14,2211,2F1.2) 271 FORMATI82,313,14,222,"111JET HD . ,22,117.1,22,F5.1,272,2F7.21 IFIILEM.NE.21.0R.111J.10.11) GO TO 144$ WRITE18,6021 INTE,INTIE BACKSPACE 34 RETURN IONE JNT ■ JNT - 1 271 LHD6.FALSE. RJ ■ 1 GO TO 27$ IFINFA.NE.11OUT121-111 GO TO 144$ 1774 WRITE18,2773) 11OUT11.1,1.64,81,10UT111,0,ADRES111011 BACKSPACE $4 2773 FORMAT1OX,31314,602,'DOUTEUX F-110',302,2F7.21 JNT I JNT - 1 WRITE18,6021 INTE,INTEE 144$ RETURN IONE RETURN IONE 1444 LE800 178 HD60 RJ ■ 0 LHD6.FALSE. 1144 CONTINUE IFIIAUT0.20.11 00 TO 2272

GO TO 176 IFIJTOTO.NE.11 GO TO 76 C JTOTO.0 C CALCUL DES COORDONNEES DE L'ECHO 00 TO 80 C 78 AIM 174 LHDI.NOTAILI.10.11.ANDADHD.P.O.811 71272 278 CONTINUE H102 IFIINFD .10.10UT1211.AND.I.NOTAHD11 GO TO 2714 ITIITOT0.10.11 GO TO 90 TEMIRTLOATITEM-TE1111/FLOATITE121 ,-TEIIII JTOIO'I DFIBARDFIBET111•11DFISETI214FIBETI11111TEMII ALFA:ALFAP2 DTIALOTIALTI11.11DFIALF121-DFIALF12119TIMI1 00 TO OS PHIALTRIOUTI$91 80 ITI12.0T.78.1 GO TO 86 PHIBETRIOUTISOI X8RX1 JTOTO'O X4RX2 ITOTOR1 53 1 51 KTOTOR1 74'72 PHIALFRPHIALTOTIAL H301 PHIBETEPHISET+DFIBA H4'H2 IFIPHIALT.LE.IPSIA-GAM2-236.11 PHIALTRPHIALT.880. ALTARALFAP1 IFIPHIALF.GE.IPSIA-GAU2486.11 PHIALF.PHIALF-360. KTOTO'2 IFIABBIPHIALF.PSIA+GAM2).LE.128.1 GO TO 80 GO TO 60 IFIPHIALF.LT.IPSIA-GAM2-123.11 FIALFIRPHIALF.860. CALCUL DE LA VITUS, ITIPHIALF.GT.IPSIA-GAM2.116.11 FIALF2RPHIALF-860. IS ITIKTOT0.01.21 GO to 96 ITOTOR2 IFIITOT0.111.21 GO TO 16 SIARIPSIA.FIALF21/7200.NLAMBDA WRITEI6,8741 11OUTIL1,1.24,61,10UTISI JI.ADR18111011 ALTAP2 ■ ATANISIA/SORT11.-S1AiSIAII WRIT1186021 INTE,INTEI 80 8IA ■ IPSIA-PHIALF1/7200.*LAMBDA RETURN I ONE ALFAP1 ■ ATANISIA/SORTI1.-SIANSIAII 88 POOP ■ IOUTISSI C H1 ,110 IFINPDOP.GT.41 GO TO 616 AP2RATANIH1/110RTIOND-HISH111 WRITEI6,1181 IIOUTIL/M4,81,IOUT121 C X1BETRDIISIA WRITEI6,8021 INTI.INTIE a YIRSORTID004101-X1*111 RETURN IONE C 0 TO IS 688 CONTINUE ALFA'ALFAPI DO Si l'1,11PDOP IFIPHIBET.GE.IPSIB-ILIM.86011 PHISETRPHIBET480. Si PHIIIIRIOUTI14691 IFIPHIBET.GE.IPSIS•IL11111 GO TO 68 NP180 SO PHIBETRPHIBET460. 88 ITIPHIBET.I.E.P81111 GO TO 88 NPRO ■RITE16.1161 IIOUTILI,L14,81.10UTI21 88 TV11100. SRITE168021 INTI,INT&I TTOT'O RETURN I ONE PHITOTIO. 68 COBRIPSIB-PHISET1/10800.4LAMSDA PHIT021 0 BETAP2RATANISORT11.40114C0111/C061 IFIPH1111.10.1999.1 so To II ALFARALTA9CP1/2.49. $1 PHITOTIPH1111 FlIALTA.LT.11 IALTARI PHIT0201111110"2 FIIALFA.117.161 IALFA'16 98 DO 100 1 12,NPDOP BETARBETAP2uCPI-28.8 IFIPHII11.10.11089.1 GO TO 100 FlIBETA.GT.461 IBETA1 48 IFINP.NE.01 GO TO Si FIISETAAT.11 IBETAR1 PHINIIPHIIINII ALTSECRALTA.DALPRIIIALFA,ISETA1 /CPI PHINDRPHIII1 BETA ■ BETAP24.1DBAPRI11,1111TAI/CP1+ALFASDBAPRII2,1BETA11 98 ITIIPHIND41111111.1.1.180.1 SO TO GO COBRCOSIBETA1 PHINDRPHIND-860. SDEUX RCOSIALTSEC1**2-COBOCOS 00 TO 96 IFIBDEUX.1.7.0.1 BDEUX'O. 81 IFIIPHIND-PHIN11.28.1.180.11 GO TO SOY BDIUXRATANISORTIBDEUXI/COBI PHINDEPHIND.860. IFIEP61.80.0.1 GO TO 71 GO TO 93 BDEUXRBDEUX-EPSI 997 IFIABSIPHIND-P111011.1.7.120.1 20 TO 966 COBECOSIBDEUXMOSIALFSECI ITIIPH1111.LT,120.1.0R.IPHIIII.GT.240.11 GO TO 668 71 AZIMRATANISINIALFSECl/COBIALTSECl/COSISDEUX11 PHII11 2 911111). COEMRCOSIAZIIPPSIEI/COSIAZIM1 NP1811P10 Y2RAWCOBNCOB*COEWID01111C011 GO TO 100 12'72411INIALFSECl/C011 698 PHIIIIRPHIND Z2 11248INIBDEUX1/COSISDEUX1 IN)') IFIZ2.1.7.78.1 GO TO SO Si PHITOTRPHITOT4P111111 H2R22+72472/12.11111 PHITO ■ HIT024H11110141 100 CONTINUE WRITE16,4021 IIOUTILI,I 94.61,10UT121 .0,ADRE6111011 DO DO 1 9 402 FOAT162,11RM 11 4,605.41.11T OAWMA,1112,2FT.11 2,11FDOP WRITEI6,50 21I NTE,I NTEE IFIPH1111.11.1911.1 00 TO 68 RETURN IONE TV11110. 401 CONTINUE GO TO 90 VFY ■COEF9DFIST 66 TV11190.111FL0ATII-11 11, 60 TTOT*TTOMTVIII 11010.11.01 GO TO 1 IFI.NOTAND.ORAABSIND.111..ND111.I.T.15.11 GO TO 4403 TOARREITTOT/FLOATINFD011 1 , ■ .41 41 11 ■RITEI6,44021 IIOUTIL1324.11.10UTI21,11,ND,D,ADR1611101/ FHIBAR PNITOT/FLOATINFOOF.NP-NFII 4402 FORMATE6X.12113. TOTNUMEO. 14,10X. *REJET 110.N ',F1.1,19X,F1.1,413,2F1.21 ■ WAITEI6,50 INT1,IN T EE TOTDEN 0. RETURN IONE IFIP111111.10.61111.1 GO TO 106 4401 CONTINUE 101 TOTNUW-P111111211ARRE IFINFO.111.10UT(211 GO TO TOTDENIITBARRE**2 IFIABSIVFTI.LE.DVI GO TO 6 101 DO 110 112.111, 0011 404 JF1901.1 'FM11111.10.09911,1 GO TO 110 NFD'O TOTNUMITOTNUM41411111MITVIII-TDARRI) 00 TO TOTDENBTOTDIPITVIII-TBARRE11112 110 CONTINUE 6 IFIAKSIND-NI0IDM1.LT.4.1 00 TO 404 OFIIITITOTNUM/TOTLIEN WRITEI6,61 IIOUTILI,1014,61,10UT121.D.ADR1611101) 6 FORMATI1H0,11,111.14,103.'DOUTIUX P.132,211 1.21 IFIINFOOF-NP.11P11.0T.11 GO TO 112 WRITEI6,6021 INTE.INTIE WRITEI6,1131 IIOUTIL1,014,61,100712/ IFIA61100-11-.ND111.01.10.1 RETURN IONS WRITE16602) INTI,INT&E CONTINUE IONEONE DVPT9COEF*1111MIA 112 GEAARD 9 PNIT02-FLOATINFOOF-NP-111 1 1101111ARNN24411T110201TOTIMIN IFIGERARD.01.0.1 GO TO 111 IFIIAUT0.10.11 00 TO 1110 610MA90. IFIDVPY.LT.2.1 00 TO 1 !Mt/FY.1.'1.6.11 00 TO 141 00 TO 120 111 CONTINUE 111 $10MA9 SORTIIIIERARD/IFLOATINPOOF.W.111 141*1OTDEN11 120 CONTINUE WRITEI6,1161 IIOUTILI.1.94,61.10UT121 ,VFY,DVPY AoNES111011 ill FoRMET(62,613,14,262,2F1.2,202,41JIT DVW.122,221,21 IFINP.111.01 00 TO 1400 INITE16,6011 INTE,INTE1 IFIINFDOPAIF11.10.21 GO TO 1400 RETURN IONE DO 135 191,1FDOP 160 IFIDVFY.LT.1.111 00 TO 1 IFIP111111.10.061111.1 GO TO 111 IFIDV/IY.LT.2.1 00 TO 142 DISTAN 2 111 1111114NIBAR-IDFISTMITV111.411ARRE111,112 DELTA2 iFIIDVIIY,LT.6.1.ANDAABSIND-01-NOWAT.2.111 SO TO 148 2 101MARD/FLOATINFOOP-11, 141101. 00 TO 161 IFIDISTAN .1.1.DILTA21 00 TO 16$ P1111111 111. 14$ CONTINUE 11, 1111 .1 ► 166 FORMATI1N1I 161 CONTINUE WRITEI6,1161 IOUT111 IFINPA1.01 SO TO $6 116 FORMATI182,11 102,•DOUTEUI 1400 JAM6111 VNITEI6,6021 NTE,INTES MTRA'IAZI IFINFD .10, OUTI111 RETURN IONE GAMIA1 1 1 JF16,16141 100.*1214.1111111 11111/1Y1.ANCOSIFS1111 11,06iOUTi21 IFIITOTO.N1.11 GOTO 141 1 MIMI 00 TO 2 IFIKTOT0.10.11■ GO TO 140 NEITEI6,21 (1oUTIL1,014.61,10UT121,01,00,2140,D,A2NESilioil X2 38 1 1. VIM $ FORMAT162,111,14,1X.4A1 Di I1D '.$2,27.1.161,111.1,81,f6.1,122,21 12•113 121 MTRAmISIT WRITE16,6021INTE,INTEE 141 SAMMIA2 1 IFINFD .10.10UT1211 RETURN IONS 100.111114A9111111,61111/1124006011111 JF190141 CALL AMNIAZIND,GAWMA1,GAIIMA2,11TAA,JAMI,X1.X2,19,Y11 IFIJAMB.NE.21 00 TO 140 NFDEIOUTI21 W0ITEI66021 INTE.INTEE IFIIIAUTO.10.11.AND.M.111.0.1.AND.11A111IND-HI..HDMI.GT.6.1.0R.1 IONEONE 1DVPY.OT.0.6111 RETURN IONE 140 COEF 9 41.66661/ANUOID.A1/ IFIIND.111.0.1.ANDAMIND-111-ND111.01.2.11 RETURN IONE ISORTIIT1.412C06111 611/11112.12101111111P51111**21 2 CONTINUE COEF 2 IFINFD .10.10UT1211 CALL TRACER COEF/C011ATANISINIALFAI/C0611ETAP2111 144 JNMINT41 IFIIN1.01.111.1.AND.IN1.1.1.110.11 GO TO 400 IMINT.10,10001 J111 ■RITEI6,4011 11OUTILI,L94,61,10UT121,D,ADR11111011 . 91 401 FORMA TI6260,321I1314,603,'REJET ALTITUDE",262,2F7.21 IFI.NOTAND1 GO TO 141 WRITEI6 ,NTE,INTE1 GERA9Y142C06111 6111 RETURN IONE GERB9AWINIIHD.N1,111.1 400 IFIA10110ANIA1-0A111.0.11L1111 GO TO 401 WRITEI6.211 .INT.11OUTIL1.1.24,61.10UT121,X1,01RA.GAMIALH 110/77,01IPT,10,021111,DND,D,ADRE6111011 00 TO 146 147 GERAAYI-ANC061711111 2E40. WRITEI0,261 ANT,I1OUTIO,L44,0/.10U7121,21,GERA.GAMNAI,NIIVPY,DVPY 1 ,2E,ZE,D,ADRE11111011ZE, 146 WTEI6,71RI ALFAPIMCP1 SETAP24BETAPRACP1 WRITE10,81 BETAP2 WRITEI6,6021 INTIONTECIOCT1 , 41 NFARIOUTI21 IFICARTELE0.11 00 TO 1000 LHEIOUTI41 LMAIOUTI61 146ECAIOUTIO1 AZIMUTN4 20.04FINIATANIGAMM41/100.011 NITE4111 VELAVPY ELEVAIDEUXACP1 URAUR.1.0 JO.JOUR MCIANOIS 1674IANNEE-1600 wiln11,111) UNAly,110010,1A,LICAtimUMILIV,NITI,VIL FoRMAT(10x.11/.0,418,11,214.0.14.1,F$.01 CALL FGRODAT 1000 RETURN 7 FORMATI110,6611,76.11 Foammilismx,F0.11 I: FoRMATI$12,1X,F$.2,F7.2.Fe.1,0F7.2,111,18,171,8101 26 FORUATI12,14,16,214,14,471.1,12,77.,2,214.1.2711,277.212 4. 1 1 $74 FoRmAT(sx,31$,I4,50WIcHo W ynn -DOME ANDIGUITI",142,277.2) III FORMATI62,316,14.602,'LA VITE601 NE PIUT ETRE CALCULEE',102,277.11 110 FORMATI62.614,14,602,'LE SITE NE PIUT 111E CALCUL1•,142,277.21 END