Eindhoven University of Technology MASTER FM Broadcast Quality
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Radio Wave Spectrum Allocations and Dial Markings on Old Radios – Page 1
Radio Wave Spectrum Allocations and Dial Markings on Old Radios – page 1 When you look at the dial of an old radio you may be confused by the numbers and letters written on the dial. In Australia and New Zealand the dials of Medium Wave radios (often called the Broadcast Band) were usually marked with the station call signs. In Australia, if the dial scale was quite small, a radio would only have the stations in that state marked on the dial. Some radios also had the Frequency and/or the Wave Length marked but this was not common throught period from 1936 to the end of the Australian made radios. Medium Wave Broadcast Band This is the band we tune to when we listen to an AM radio and most countries use frequency allocations between 526.5KHz and 1705KHz. Not all countries use all this allocation. Stereo transmission is possible and has been offered by some stations in the U.S., Canada, Mexico, the Dominican Republic, Paraguay, Australia, The Philippines, Japan, South Korea, South Africa, and France. However, there are multiple standards for AM stereo with C-QUAM being the most common in the United States as well as other countries, and receivers that implement the technologies are relatively rare. The FM Broadcast Band This is the range of frequencies we tune to when we tune a modern FM radio receiver. The international frequency allocation for this band is now 87.5MHz to 108MHz. This is often referred to as the CCIR Band. Over the years some countries have used other frequencies for this band and you will see these on the dials of some old FM radios you may find from time to time. -
VHF and UHF Signal Characteristics Observed on a Long Knife-Edge Diffraction Path A
JOURNAL OF RESEARCH of the National Bureau of Standards- D. Radio Propagatior. Vol. 65D, No. 5, September- Odober 1961 VHF and UHF Signal Characteristics Observed on a Long Knife-Edge Diffraction Path A. P. Barsis and R. S. Kirby (R eceived April 6, 1961) Contribution from Central Radio Propagation Laboratory, National Bureau of Standards, Boulder, Colo. During 1959 and 1960 long-term transmission loss measurements were performed over a 223 kilom eter path in Eastern Colorado using frequencies of 100 and 751 megacycles per second. This path intersects P ikes P eak which forms a knife-edge type obstacle visible from both terminals. The transmission loss measurements have been analyzed in terms of diurnal a nd seaso nal variations in hourly medians and in instan taneous levels. As expected, results show t hat the long-term fading range is substantially less t han expected for t ropospheric seatter paths of comparable length. T ransmission loss levels were in general agreem ent wi t h predicted k ni fe-edge d iffraction propagation when a ll owance is made for rounding of t he knife edge. A technique for est imatin g long-term fading ra nges is presented a nd t he res ults are in good agreement with observations. Short-term variations in some case resemble t he space-wave fadeo uts commonly observed on within- the-horizon paths, a lthough other phe nomena may contribute to t he fadin g. Since t he foreground telTain was rough there was no evidence of direct a nd grou nd-refl ected lobe structure. -
Capacity of Flat and Freq.-Selective Fading Channels Linear Digital Modulation Review
Lecture 8 - EE 359: Wireless Communications - Winter 2020 Capacity of Flat and Freq.-Selective Fading Channels Linear Digital Modulation Review Lecture Outline • Channel Inversion with Fixed Rate Transmission • Comparison of Fading Channel Capacity under Different Schemes • Capacity of Frequency Selective Fading Channels • Review of Linear Digital Modulation • Performance of Linear Modulation in AWGN 1. Channel Inversion with Fixed Rate Transmission • Suboptimal transmission strategy where fading is inverted to maintain constant re- ceived SNR. • Simplifies system design and is used in CDMA systems for power control. • Capacity with channel inversion greatly reduced over that with optimal adaptation (capacity equals zero in Rayleigh fading). • Truncated inversion: performance greatly improved by inverting above a cutoff γ0. 2. Comparison of Fading Channel Capacity under Different Schemes: • Fading generally decreases channel capacity. • Rate/power adaptation have similar capacity as rate adaptation alone. • Rate adaptation alone has same capacity as no adaptation (RX CSI only) but rate adaptation is more practical due to complexity of ML decoding over long blocklengths that experience all fading values. This ML decoding is necesssary to achieve capacity in the RX CSI only case. • Truncated channel inversion is more practical than rate adaptation, with significant capacity gain over full channel inversion, which has zero capacity in Rayleigh fading. 3. Capacity of Frequency Selective Fading Channels • Capacity for time-invariant frequency-selective fading channels is a \water-filling” of power over frequency. • For time-varying ISI channels, capacity is unknown in general. Approximate by di- viding up the bandwidth subbands of width equal to the coherence bandwidth (same premise as multicarrier modulation) with independent fading in each subband. -
Guidelines for FM Broadcast Standards
TECHNICAL GUIDELINES FOR FM BROADCAST STANDARDS Directorate of Technical Regulations February 2014 94, Kairaba Avenue, P. O. Box 4230 Bakau, The Gambia Tel. (220) 4399601 / 4399606 Fax: (220) 4399905 EMail: [email protected] Website: www.pura.gm Contents 1. DEFINITIONS ........................................................................................................................... 2 2. INTRODUCTION ...................................................................................................................... 3 3. CLASSES OF FM BROADCAST STATIONS ........................................................................ 3 3.1 Public/Commercial FM station .................................................................................................. 3 3.2 Community Fm Stations ............................................................................................................. 3 3.3 Educational/Scientific FM station [Non Commercial] ............................................................... 3 4. FREQUENCY SPACING .......................................................................................................... 3 5. TECHNICAL REQUIREMENTS ............................................................................................. 4 5.1 Safety Requirements ................................................................................................................... 4 5.2 Transmitting Facilities ............................................................................................................... -
Distortion Exponent of Parallel Fading Channels
Distortion Exponent of Parallel Fading Channels Deniz Gunduz, Elza Erkip Department of Electrical and Computer Engineering, Polytechnic University, Brooklyn, NY 11201, USA [email protected], [email protected] Abstract— We consider the end-to-end distortion achieved by the fading process. Lack of channel state information at the transmitting a continuous amplitude source over M parallel, transmitter prevents the design of a channel code that achieves independent quasi-static fading channels. We analyze the high the instantaneous channel capacity and requires a code that SNR expected distortion behavior characterized by the distortion exponent. We first give an upper bound for the distortion performs well on the average. We aim to design a joint source- exponent in terms of the bandwidth ratio between the channel channel code that achieves the minimum expected end-to-end and the source assuming the availability of the channel state distortion. Our main focus is the high SNR behavior of this information at the transmitter. Then we propose joint source- expected distortion (ED). This behavior is characterized by the channel coding schemes based on layered source coding and distortion exponent denoted by ¢ and defined as multiple rate channel coding. We show that the upper bound is tight for large and small bandwidth ratios. For the rest, we log ED provide the best known distortion exponents in the literature. ¢ = ¡ lim : (1) SNR!1 log SNR By suitably scaling the bandwidth ratio, our results would also apply to block fading channels. When we consider digital transmission strategies that first compress the source and then transmit over the channel at I. -
On Routing in Random Rayleigh Fading Networks Martin Haenggi, Senior Member, IEEE
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 4, NO. 4, JULY 2005 1553 On Routing in Random Rayleigh Fading Networks Martin Haenggi, Senior Member, IEEE Abstract—This paper addresses the routing problem for large loss probabilities increase with the number of hops (unless the wireless networks of randomly distributed nodes with Rayleigh transmit power is adapted). fading channels. First, we establish that the distances between To overcome some of these limitations of the “disk model,” neighboring nodes in a Poisson point process follow a generalized Rayleigh distribution. Based on this result, it is then shown that, we employ a simple Rayleigh fading link model that relates given an end-to-end packet delivery probability (as a quality of transmit power, large-scale path loss, and the success of a service requirement), the energy benefits of routing over many transmission. The end-to-end packet delivery probability over short hops are significantly smaller than for deterministic network a multihop route is the product of the link-level reception models that are based on the geometric disk abstraction. If the probabilities. permissible delay for short-hop routing and long-hop routing is the same, it turns out that routing over fewer but longer hops may While fading has been considered in the context of packet even outperform nearest-neighbor routing, in particular for high networks [16], [17], its impact on the network (and higher) end-to-end delivery probabilities. layers is largely an open problem. This paper attempts to shed Index Terms—Ad hoc networks, communication systems, fading some light on this cross-layer issue by analyzing the perfor- channels, Poisson processes, probability, routing. -
Kahn Communications, Inc. 425 Merrick Avenue Westbury, New York 11590 (516) 2222221
KAHN COMMUNICATIONS, INC. 425 MERRICK AVENUE WESTBURY, NEW YORK 11590 (516) 2222221 THE "WGAS EFFECT" AND THE FUTURE OF AM RADIO In the history of broadcasting a number of "Effects" have dramatically impacted on broadcasting. For example, the "Capture Effect" and the "Multipath Effect" of FM, and earlier "Radio Luxemburg Effect" helped shape broadcasting history. More recently, "Clicks and Pops", "Platform Motion", and "Rain Noise" have influenced the path of AM Stereo. Remember when the Magnavox system was selected by the FCC as the standard in 1980 and the "Click and Pop" effect was discovered. By 1982 it became clear that this "Click and Pop" problem made it essential that the FCC revisit its decision. There is now a new phenomenon which we propose to name the "WGAS Effect" because it was first described in the "Open Mike" section of the September 7, 1987 issue of "Broadcasting" by Mr. Glenn Mace, President of WGAS, South Gastonia, North Carolina. It is essential that all AM broadcasters carefully read this short letter because the very future of AM radio may depend upon the industries knowledge of its contents. It should be stressed that WGAS does not, and cannot, endorse our stereo system as they have never used it. But, nevertheless, we are most appreciative that Mr. Mace has taken the time and effort to make his observations public on this important matter. More will follow re the "WGAS Effect" and how it impacts on all stations, large and small, which must serve listeners in their 25 my/meter contour and beyond. age. -
Digital Radio Power Increase
Before the FEDERAL COMMUNICATIONS COMMISSION Washington, D.C. 20554 In the Matter of ) ) Digital Audio Broadcasting Systems ) MM Docket No. 99-325 And Their Impact On the Terrestrial Radio ) Broadcast Service ) ) COMMENTS OF THE NATIONAL ASSOCIATION OF BROADCASTERS The National Association of Broadcasters (NAB)1 hereby responds to the Public Notice2 soliciting public comment on recent filings in the digital audio broadcasting proceeding. By this Notice, the Media Bureau of the Federal Communications Commission (FCC) is seeking comment on three filings: a request by 18 radio broadcasters and the four largest manufacturers of broadcast transmission equipment (Joint Parties) to permit a voluntary increase in digital power for FM digital broadcasters, up to a maximum of 10 percent of a station’s authorized analog power;3 a technical report by iBiquity Digital Corporation (iBiquity) examining the benefits of this proposed increase in digital power, the compatibility with analog broadcasting and the potential interference effects 1 The National Association of Broadcasters is a trade association that advocates on behalf of more than 8,300 free, local radio and television stations and also broadcast networks before Congress, the Federal Communications Commission and the Courts. 2 Public Notice, DA 08-2340, MM Docket No. 99-325, October 23, 2008. 3 Joint Parties Ex Parte letter, filed in MM Docket No. 99-325, June 10, 2008 (Joint Parties request). resulting from the proposed increase;4 and a study by National Public Radio (NPR) on Corporation for Public Broadcasting-supported research on digital radio coverage and interference.5 As discussed below, the benefits of permitting FM broadcasters to optionally increase the power in their digital signal are compelling. -
Shortwave-Listening
Listen to global news in the making! Monitor transmissions from Voice of America. Radio Canada, Radio Netherlands. Radio Moscow and many others. Learn how radio waves tra- vel. Get information on popular shortwave bands and licensing for a Itypes of equipment. Radio Listener's Guide by William Barden, Jr. Radio Shack A Division of Tandy Corporation First Edition First Printing-1987 Copyright01987 by William Barden Jr., Inc. Printed in the United States of America. All rights reserved. Reproduction or use, without express permission, of editorial or pictorial content, in any manner, is prohibited. No patent liability is assumed with respect to the use of the information contained herein. Library of Congress Catalog Card Number: XX-XXXXX Radio Listener's Guide T Table of Contents Section I World of the BBC, Radio Moscow, Police Calls, Aircraft Communications, and Hams Chapter 1. Radio—What Is It' Generating Radio Waves—The Radio Spectrum—Radio Equipment and Frequencies—Band Use—How Radio Waves Travel—Radio Licenses and Listening—Subbands and Channels—Radio Equipment Chapter 2. Types of Broadcasting Voice Communication—Code Transmission—Teleprinter Transmission— Facsimile Transmission—Slow-Scan Television—Fast-Scan Television — Repeaters— Portable Phones—Satellite Reception—Transmitting Power Chapter 3. Shortwave Broadcasters Frequency Assignments—The European Long-Wave Band—The AM Broadcast Band—Tropical Broadcasting-49- and 41-Meter Bands-31- and 25-Meter Bands—Above the 25-Meter Band—A Typical Listening Session—Logging Foreign Stations—Foreign Broadcast lnformation—QSL Cards Chapter 4. Other Types of Broadcasting in the Lower Frequencies Transmissions Below the AM Broadcast Band—The AM Broadcast Band— Portable Phones—Marine Transmissions—CW Transmissions—Radio Teleprinter—Single Sideband—Time and Frequency Signals—Weather Maps by Facsimile—Citizen's Band Frequencies—The Russian Woodpecker—Pirate and Clandestine Stations Chapter 5. -
Long-Wave and Medium-Wave Propagation
~EMGINEERING TRAINING SUPPLEMENT No. 10 LONG-WAVE AND MEDIUM-WAVE PROPAGATION BRITISH BROADCASTING CORPORATION LONDON 1957 ENGINEERING TRAINING SUPPLEMENT No. 10 LONG-WAVE AND MEDIUM-WAVE PROPAGATION Prepared by the Engineering Training Department from an original manuscript by H. E. FARROW, Grad.1.E.E. Issued by THE BBC ENGINEERING TRAINING DEPARTMENT 1957 ACKNOWLEDGMENTS Fig. 2 is based upon a curve given by H. P. Williams in 'Antenna Theory and Design', published by Sir Isaac Pitrnan and Sons Ltd. Figs. 5, 6, 7, 8 and 9 are based upon curves prepared by the C.C.I.R. CONTENTS ACKNOWLEDGMENTS... ... INTRODUCTION ... ... ... AERIALS ... ... ... ... GROUND-WAVEPROPAGATION ... GEOLOGICALCORRELATION ... PROPAGATIONCURVES ... ... RECOVERYAND LOSS EFFECTS ... MIXED-PATHPROPAGATION ... SYNCHRONISED. GROUP WORKING LOW-POWERINSTALLATIONS ... IONOSPHERICREFLECTION ... FADING ... ... ... ... REDUCTIONOF SERVICEAREA BY SKYWAVE ... LONG-RANGEINTERFERENCE BY SKYWAVE ... APPENDIXI ... ... ... ... ... REFERENCES ... ... ... ... ... LONG-WAVE AND MEDIUM-WAVE PROPAGATION The general purpose of this Supplement is to explain the main features of propagation at low and medium frequencies i.e. 30-3000 kc/s, and in particular in the bands used for broadcasting viz. 150-285 kc/s and 525-1605 kc/s. In these bands, the signal at the receiver may have two components: they are (a) a ground wave, i.e. one that follows ground contours (b) an ionspheric wave (sky wave) which is reflected from an ionised layer under certain conditions. In the vicinity of the transmitter, the ground wave is the predominant component, and for domestic broadcasting, the service ideally would be provided by the ground wave only. In fact the limit to the service area is often set by interference from the sky wave. -
Kidsdictionary.Pdf
Access Charges: This is a fee charged by local phone companies for use of their networks. Amplitude Modulation (AM) that's the "AM" Band on your Radio: A signaling method that varies the amplitude of the carrier frequencies to send information. The carrier frequency would be like 910 (kHz) AM on your AM dial. Your radio antenna receives this signal and then decodes it and plays the song. Analog Signal: A signaling method that modifies the frequency by amplifying the strength of the signal or varying the frequency of a radio transmission to convey information. Bandwidth The amount of data passing through a connection over a given time. It is usually measured in bps (bits-per- second) or Mbps. Broadband Broadband refers to telecommunication in which a wide band of frequencies is available to transmit information. More services can be provided through broadband in the same way as more lanes on a highway allow more cars to travel on it at the same time. Broadcast To transmit (a radio or television program) for public or general use. In other words, send out or communicate, especially by radio or television. Cable A strong, large-diameter, heavy steel or fiber rope. The word history of cable derives from Middle English, from Old North French, from Late Latin capulum, lasso, from Latin capere, meaning to seize. Calling Party Pays A billing method in which a wireless phone caller pays only for making calls and not for receiving them. The standard American billing system requires wireless phone customers to pay for all calls made and received on a wireless phone. -
750 Review Insert
The Eton Elite 750 is much more than just a fancy-looking boom-box shortwave receiver, reports WB6NOA, who listened to all it has to offer, including longwave, shortwave, the AM and FM broadcast bands, and the VHF air band. CQ Reviews: Eton Elite 750 Shortwave Receiver BY GORDON WEST,* WB6NOA s ham operators, we know not to pre-judge a radio by just how it Alooks, or how many buttons and meters it may have on the face. Like many of you, I have a collection of no- name bargain mail-order portable shortwave (SW) receivers, but few can hold a candle to those from name-brand manufacturers. Now, this monster- sized Eton receiver is hitting the mar- ket in grand style. The Eton Elite 750 is major-sized multi-mode receiver, fun for a radio enthusiast wanting to tune in what’s out there from 100 kHz to 30 MHz, plus the AM and FM broadcast bands and AM air-band reception. The Eton name may be unfamiliar to you, and the 750 looks a lot like a pre- vious radio from Grundig. Actually, the two companies have a relationship that spans 35 years, as explained by Eton CEO and Chairman Esmail Amid- The large speaker makes the Eton Elite 750 a great poolside or beach enter- Hozour. “From our initial partnership tainment radio, too! Plenty of audio output, enough to also power a personal with Max Grundig in 1979, Eton has car- music player that can plug in. ried on Grundig’s 75+ year legacy in developing the best-in-class world band we bring new and exciting shortwave non-directional radio beacons (NDBs), radios.” Esmail continued, “Eton’s dedi- products to the market each year.” Navtex, 630-meter ham radio CW bea- cation to design and innovation spans cons, and various government stations partnerships with Drake to ensure high- Exploring the Elite 750 lurking down here.