Lecture 2: Phylogenetics

Total Page:16

File Type:pdf, Size:1020Kb

Lecture 2: Phylogenetics IB 168: Systematics of Vascular Plants Spring 2009 Key concepts -- Lecture 2 (1/26/09) and part of Lecture 3 (1/28/09) As noted in the 1st lecture, a primary goal of systematics is discovery of evolutionary lineages at all levels in the "tree of life," which involves resolving phylogeny = evolutionary relationships among a group of organisms (higher-level genealogy; patterns of evolutionary descent). Phylogeny, which often has an openly branching tree-like pattern, can be contrasted with relationships that are primarily net-like or reticulate, as expected within populations of organisms. The boundary between levels of evolutionary divergence where relationships conform to openly-branching vs. net-like patterns is not necessarily sharp, especially in plants, which often retain capability of hybridization after long periods of evolutionary divergence from one another. Relationship (phylogenetic or tokogenetic) refers to recency of common ancestry, NOT overall similarity. For example, in the figure below, B and C are more closely related to one another than either is to A because B & C share a more recent common ancestor than does A & C or A & B. out1 out2 A B C g j f i e c e ? h a d ? b Phenetics, in contrast to phylogenetics, is concerned with overall similarity among organisms, not their relationships. Branching diagrams based on overall similarity (phenograms or networks) will not reflect phylogeny unless the characters used to construct them have evolved at ~constant rates throughout the organismal group (i.e., across lineages). For example, in the above figure, A & B are more similar to one another than either is C and would be grouped together to the exclusion of C based on a phenetic, as opposed to phylogenetic, criterion. Types of evolutionary relationship Anagenesis -- transformational evolution in a linear series from one (ancestral) species to the next (descendant) species. A to B to C. Not generally realistic to hypothesize such relationships among a set of contemporary taxa. taxon taxon taxon A B C Cladogenesis -- branching of evolutionary lineages in a tree-like pattern (as in figure on previous page). Rather than hypothesize ancestor-descendant relationships among modern taxa, cladogenetic relationships are expressed in terms of sister-groups (closest relatives). In discussing contemporary species, the terms "ancestral" and "derived" are applied in systematics to particular characteristics of organisms, not to the organisms themselves. Reticulate evolution -- merging of divergent evolutionary lineages via hybridization; very important in vascular-plant evolution, as we will see. In the example below, C has been formed from hybridization of ancestral taxa on the lineages leading to A and B. A C B Types of evolutionary groups -- Formally recognized groups at any rank (e.g., division, class, order, family, genus, species, subspecies, or variety) are referred to by systematists as taxa (a rank-neutral term) (taxon, singular). Monophyletic groups include all descendants of a common ancestor; also known as clades, evolutionary lineages, or holophyletic groups. All systematists recognize monophyletic groups. In the example below, groups A+B+C and B+C are each monophyletic because each includes all descendants of a common ancestor (MRCA = most recent common ancestor). out1 out2 A B C MRCA of B+C MRCA of A+B+C Sister groups are closest relatives based on common ancestry. In the tree above, B and C are sister groups and A is the sister group of B + C. Polyphyletic groups are artificial, without genealogical integrity; the result of taxonomic error (faulty “diagnostic” characteristics are shared due to independent origins of those features rather than common ancestry). Systematists in general agree that polyphyletic groups should not be recognized. For example, in the tree above, a group including out1 and taxon C would be polyphyletic. Paraphyletic groups -- Include some but not all descendants of a common ancestor; also known as grades. Shared characteristics may be due to common ancestry and members of such groups may be more similar to one another than to excluded groups that also descend from the same, most recent common ancestor. These groups are avoided by most systematists because they are misleading about relationships and limit the utility of taxonomy for comparative biology, which often relies on sister-group comparisons. Many traditionally recognized plant groups (and plant groups based on phenetic criteria) have proven to be paraphyletic, as expected if rates of character evolution often vary across lineages. In the example above, a grouping of either taxa A & B or of taxa A & C would be paraphyletic. Evidence for phylogenetic relationships Characters are independent, heritable variables, the values of which are a set of mutually-exclusive character-states (=characteristics). Characters, by this definition, represent different lines of evidence about relationship; systematists try to include as many characters as possible in phylogenetic analyses (with the proviso that some characters are inappropriate for a particular question -- those characters may be evolving at the wrong rate to be useful or they may lack sufficiently discrete character-states, etc.). Parsimony is a commonly used criterion for estimating phylogeny. The branch of systematics concerned with parsimony to resolve phylogenetic relationships is often referred to as cladistics. As the number of taxa in the analysis increases, the number of possible trees increases astronomically; computer-based algorithms generally must be used to search for the most parsimonious trees (those with the fewest character changes or evolutionary steps) in analyses including more than a few taxa. The ingroup is the set of taxa whose relationships are being estimated; the outgroup is the taxon or set of taxa that is used to root the phylogenetic tree -- prior information is needed to show that the outgroup is more distantly related to the ingroup than the members of the ingroup are to one another. The tree below is the most parsimonious reconstruction of relationships based on the taxon-by-character matrix below the tree. Outgroup taxa are designated "out1" and "out2" and are known to fall outside the ingroup (taxa A, B, C). What was not known before this hypothetical analysis was the relationships among A, B, and C. Note that one of the characters ("e") is inconsistent with the tree topology (only one of two possible reconstructions of that character's evolution is shown). out1 out2 A B C g j f i e c e ? h a d ? b Characters Taxa a b c d e f g h i j out1 0 0 0 0 0 0 0 0 0 0 out2 1 0 0 0 0 0 0 0 0 0 A 1 1 0 0 1 0 1 0 0 0 B 1 1 0 1 0 0 0 1 0 0 C 1 1 1 1 1 1 0 1 1 1 .
Recommended publications
  • Taxon Ordering in Phylogenetic Trees by Means of Evolutionary Algorithms Francesco Cerutti1,2, Luigi Bertolotti1,2, Tony L Goldberg3 and Mario Giacobini1,2*
    Cerutti et al. BioData Mining 2011, 4:20 http://www.biodatamining.org/content/4/1/20 BioData Mining RESEARCH Open Access Taxon ordering in phylogenetic trees by means of evolutionary algorithms Francesco Cerutti1,2, Luigi Bertolotti1,2, Tony L Goldberg3 and Mario Giacobini1,2* * Correspondence: mario. Abstract [email protected] 1 Department of Animal Production, Background: In in a typical “left-to-right” phylogenetic tree, the vertical order of taxa Epidemiology and Ecology, Faculty of Veterinary Medicine, University is meaningless, as only the branch path between them reflects their degree of of Torino, Via Leonardo da Vinci similarity. To make unresolved trees more informative, here we propose an 44, 10095, Grugliasco (TO), Italy innovative Evolutionary Algorithm (EA) method to search the best graphical Full list of author information is available at the end of the article representation of unresolved trees, in order to give a biological meaning to the vertical order of taxa. Methods: Starting from a West Nile virus phylogenetic tree, in a (1 + 1)-EA we evolved it by randomly rotating the internal nodes and selecting the tree with better fitness every generation. The fitness is a sum of genetic distances between the considered taxon and the r (radius) next taxa. After having set the radius to the best performance, we evolved the trees with (l + μ)-EAs to study the influence of population on the algorithm. Results: The (1 + 1)-EA consistently outperformed a random search, and better results were obtained setting the radius to 8. The (l + μ)-EAs performed as well as the (1 + 1), except the larger population (1000 + 1000).
    [Show full text]
  • Transformations of Lamarckism Vienna Series in Theoretical Biology Gerd B
    Transformations of Lamarckism Vienna Series in Theoretical Biology Gerd B. M ü ller, G ü nter P. Wagner, and Werner Callebaut, editors The Evolution of Cognition , edited by Cecilia Heyes and Ludwig Huber, 2000 Origination of Organismal Form: Beyond the Gene in Development and Evolutionary Biology , edited by Gerd B. M ü ller and Stuart A. Newman, 2003 Environment, Development, and Evolution: Toward a Synthesis , edited by Brian K. Hall, Roy D. Pearson, and Gerd B. M ü ller, 2004 Evolution of Communication Systems: A Comparative Approach , edited by D. Kimbrough Oller and Ulrike Griebel, 2004 Modularity: Understanding the Development and Evolution of Natural Complex Systems , edited by Werner Callebaut and Diego Rasskin-Gutman, 2005 Compositional Evolution: The Impact of Sex, Symbiosis, and Modularity on the Gradualist Framework of Evolution , by Richard A. Watson, 2006 Biological Emergences: Evolution by Natural Experiment , by Robert G. B. Reid, 2007 Modeling Biology: Structure, Behaviors, Evolution , edited by Manfred D. Laubichler and Gerd B. M ü ller, 2007 Evolution of Communicative Flexibility: Complexity, Creativity, and Adaptability in Human and Animal Communication , edited by Kimbrough D. Oller and Ulrike Griebel, 2008 Functions in Biological and Artifi cial Worlds: Comparative Philosophical Perspectives , edited by Ulrich Krohs and Peter Kroes, 2009 Cognitive Biology: Evolutionary and Developmental Perspectives on Mind, Brain, and Behavior , edited by Luca Tommasi, Mary A. Peterson, and Lynn Nadel, 2009 Innovation in Cultural Systems: Contributions from Evolutionary Anthropology , edited by Michael J. O ’ Brien and Stephen J. Shennan, 2010 The Major Transitions in Evolution Revisited , edited by Brett Calcott and Kim Sterelny, 2011 Transformations of Lamarckism: From Subtle Fluids to Molecular Biology , edited by Snait B.
    [Show full text]
  • A General Criterion for Translating Phylogenetic Trees Into Linear Sequences
    A general criterion for translating phylogenetic trees into linear sequences Proposal (474) to South American Classification Committee In most of the books, papers and check-lists of birds (e.g. Meyer de Schauensee 1970, Stotz et al. 1996; and other taxa e.g. Lewis et al. 2005, Haston et al. 2009, for plants), at least the higher taxa are arranged phylogenetically, with the “oldest” groups (Rheiformes/Tinamiformes) placed first, and the “modern” birds (Passeriformes) at the end. The molecular phylogenetic analysis of Hackett et al. (2008) supports this criterion. For this reason, it would be desirable that in the SACC list not only orders and families, but also genera within families and species within genera, are phylogenetically ordered. In spite of the SACC’s efforts in producing an updated phylogeny-based list, it is evident that there are differences in the way the phylogenetic information has been translated into linear sequences, mainly for node rotation and polytomies. This is probably one of the reasons why Douglas Stotz (Proposal #423) has criticized using sequence to show relationships. He considers that we are creating unstable sequences with little value in terms of understanding of relationships. He added, “We would be much better served by doing what most taxonomic groups do and placing taxa within the hierarchy in alphabetical order, making no pretense that sequence can provide useful information on the branching patterns of trees. This would greatly stabilize sequences and not cost much information about relationships”. However, we encourage creating sequences that reflect phylogeny as much as possible at all taxonomic levels (although we agree with Douglas Stotz that the translation of a phylogenetic tree into a simple linear sequence inevitably involves a loss of information about relationships that is present in the trees on which the sequence is based).
    [Show full text]
  • A Phylogenomic Analysis of Turtles ⇑ Nicholas G
    Molecular Phylogenetics and Evolution 83 (2015) 250–257 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev A phylogenomic analysis of turtles ⇑ Nicholas G. Crawford a,b,1, James F. Parham c, ,1, Anna B. Sellas a, Brant C. Faircloth d, Travis C. Glenn e, Theodore J. Papenfuss f, James B. Henderson a, Madison H. Hansen a,g, W. Brian Simison a a Center for Comparative Genomics, California Academy of Sciences, 55 Music Concourse Drive, San Francisco, CA 94118, USA b Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA c John D. Cooper Archaeological and Paleontological Center, Department of Geological Sciences, California State University, Fullerton, CA 92834, USA d Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA e Department of Environmental Health Science, University of Georgia, Athens, GA 30602, USA f Museum of Vertebrate Zoology, University of California, Berkeley, CA 94720, USA g Mathematical and Computational Biology Department, Harvey Mudd College, 301 Platt Boulevard, Claremont, CA 9171, USA article info abstract Article history: Molecular analyses of turtle relationships have overturned prevailing morphological hypotheses and Received 11 July 2014 prompted the development of a new taxonomy. Here we provide the first genome-scale analysis of turtle Revised 16 October 2014 phylogeny. We sequenced 2381 ultraconserved element (UCE) loci representing a total of 1,718,154 bp of Accepted 28 October 2014 aligned sequence. Our sampling includes 32 turtle taxa representing all 14 recognized turtle families and Available online 4 November 2014 an additional six outgroups. Maximum likelihood, Bayesian, and species tree methods produce a single resolved phylogeny.
    [Show full text]
  • Phylogenetic Comparative Methods: a User's Guide for Paleontologists
    Phylogenetic Comparative Methods: A User’s Guide for Paleontologists Laura C. Soul - Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA David F. Wright - Division of Paleontology, American Museum of Natural History, Central Park West at 79th Street, New York, New York 10024, USA and Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA Abstract. Recent advances in statistical approaches called Phylogenetic Comparative Methods (PCMs) have provided paleontologists with a powerful set of analytical tools for investigating evolutionary tempo and mode in fossil lineages. However, attempts to integrate PCMs with fossil data often present workers with practical challenges or unfamiliar literature. In this paper, we present guides to the theory behind, and application of, PCMs with fossil taxa. Based on an empirical dataset of Paleozoic crinoids, we present example analyses to illustrate common applications of PCMs to fossil data, including investigating patterns of correlated trait evolution, and macroevolutionary models of morphological change. We emphasize the importance of accounting for sources of uncertainty, and discuss how to evaluate model fit and adequacy. Finally, we discuss several promising methods for modelling heterogenous evolutionary dynamics with fossil phylogenies. Integrating phylogeny-based approaches with the fossil record provides a rigorous, quantitative perspective to understanding key patterns in the history of life. 1. Introduction A fundamental prediction of biological evolution is that a species will most commonly share many characteristics with lineages from which it has recently diverged, and fewer characteristics with lineages from which it diverged further in the past. This principle, which results from descent with modification, is one of the most basic in biology (Darwin 1859).
    [Show full text]
  • 1 Integrative Biology 200 "PRINCIPLES OF
    Integrative Biology 200 "PRINCIPLES OF PHYLOGENETICS" Spring 2018 University of California, Berkeley B.D. Mishler March 14, 2018. Classification II: Phylogenetic taxonomy including incorporation of fossils; PhyloCode I. Phylogenetic Taxonomy - the argument for rank-free classification A number of recent calls have been made for the reformation of the Linnaean hierarchy (e.g., De Queiroz & Gauthier, 1992). These authors have emphasized that the existing system is based in a non-evolutionary world-view; the roots of the Linnaean hierarchy are in a specially- created world-view. Perhaps the idea of fixed, comparable ranks made some sense under that view, but under an evolutionary world view they don't make sense. There are several problems with the current nomenclatorial system: 1. The current system, with its single type for a name, cannot be used to precisely name a clade. E.g., you may name a family based on a certain type specimen, and even if you were clear about what node you meant to name in your original publication, the exact phylogenetic application of your name would not be clear subsequently, after new clades are added. 2. There are not nearly enough ranks to name the thousands of levels of monophyletic groups in the tree of life. Therefore people are increasingly using informal rank-free names for higher- level nodes, but without any clear, formal specification of what clade is meant. 3. Most aspects of the current code, including priority, revolve around the ranks, which leads to instability of usage. For example, when a change in relationships is discovered, several names often need to be changed to adjust, including those of groups whose circumscription has not changed.
    [Show full text]
  • Phylocode: a Phylogenetic Code of Biological Nomenclature
    PhyloCode: A Phylogenetic Code of Biological Nomenclature Philip D. Cantino and Kevin de Queiroz (equal contributors; names listed alphabetically) Advisory Group: William S. Alverson, David A. Baum, Harold N. Bryant, David C. Cannatella, Peter R. Crane, Michael J. Donoghue, Torsten Eriksson*, Jacques Gauthier, Kenneth Halanych, David S. Hibbett, David M. Hillis, Kathleen A. Kron, Michael S. Y. Lee, Alessandro Minelli, Richard G. Olmstead, Fredrik Pleijel*, J. Mark Porter, Heidi E. Robeck, Greg W. Rouse, Timothy Rowe*, Christoffer Schander, Per Sundberg, Mikael Thollesson, and Andre R. Wyss. *Chaired a committee that authored a portion of the current draft. Most recent revision: April 8, 2000 1 Table of Contents Preface Preamble Division I. Principles Division II. Rules Chapter I. Taxa Article 1. The Nature of Taxa Article 2. Clades Article 3. Hierarchy and Rank Chapter II. Publication Article 4. Publication Requirements Article 5. Publication Date Chapter III. Names Section 1. Status Article 6 Section 2. Establishment Article 7. General Requirements Article 8. Registration Chapter IV. Clade Names Article 9. General Requirements for Establishment of Clade Names Article 10. Selection of Clade Names for Establishment Article 11. Specifiers and Qualifying Clauses Chapter V. Selection of Accepted Names Article 12. Precedence Article 13. Homonymy Article 14. Synonymy Article 15. Conservation Chapter VI. Provisions for Hybrids Article 16. Chapter VII. Orthography Article 17. Orthographic Requirements for Establishment Article 18. Subsequent Use and Correction of Established Names Chapter VIII. Authorship of Names Article 19. Chapter IX. Citation of Authors and Registration Numbers Article 20. Chapter X. Governance Article 21. Glossary Table 1. Equivalence of Nomenclatural Terms Appendix A.
    [Show full text]
  • Name-Bearing Fossil Type Specimens and Taxa Named from National Park Service Areas
    Sullivan, R.M. and Lucas, S.G., eds., 2016, Fossil Record 5. New Mexico Museum of Natural History and Science Bulletin 73. 277 NAME-BEARING FOSSIL TYPE SPECIMENS AND TAXA NAMED FROM NATIONAL PARK SERVICE AREAS JUSTIN S. TWEET1, VINCENT L. SANTUCCI2 and H. GREGORY MCDONALD3 1Tweet Paleo-Consulting, 9149 79th Street S., Cottage Grove, MN 55016, -email: [email protected]; 2National Park Service, Geologic Resources Division, 1201 Eye Street, NW, Washington, D.C. 20005, -email: [email protected]; 3Bureau of Land Management, Utah State Office, 440 West 200 South, Suite 500, Salt Lake City, UT 84101: -email: [email protected] Abstract—More than 4850 species, subspecies, and varieties of fossil organisms have been named from specimens found within or potentially within National Park System area boundaries as of the date of this publication. These plants, invertebrates, vertebrates, ichnotaxa, and microfossils represent a diverse collection of organisms in terms of taxonomy, geologic time, and geographic distribution. In terms of the history of American paleontology, the type specimens found within NPS-managed lands, both historically and contemporary, reflect the birth and growth of the science of paleontology in the United States, with many eminent paleontologists among the contributors. Name-bearing type specimens, whether recovered before or after the establishment of a given park, are a notable component of paleontological resources and their documentation is a critical part of the NPS strategy for their management. In this article, name-bearing type specimens of fossil taxa are documented in association with at least 71 NPS administered areas and one former monument, now abolished.
    [Show full text]
  • Reconsidering Relationships Among Stem and Crown Group Pinaceae: Oldest Record of the Genus Pinus from the Early Cretaceous of Yorkshire, United Kingdom
    Int. J. Plant Sci. 173(8):917–932. 2012. Ó 2012 by The University of Chicago. All rights reserved. 1058-5893/2012/17308-0006$15.00 DOI: 10.1086/667228 RECONSIDERING RELATIONSHIPS AMONG STEM AND CROWN GROUP PINACEAE: OLDEST RECORD OF THE GENUS PINUS FROM THE EARLY CRETACEOUS OF YORKSHIRE, UNITED KINGDOM Patricia E. Ryberg,* Gar W. Rothwell,1,y,z Ruth A. Stockey,y,§ Jason Hilton,k Gene Mapes,z and James B. Riding# *Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas 66045, U.S.A.; yDepartment of Botany and Plant Pathology, 2082 Cordley Hall, Oregon State University, Corvallis, Oregon 97331, U.S.A.; zDepartment of Environmental and Plant Biology, Ohio University, Athens, Ohio 45701, U.S.A.; §Department of Biological Sciences, University of Alberta, Edmonton AB T6G 2E9, Canada; kSchool of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom; and #British Geological Survey, Kingsley Dunham Centre, Keyworth, Nottingham NG12 5GG, United Kingdom This study describes a specimen that extends the oldest fossil evidence of Pinus L. to the Early Cretaceous Wealden Formation of Yorkshire, UK (131–129 million years ago), and prompts a critical reevaluation of criteria that are employed to identify crown group genera of Pinaceae from anatomically preserved seed cones. The specimen, described as Pinus yorkshirensis sp. nov., is conical, 5 cm long, and 3.1 cm in maximum diameter. Bract/scale complexes are helically arranged and spreading. Vasculature of the axis forms a complete cylinder with few resin canals in the wood, and the inner cortex is dominated by large resin canals.
    [Show full text]
  • Genomic Data Do Not Support Comb Jellies As the Sister Group to All Other Animals
    Genomic data do not support comb jellies as the sister group to all other animals Davide Pisania,b,1, Walker Pettc, Martin Dohrmannd, Roberto Feudae, Omar Rota-Stabellif, Hervé Philippeg,h, Nicolas Lartillotc, and Gert Wörheided,i,1 aSchool of Earth Sciences, University of Bristol, Bristol BS8 1TG, United Kingdom; bSchool of Biological Sciences, University of Bristol, Bristol BS8 1TG, United Kingdom; cLaboratoire de Biométrie et Biologie Évolutive, Université Lyon 1, CNRS, UMR 5558, 69622 Villeurbanne cedex, France; dDepartment of Earth & Environmental Sciences & GeoBio-Center, Ludwig-Maximilians-Universität München, Munich 80333, Germany; eDivision of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125; fDepartment of Sustainable Agro-Ecosystems and Bioresources, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’ Adige 38010, Italy; gCentre for Biodiversity Theory and Modelling, USR CNRS 2936, Station d’Ecologie Expérimentale du CNRS, Moulis 09200, France; hDépartement de Biochimie, Centre Robert-Cedergren, Université de Montréal, Montreal, QC, Canada H3C 3J7; and iBayerische Staatssammlung für Paläontologie und Geologie, Munich 80333, Germany Edited by Neil H. Shubin, The University of Chicago, Chicago, IL, and approved November 2, 2015 (received for review September 11, 2015) Understanding how complex traits, such as epithelia, nervous animal phylogeny separated ctenophores from all other ani- systems, muscles, or guts, originated depends on a well-supported mals (the “Ctenophora-sister”
    [Show full text]
  • Evolutionary History of the Butterflyfishes (F: Chaetodontidae
    doi:10.1111/j.1420-9101.2009.01904.x Evolutionary history of the butterflyfishes (f: Chaetodontidae) and the rise of coral feeding fishes D. R. BELLWOOD* ,S.KLANTEN*à,P.F.COWMAN* ,M.S.PRATCHETT ,N.KONOW*§ &L.VAN HERWERDEN*à *School of Marine and Tropical Biology, James Cook University, Townsville, Qld, Australia Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Qld, Australia àMolecular Evolution and Ecology Laboratory, James Cook University, Townsville, Qld, Australia §Ecology and Evolutionary Biology, Brown University, Providence, RI, USA Keywords: Abstract biogeography; Of the 5000 fish species on coral reefs, corals dominate the diet of just 41 chronogram; species. Most (61%) belong to a single family, the butterflyfishes (Chae- coral reef; todontidae). We examine the evolutionary origins of chaetodontid corallivory innovation; using a new molecular phylogeny incorporating all 11 genera. A 1759-bp molecular phylogeny; sequence of nuclear (S7I1 and ETS2) and mitochondrial (cytochrome b) data trophic novelty. yielded a fully resolved tree with strong support for all major nodes. A chronogram, constructed using Bayesian inference with multiple parametric priors, and recent ecological data reveal that corallivory has arisen at least five times over a period of 12 Ma, from 15.7 to 3 Ma. A move onto coral reefs in the Miocene foreshadowed rapid cladogenesis within Chaetodon and the origins of corallivory, coinciding with a global reorganization of coral reefs and the expansion of fast-growing corals. This historical association underpins the sensitivity of specific butterflyfish clades to global coral decline. butterflyfishes (f. Chaetodontidae); of the remainder Introduction most (eight) are in the Labridae.
    [Show full text]
  • Developmental Sequences of Squamate Reptiles Are Taxon Specific
    EVOLUTION & DEVELOPMENT 15:5, 326–343 (2013) DOI: 10.1111/ede.12042 Developmental sequences of squamate reptiles are taxon specific Robin M. Andrews,a,* Matthew C. Brandley,b and Virginia W. Greenea a Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA b School of Biological Sciences (A08), University of Sydney, Sydney, NSW, 2006, Australia *Author for correspondence (e‐mail: [email protected]) SUMMARY Recent studies in comparative vertebrate plotting the proportions of reconstructed ranks (excluding embryology have focused on two related questions. One unlikely events, PP < 0.05) associated with each event. concerns the existence of a phylotypic period, or indeed any Sequence variability was the lowest towards the middle of period, during development in which sequence variation the phylotypic period and involved three events (allantois among taxa is constrained. The second question concerns contacts chorion, maximum number of pharyngeal slits, and the degree to which developmental characters exhibit a appearance of the apical epidermal ridge [AER]); these events phylogenetic signal. These questions are important because each had only two reconstructed ranks. Squamate clades also they underpin attempts to understand the evolution of differed in the rank order of developmental events. Of the 20 developmental characters and their links to adult morphology. events in our analyses, 12 had strongly supported (PP 0.95) To address these questions, we compared the sequence of sequence ranks that differed at two or more internal nodes of developmental events spanning the so‐called phylotypic the tree. For example, gekkotans are distinguished by the late period of vertebrate development in squamate reptiles (lizards appearance of the allantois bud compared to all other and snakes), from the formation of the primary optic placode to squamates (ranks 7 and 8 vs.
    [Show full text]