Image-Revolutionaries.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Image-Revolutionaries.Pdf SOCIETY (L–R) Michael Tompsett, Eric Fossum, Nobukazu Teranishi and George Smith (not pictured) received the Queen Elizabeth Prize for Engineering for three innovations that have radically changed the visual world © Jason Alden IMAGE REVOLUTIONARIES In February 2017, the four engineers responsible for the creation of digital imaging sensors were awarded the Queen Elizabeth Prize for Engineering. Science writer and broadcaster Geoff Watts spoke to them about the development of the technology and how their contributions have revolutionised the way that visual information is captured and analysed. INGENIA ISSUE 73 DECEMBER 2017 23 IMAGE REVOLUTIONARIES SOCIETY The market for image-sensing technology is worth some $10 billion EXPLORING THE UNIVERSE annually and could be half as large again by 2020 Euclid is a European Space Agency mission due to be launched in 2020. Its ambitious aim is to investigate the dark energy that accounts for three In selecting the winners of the (PPD); and Eric Fossum, who Clarke CBE. He was teasing us, electronically on the surface of a quarters of the energy/matter 2017 Queen Elizabeth Prize developed the complementary but in this context, his wit has CCD, could be used to store and content of the universe, and for Engineering (QEPrize), metal-oxide semiconductor a double relevance. While most transfer information of the kind may explain why the rate the judges have managed to (CMOS) sensor. These users of traditional film cameras required by computer memories. © European Space Agency expansion of the universe is to more basic physics and, when ‘p’ side contains an excess of encompass four key stages in interlocking developments had at least a dim idea of how In fact, the CCD was soon to find accelerating. he joined the NEC Corporation holes. Teranishi added a p layer the history of solid-state image have had an impact to match their instruments captured light, its major use in a quite different Crucial to the success of the mission are Euclid’s reliable, in 1978, to image sensing. with a high level of impurities sensing that are embodied in the extent of their begetters’ this is much less true of the sphere, but the importance of lightweight, high-performance image sensors for observing the Photodiodes of that period were on top of the n layer of a normal four exceptional individuals. ingenuity. Image sensing has billions who reap the benefits Boyle and Smith’s invention was visible and near-infrared output of the billions of faint galaxies plagued by deficiencies such as photodiode. This modification They are George Smith, who proved to be a technology as of digital imaging every day; self-evident, and celebrated in towards which they will be directed. The focal plane of the visible noise and image lag, so Teranishi had the effect of eliminating invented the charge-coupled socially influential as it is fast and the images themselves, 2009 when the pair received the light instrument will comprise an array of 36 CCDs (as seen above) set out to unravel the roots of image lag, reducing dark current device (CCD); Michael Tompsett, moving. whether a picture of some far Nobel Prize for Physics. designed for the exceptional circumstances in which they will be these problems and looked for (the current generated even who exploited its potential “Any sufficiently advanced distant galaxy or the interior of The real value of the CCD operating. They are highly efficient, should be able to tolerate the a means of dealing with them. in the absence of light) and in image sensing; Nobukazu technology is indistinguishable the human gut, often have an began to emerge with its change radiation to which they will be exposed, and by generating 25 times Two years after joining NEC, he producing a much better image Teranishi, who came up with from magic,” wrote science- emotional resonance that surely of role from memory storage as many pixel images as a top digital camera, should offer a far better invented the PPD. quality. It allowed pixel sizes to the modern pinned photodiode fiction novelist Sir Arthur C merits the term ‘magical’? to image sensing, which is quality image. Nothing less would allow astrophysicists to probe the Conventional photodiodes be reduced and their numbers attributable to the second of the history and nature of the universe. comprise a p–n (positive– increased, with a consequent THE CAMERA IN A PILL 2017 QEPrize winners, Michael negative) junction at the boost to resolution. Mass One of the great virtues of the new sensor technology lies THE FIRST Tompsett. Born in the UK, he much smaller than those in use array to one corner of the chip. boundary between two types production started in 1987, and in miniaturisation: in this instance, a camera small enough to DIGITAL PHOTOS studied physics at the University at the time. Here, Tompsett added to the of the same semiconductor a few years later, CMOS image swallow. Capsule endoscopy, as it is called, relies on a camera, an The story behind image-sensing of Cambridge and followed it up Image capturing by CCDs is original CCD design with an crystal. The ‘n’ side contains an sensors could also benefit from LED and a transmitter built into a pill of the size commonly used technology begins with George with a PhD in engineering. By the a product of their response to analogue-to-digital converter excess of electrons, while the the use of PPDs. to deliver drugs or vitamins. As it moves through the stomach Smith. In 1959, after graduating time he came to work on CCDs, light; when photons impinge to turn the amount of charge and the rest of the gut, its camera records images that can be from the University of Chicago he had already demonstrated his on the light-sensitive surface generated within each pixel into transmitted to a recording device worn by the patient. with a PhD in physics, he joined inventiveness. While employed of an array of pixels on a silicon a digital value to be memorised. Conventional endoscopy relies on a long, flexible viewing a department of Bell Telephone by the then English Electric chip, they trigger the formation The digital readout so compiled tube inserted through the mouth and as far down the digestive Laboratories headed by Valve Company, he devised of electrons. These are captured forms a numerical description tract as it will reach. Capsule endoscopy avoids the inevitable Canadian physicist Willard Boyle the uncooled thermal-imaging by the electrostatic forces in of the image. “I led the group discomfort of this procedure, and dispenses with the need for (deceased). In line with the topic television camera tube. However, the pixel and accumulate. The that developed CCD images, and trained staff to perform the examination. of his PhD thesis, he continued by then the focus of his interests brighter the light, the greater the made the first colour camera,” A capsule camera may be tethered on a fine control wire to study semimetals such as had already begun to change. number of electrons generated Tompsett says. “And I took the and retrieved by pulling it back up after examination has been arsenic, antimony and bismuth. “Ideas were being floated within any one pixel site. In an first colour pictures,” he adds. completed. However, as manufacturing costs fall, it can also be He subsequently moved to about solid-state imagers,” he image brought to focus on the “The first person to have a digital disposable and allowed to another department at Bell titled recalls, “and that was something surface of a CCD, the location image taken of her was my wife.” pass out of the body. Device Concepts. In 1969, it was I wanted to work on.” In 1969, and number of electrons form This is still a novel here that he and Boyle invented his fascination took him to the an analogue representation of technology, and the extent the CCD. best place to be for anyone with that image. IMPROVED QUALITY of its benefits in searching Boyle and Smith’s intention such an interest: Bell Telephone Besides acting as a AND SMALLER for cancers or other was to exploit the capacity Laboratories. He quickly realised photodetector, the pixel Tompsett had followed his abnormalities of the digestive of semiconducting materials how Boyle and Smith’s CCDs structure of a CCD also serves father into engineering, and tract is still being assessed, to transfer charge along their could be exploited for their as a readout system. Charge Nobukazu Teranishi also had a generated in the pixels is father who worked in the field. but findings so far are surface from one storage site capacity to capture images, and Michael Tompsett holds a colour camera that he helped to develop while © GivenImaging encouraging. to the next. They reasoned that embarked on a quest to develop transported, step-by-step, from It was nuclear fusion that first his wife Margaret holds a photo of herself, which was the first colour patterns of charge, created imaging systems that were one site to the next, across the attracted him, but that gave way image using three solid-state imagers © Jason Alden 24 INGENIA INGENIA ISSUE 73 DECEMBER 2017 25 IMAGE REVOLUTIONARIES SOCIETY HANDS-FREE IMAGING TECHNOLOGY RAISING ENGINEERING’S PROFILE In 2010, Microsoft released its motion-sensing device, Kinect. Kinect was an instant hit, selling more than eight million units in its first two months on sale and becoming the then fastest-selling consumer Teranishi moved to the GLOBAL IMPACT sensitivity. The ubiquity of electronics device in history. Panasonic Corporation in 2000, Returning to the present, sensing devices will become Combining depth sensing and subsequently to his present upwards of 50 CMOS cameras even greater as we surround and digital image sensors with academic posts at the University are now being manufactured ourselves with all sorts of machine learning, the gadget of Hyogo and at Shizuoka every second.
Recommended publications
  • Meet the Inventors Who Turned Billions of Phones Into Cameras
    2/3/2017 Meet The Inventors Who Turned Billions Of Phones Into Cameras BETA Tech / #WhoaScience FEB 2, 2017 @ 06:15 AM 2,610 VIEWS Meet The Inventors Who Turned Billions Of Phones Into Cameras Parmy Olson, F ORBES STAFF Can global risks be I cover agitators and innovators in mobile. seen as a playbook FULL BIO for innovation? Uncertainty, political shifts & a tech revolution are impacting business. But trends that create these risks can also present growth opportunities Watch here From left, Dr Michael Tompsett (UK), Professor Eric Fossum (USA) and Professor Nobukazu Teranishi (Japan) are announced as the winners of the 2017 Queen Elizabeth Prize for Engineering at Carlton http://www.forbes.com/sites/parmyolson/2017/02/02/inventors­camera­smartphone­prize/#1a0640a81d4c 1/37 2/3/2017 Meet The Inventors Who Turned Billions Of Phones Into Cameras House Terrace on Wednesday, Feb. 1, 2017 in London. (Jason Alden/QEPrize via AP Images) Taking a selfie is one of the easiest and quickest things you can do on your BETA smartphone. But as with any landmark invention, it took decades and plenty of graft to develop the camera technology that lives in your pocket. A trio of engineers behind the invention of the image­sensing technology found in billions of smartphones, camera phones, PCs and hospital scanning technology, won the £1 million ($1.3 million) Queen Elizabeth Prize for engineering on Wednesday, and spoke about where the image­sensor technology they developed should go in the future. “I feel gobsmacked and very thankful to the Queen Elizabeth prize for this honor,” said one of the engineers, Eric Fossum.
    [Show full text]
  • Spring Newsletter 2017
    Hat-trick of engineering celebrations as Prince Philip House reopens he reopening of the full facilities of Prince Philip House for the creation of digital imaging sensors were awarded the and the Enterprise Hub’s new Taylor Centre has seen the £1 million prize, which celebrates global engineering innovations. TAcademy’s home on Carlton House Terrace play host to a The announcement was made by Lord Browne of Madingley series of celebratory events in the first few months of 2017. The FREng FRS, in the presence of HRH The Princess Royal. official opening of the Taylor Centre, the announcement of the winners of the Queen Elizabeth Prize for Engineering (QEPrize) and The winners, Professor Eric Fossum and Dr George Smith Fellows’ Day saw the building filled with Fellows, entrepreneurs, from the USA, Professor Nobukazu Teranishi from Japan, and guests and media as the new year got off to a flying start. Dr Michael Tompsett from the UK, were awarded the prize for their contribution to revolutionising the way that visual information is The Taylor Centre is the new physical home of the Enterprise Hub, captured and analysed. Together, their innovations have made and was officially opened by Professor Dame Ann Dowling OM DBE an astounding social impact on the world: digital imaging sensors FREng FRS on 9 February. The centre will help transform the UK’s have enabled high-speed, low-cost colour imaging at a resolution best and brightest engineering and technology entrepreneurs into and sensitivity that can exceed that of the human eye. (Find out the business leaders of tomorrow by providing a new, inspiring set more about the winners on page 3).
    [Show full text]
  • When@Dinosaurs@Flyz@The@Role@Of@Firm@Capab
    p。ー・イ@エッ@「・@ーイ・ウ・ョエ・、@。エ@@druidQW nyu@sエ・イョ@s」ィッッャ@ッヲ@bオウゥョ・ウウL@n・キ@yッイォL@jオョ・@QRMQTL@RPQW when@dinosaurs@flyZ@the@role@of@firm@capabilities@in@the avianization@of@incumbents@during@disruptive technological@change r。ェ。@rッケ nッイエィ・。ウエ・イョ@iャャゥョッゥウ@uョゥカ・イウゥエケ m。ョ。ァ・ュ・ョエ イイッケ`ョ・ゥオN・、オ iイゥョ。@sエッケョ・カ。 pィゥャ。、・ャーィゥ。@uョゥカ・イウゥエケ m。ョ。ァ・ュ・ョエ sエッケョ・カ。i`ーィゥャ。オN・、オ cオイ「。@l。ュー・イエ fャッイゥ、。@iョエ・イョ。エゥッョ。ャ@uョゥカ・イウゥエケ m。ョァ・ュ・ョエ@。ョ、@iョエ・イョ。エゥッョ。ャ@bオウゥョ・ウウ 」ャ。ュー・イエ`ヲゥオN・、オ @ @ a「ウエイ。」エ pイゥッイ@イ・ウ・。イ」ィ@ウオァァ・ウエウ@エィ。エ@ャ。イァ・@ゥョ」オュ「・ョエウ@キゥャャ@「・」ッュ・@カゥ」エゥュウ@ッヲ@、ゥウイオーエゥカ・@エ・」ィョッャッァゥ」。ャ@」ィ。ョァ・N@w・ ゥョカ・ウエゥァ。エ・@エィ・@ゥュ。ァ・@ウ・ョウッイ@ゥョ、オウエイケ@ゥョ@キィゥ」ィ@エィ・@・ュ・イァ・ョ」・@ッヲ@cmos@ウ・ョウッイウ@」ィ。ャャ・ョァ・、@エィ・@ュ。ョオヲ。」エオイ・イウ ッヲ@ccd@ウ・ョウッイウN@aャエィッオァィ@エィゥウ@エ・」ィョッャッァゥ」。ャ@、ゥウイオーエゥッョ@ャ・、@エッ@エィ・@、ゥョッウ。オイゥコ。エゥッョ@ッヲ@ccd@エ・」ィョッャッァケL@ゥエ@。ャウッ@ャ・、 エッ@。カゥ。ョゥコ。エゥッョッイ@ウエイ。エ・ァゥ」@イ・ョ・キ。ャヲッイ@ウッュ・@ゥョ」オュ「・ョエウL@ウゥュゥャ。イ@エッ@ィッキ@ウッュ・@、ゥョッウ。オイウ@ウオイカゥカ・、@エィ・@ュ。ウウ cイ・エ。」・ッオウMt・イエゥ。イケ@・クエゥョ」エゥッョ@「ケ@・カッャカゥョァ@ゥョエッ@「ゥイ、ウN@w・@ヲゥョ、@エィ。エ@ccd@ュ。ョオヲ。」エオイ・イウ@エィ。エ@。カゥ。ョゥコ・、@キ・イ・ ーイ・。、。ーエ・、@エッ@エィ・@、ゥウイオーエゥカ・@cmos@エ・」ィョッャッァケ@ゥョ@エィ。エ@エィ・ケ@ーッウウ・ウウ・、@イ・ャ・カ。ョエ@」ッューャ・ュ・ョエ。イケ@エ・」ィョッャッァゥ・ウ 。ョ、@。」」・ウウ@エッ@ゥョMィッオウ・@オウ・イウ@エィ。エ@。ャャッキ・、@エィ・ュ@エッ@ウエイ。エ・ァゥ」。ャャケ@イ・ョ・キ@エィ・ュウ・ャカ・ウN j・ャ」ッ、・ウZoSRLM Powered by TCPDF (www.tcpdf.org) When Dinosaurs Fly ! ABSTRACT Prior research suggests that large incumbents will become victims of disruptive technological change.
    [Show full text]
  • Video Camera Technologies Systematization Yasuo Takemura
    Video Camera Technologies Systematization 2 Yasuo Takemura Abstract The video camera is a color television camera for consumer use that makes it possible for anyone to take, record and save a moving picture. This paper surveys developments in consumer video camera technology. Video cameras have been developed and manufactured in Japan for several decades and exported to global markets. Many kinds of video camera technologies developed in Japan have been applied to digital still cameras, mobile phones for communication, and even smartphones and tablets. Although compact in size, the video camera system includes a myriad of basic technologies covering a wide range of technical fields, including optical systems and lenses, image sensors – the key device in photoelectric conversion, digital signal processing for reproducing high-quality, highly-functional images, recording systems for recording images and high density mounting to bring it all together in a compact form. Furthermore, the video camera must also be small, lightweight, durable and energy-efficient, as well as the basic consumer requirements of low pricing and high reliability. The image sensor industry has developed into one of Japan’s most successful industries, supported by the timely and rapid advancement of semiconductor technology and accompanied by a wealth of specialized research. Japanese consumers expect high fidelity image quality, which has driven the development of high-quality television and video camera technologies through collaboration between sensor technology
    [Show full text]
  • Recent Progresses of Visible Light Image Sensors
    1 The Detector Seminar at CERN Recent Progresses of Visible Light Image Sensors February 23, 2018 Nobukazu Teranishi University of Hyogo / Shizuoka University ©2018 N. Teranishi 2 Contents 1. Basics of Visible Light Image Sensors 2. Dark Current and Blemish 3. Pinned Photodiode (PPD) Recent Progresses 4. Photon Counting Image Sensor 5. Stack 6. Near InfraRed (NIR) 7. ToF (Time of Flight) 8. Polarization Image Sensor 9. Monocular 3D Image Sensor 10. Queen Elizabeth Prize for Engineering ©2018 N. Teranishi 3 What is Image Sensors? - Semiconductor device, which converts light image to electric signal. - Used in cameras. Examples of applications Smart- Movie Automobile Endoscope Iris verification Security phone Light Image Sensor Microlens Color filter ● ● Photodiode Electron Image sensor Pixel array DSC ©2018 N. Teranishi Pixel cross-section Image Sensor (IS) Market 4 - IS sales amount has grown by camera phone. Camcoder PMP - IS spreads into various applications, DSLR Medical Smart glasses - “Others” includes scientific, Compact DSC Broadcast industrial, … Game Automobile Others Surveillance Bpcs PC/WEB camera 4 CMOS image sensor CCD image sensor Tablet 3 2 Camera phone 1 Sales amount 0 02 04 06 08 10 12 14 Application in amount (2015) 01 03 05 07 09 11 13 15 Year ©2018 N. Teranishi (Source: TSR) 5 Pixel Structure microlens (ML) Color filter (CF) Amplifier (SF) Sotrage Pinning layer Transfer gate (TG) + P+ N+ + P e- P e- Silicon Ne- P Detective capacitance (Floating diffusion (FD)) Cross-section of frontside illumination type CMOS image sensor pixel ©2018 N. Teranishi Sensitivity Expansion to Invisible 6 Inner Shell Excitation Large depletion is needed.
    [Show full text]
  • The Optical Society Congratulates Queen Elizabeth Prize Recipients Eric Fossum and George Smith | News Releases | the Optical Society
    2/26/2017 The Optical Society Congratulates Queen Elizabeth Prize Recipients Eric Fossum and George Smith | News Releases | The Optical Society Home / About OSA / Newsroom / News Releases The Optical Society Congratulates Queen Elizabeth Prize Recipients Eric Fossum and George Smith Rate this page. 22 February 2017 The Optical Society Congratulates Queen Elizabeth Prize Recipients Eric Fossum and George Smith OSA Members Honored for Development of ‘camera-on-a-chip’ Technology WASHINGTON — The Optical Society (OSA), the leading global professional association in optics and photonics, today announced that OSA Fellow Eric Fossum and OSA Emeritus member George E. Smith, 2009 Nobel Laureate in Physics, will receive the Queen Elizabeth Prize for Engineering (QEPrize) for work on Complementary Metal Oxide Semiconductor (CMOS) image sensor technology, also called ‘camera- on-a-chip’, for high-speed charge coupled devices (CCDs). “The Queen Elizabeth Prize for Engineering is one of the highest honors any researcher can receive, and recognizes those whose contributions have bene㈀tted humanity on a global scale,” said Elizabeth Rogan, CEO of The Optical Society. “On behalf of The Optical Society, I would like to congratulate Dr. Fossum and Dr. Smith and all of 2017’s QEPrize winners. They pioneered engineering technologies that are now part of our culture and launched high-quality portable digital cameras into ubiquity.” “I am very honored to share this prestigious award,” said Fossum. “We never set out with this invention to incorporate digital
    [Show full text]
  • New Scientist.Pdf
    2/2/2017 £1 million prize for engineers who invented digital camera tech | New Scientist Last chance to book! The world of Galileo: Eight days in Italy to discover the science of the Renaissance SHORT SHARP SCIENCE 1 February 2017 £1 million prize for engineers who invented digital camera tech Queen Elizabeth Prize winners Michael Tompsett, Nobukazu Teranishi and Eric Fossum qeprize.org By Victoria Turk A £1 million engineering prize has been awarded to the creators of digital imaging technology now used in everything from medical sensors to smartphone cameras. The winners of the 2017 Queen Elizabeth Prize for Engineering were announced at a ceremony at the Royal Academy of Engineering in London on Wednesday, and are Eric Fossum, George Smith, Nobukazu Teranishi, and Michael Tompsett. They worked on three technologies that made the cameras we use today possible. Smith worked with Willard Boyle, now deceased, to develop the charged couple device (CCD) at Bell Labs in the US in the 1970s. Tompsett then realised this could have applications as an image sensor. CCD sensors were used in early digital cameras, and work by producing electrical signals when they detect light. Teranishi invented the pinned photodiode (PPD) in 1980, while at the NEC Corporation in Japan. The PPD is a type of semiconductor that made it possible to capture images of higher quality. The following decade, Fossum and his team at NASA’s Jet Propulsion Laboratory worked on complementary metal oxide semiconductor (CMOS) sensor technology. Originally developed to make cameras used on spacecraft smaller and lighter, CMOS sensors require much less power than CCD sensors.
    [Show full text]
  • Winter Newsletter 2017
    HRH The Prince of Wales presents 2017 QEPrize n 6 December, the 2017 Queen Elizabeth Prize for across 10 global centres for engineering, including the US, Engineering (QEPrize) was presented at a ceremony held Japan, Turkey, India and Brazil. This year’s study examines the Oat Buckingham Palace. The day also marked the release changing perceptions of engineering worldwide. the second Create the Future report, an international survey on the perceptions of engineering. Key findings from this year’s report suggest that engineering is entering a new era, where technology-related innovations HRH The Prince of Wales presented three of the winners, are seen to have the greatest impact on our way of life. Eric Fossum, Nobukazu Teranishi and Michael Tompsett, with Artificial intelligence and robotics are hailed as the top modern their prize, while fourth winner George Smith was unable to inventions; however, the public believes that innovations such attend. One of the key aims of the QEPrize is to inspire the next as the internet and computers have more relevance to their generation of engineers, so attendees included representatives daily lives. from QEPrize donor companies and leading young engineers from the QEPrize Global Engineering Ambassadors’ network. The study also highlighted that engineering is becoming a Ambassadors and High Commissioners from around the world vessel for progress, with people seeing engineers as being were also in attendance, including His Excellency Mr Koji as influential as politicians in solving major world challenges. Tsuruoka, Japanese Ambassador to the United Kingdom, and His Overall, the industry is recognised as a respectable, prestigious Excellency Mr Robert Wood Johnson, United States Ambassador.
    [Show full text]