Meet the Inventors Who Turned Billions of Phones Into Cameras

Total Page:16

File Type:pdf, Size:1020Kb

Meet the Inventors Who Turned Billions of Phones Into Cameras 2/3/2017 Meet The Inventors Who Turned Billions Of Phones Into Cameras BETA Tech / #WhoaScience FEB 2, 2017 @ 06:15 AM 2,610 VIEWS Meet The Inventors Who Turned Billions Of Phones Into Cameras Parmy Olson, F ORBES STAFF Can global risks be I cover agitators and innovators in mobile. seen as a playbook FULL BIO for innovation? Uncertainty, political shifts & a tech revolution are impacting business. But trends that create these risks can also present growth opportunities Watch here From left, Dr Michael Tompsett (UK), Professor Eric Fossum (USA) and Professor Nobukazu Teranishi (Japan) are announced as the winners of the 2017 Queen Elizabeth Prize for Engineering at Carlton http://www.forbes.com/sites/parmyolson/2017/02/02/inventors­camera­smartphone­prize/#1a0640a81d4c 1/37 2/3/2017 Meet The Inventors Who Turned Billions Of Phones Into Cameras House Terrace on Wednesday, Feb. 1, 2017 in London. (Jason Alden/QEPrize via AP Images) Taking a selfie is one of the easiest and quickest things you can do on your BETA smartphone. But as with any landmark invention, it took decades and plenty of graft to develop the camera technology that lives in your pocket. A trio of engineers behind the invention of the image­sensing technology found in billions of smartphones, camera phones, PCs and hospital scanning technology, won the £1 million ($1.3 million) Queen Elizabeth Prize for engineering on Wednesday, and spoke about where the image­sensor technology they developed should go in the future. “I feel gobsmacked and very thankful to the Queen Elizabeth prize for this honor,” said one of the engineers, Eric Fossum. “I’m still continuing to do research into very­high sensitivity sensors, so we can work under very dark conditions. I’m working on trying to count every single proton and particle of light as it comes into the sensor.” ADVERTISING http://www.forbes.com/sites/parmyolson/2017/02/02/inventors­camera­smartphone­prize/#1a0640a81d4c 2/37 2/3/2017 Meet The Inventors Who Turned Billions Of Phones Into Cameras It took three generations of work in across BETA the world to eventually come up with the technology to produce cameras small and cheap enough to fit in a smartphone. The first stage of the digital camera revolution came in the 1970s with the charge­coupled device (CCD) developed by British engineer Michael Tompsett. In 1972 he used a shoebox­sized camera to take the first digital colour photo of his wife, Margaret. It was blurrier than what you’d get on film back then, but it made the cover of Electronics Magazine and marked the beginning of a new wave of digital imaging. Next came the rapid commercialization of image­sensors in Japan in the 1980’s, sparked by Nobukazu Teranishi’s invention of the pinned photodiode, a semiconductor device that converts light into an electric current. Teranishi, who worked for NEC Corporation at the time, figured out how to produce higher­resolution images with smaller pixels. Recommended by Forbes 3 Great Smartphone This Imaging Software Cameras, 3 Continents, Startup Is Defining The One Winner Future Of Digital Cameras http://www.forbes.com/sites/parmyolson/2017/02/02/inventors­camera­smartphone­prize/#1a0640a81d4c 3/37 2/3/2017 Meet The Inventors Who Turned Billions Of Phones Into Cameras Finally in 1993, more than two decades after that first blurry photo of Margaret Tompsett, engineer Eric Fossum figured out how to $ [1] miniaturize the technology. Working out of 1,500 Bonus Cash BETA $ [2] NASA’s Jet Propulsion Laboratory in + 1,000 Bonus Cash Pasadena, Calif., he developed the CMOS Up To $ sensor to try and protect camera images in 2,500 Total Savings* space from being ruined by high­energy THE 2016 NISSAN FRONTIER® cosmic particles. The sensor turned out to be *More Cash Back Information a cheaper and more energy­ SHOP NOW BUILD efficient alternative for digital cameras everywhere. Princess Anne speaks to the winners of the 2017 Queen Elizabeth Prize for Engineering. (Jason Alden/QEPrize via AP Images) Years later and sitting in a conference room ahead of their award presentation from Princess Anne, daughter of Queen Elizabeth II, the engineers were circumspect on Wednesday about what their inventions had led to in the decades since. “Selfies are something I didn’t think about,” says Fossum. “Or silly cat videos.” The proliferation of millions of cameras in cities for constant surveillance was on their minds too. “It boggles my imagination,” Fossum added. “Putting cameras on drones that you can fly into your neighbor’s yard. http://www.forbes.com/sites/parmyolson/2017/02/02/inventors­camera­smartphone­prize/#1a0640a81d4c 4/37 2/3/2017 Meet The Inventors Who Turned Billions Of Phones Into Cameras Who would have thought this would have been an issue?” Teranishi said cameras needed to become BETA smarter to tackle the privacy problem. “Future cameras will not provide images,” he told FORBES, but recognize objects like fire when they need to. “It doesn’t have to conflict with privacy.” Fossum disagreed somewhat here. “I don’t know if you can get rid of the visual information part,” he later said on the sidelines. “To reduce the false alarm rate you may want to be able to look through the monitor.” This points to the next big next big step that image­recognition technology is now facing: incorporating artificial intelligence software. That will be fundamental to products like self­driving cars. The fatal crash of a self­ driving Tesla Model S car last year in the U.S. occurred in part because the forward facing sensors (which included a camera, a radar and ultrasonic sensors) failed to distinguish the white side of a tractor trailer against a brightly­lit sky. Teranishi said engineers now needed to develop technology that could better distinguish between different materials like the side of a tractor trailer. Broadly speaking, the image sensor and processor within camera sensors needed to become more tightly integrated. “We need more test driving,” Teranishi added. “We need more learning.” http://www.forbes.com/sites/parmyolson/2017/02/02/inventors­camera­smartphone­prize/#1a0640a81d4c 5/37 2/3/2017 Meet The Inventors Who Turned Billions Of Phones Into Cameras The Queen Elizabeth Prize is modelled on the Nobel Prize and is said to be the most prestigious in the field of engineering. Its two previous winners are Tim Berners­Lee BETA and the team behind the development of the World Wide Web in 2013 and Dr. Robert Langer in 2015. Lancer developed the controlled­release large molecule drugs delivery systems, which the prize’s organizers said had benefited the lives of more than 2 billion people worldwide. The three engineers who won the prize this week, along with George Smith, an American winner of the Nobel Prize in Physics whose work in electronic memory design proved the basis for Tompsett’s original CCD sensor, will be formally honored with a ceremony at Buckingham Palace later this year. All three of the prize winners spoke of donating their prize money to organisations that promote engineering to kids and young entrepreneurs.”I’m still an active professor at Dartmouth,” said Fossum. “We try to tell students it’s okay to not get the right answer the first time. That’s not what they’re taught at school. The process of engineering is to try, and then you do it again and again, and then it gets better. “It’s not just the students but the teachers we’re trying to communicate this to. They have to understand there has to be room for this creative process, and trial and error that has to happen. Don’t give up if it doesn’t happen the first time. That’s my message.” Comment on this story Report Corrections Reprints & Permissions http://www.forbes.com/sites/parmyolson/2017/02/02/inventors­camera­smartphone­prize/#1a0640a81d4c 6/37 2/3/2017 Meet The Inventors Who Turned Billions Of Phones Into Cameras RELATED TOPICS 1. 10 BEST 4. BEST ANDROID SMARTPHO BETA 2. BEST CELL 5. WIRELESS PHONE SECURITY 3. COMPARE 6. BEST BEST WIRELESS From the Web Ads by Revcontent 14 Times Lotto (1) Easy Trick Congress Urges Ever Googled Winner:Do This "Removes" Your Homeowners to Yourself? Do a "Deep Every Time You Buy A Eyebags & Wrinkles Claim Their $4,264 Search" Instead! LOoTtTtOo N TEWicSk TeIPtS (Win F(IDT Mo OTMh DisA ILTYonight!) SRMeAbRaTEtRe FINANCE TRUTHFINDER This $0.39 Marijuana 30 Secrets North US Diets Are Worse How To Get Solar Stock Set to Soar Korea Doesn't Want Than Ever, But Panels From NH April 15th Anyone to Know Avoiding 10 Foods Government For Free AGORAFINANCIAL RIVALSHARE.COM HCEaAnLT HCeElNpT!RAL SAVINGS-SCANNER Places & Spaces FEB 3, 2017 @ 05:50 AM VIEWS http://www.forbes.com/sites/parmyolson/2017/02/02/inventors­camera­smartphone­prize/#1a0640a81d4c 7/37 2/3/2017 Meet The Inventors Who Turned Billions Of Phones Into Cameras 9 Ways To Decorate A Blank Wall BETA http://www.forbes.com/sites/parmyolson/2017/02/02/inventors­camera­smartphone­prize/#1a0640a81d4c 8/37 2/3/2017 Meet The Inventors Who Turned Billions Of Phones Into Cameras http://www.forbes.com/sites/parmyolson/2017/02/02/inventors­camera­smartphone­prize/#1a0640a81d4c 9/37 2/3/2017 Meet The Inventors Who Turned Billions Of Phones Into Cameras http://www.forbes.com/sites/parmyolson/2017/02/02/inventors­camera­smartphone­prize/#1a0640a81d4c 10/37 2/3/2017 Meet The Inventors Who Turned Billions Of Phones Into Cameras http://www.forbes.com/sites/parmyolson/2017/02/02/inventors­camera­smartphone­prize/#1a0640a81d4c 11/37 2/3/2017 Meet The Inventors Who Turned Billions Of Phones Into Cameras http://www.forbes.com/sites/parmyolson/2017/02/02/inventors­camera­smartphone­prize/#1a0640a81d4c
Recommended publications
  • Spring Newsletter 2017
    Hat-trick of engineering celebrations as Prince Philip House reopens he reopening of the full facilities of Prince Philip House for the creation of digital imaging sensors were awarded the and the Enterprise Hub’s new Taylor Centre has seen the £1 million prize, which celebrates global engineering innovations. TAcademy’s home on Carlton House Terrace play host to a The announcement was made by Lord Browne of Madingley series of celebratory events in the first few months of 2017. The FREng FRS, in the presence of HRH The Princess Royal. official opening of the Taylor Centre, the announcement of the winners of the Queen Elizabeth Prize for Engineering (QEPrize) and The winners, Professor Eric Fossum and Dr George Smith Fellows’ Day saw the building filled with Fellows, entrepreneurs, from the USA, Professor Nobukazu Teranishi from Japan, and guests and media as the new year got off to a flying start. Dr Michael Tompsett from the UK, were awarded the prize for their contribution to revolutionising the way that visual information is The Taylor Centre is the new physical home of the Enterprise Hub, captured and analysed. Together, their innovations have made and was officially opened by Professor Dame Ann Dowling OM DBE an astounding social impact on the world: digital imaging sensors FREng FRS on 9 February. The centre will help transform the UK’s have enabled high-speed, low-cost colour imaging at a resolution best and brightest engineering and technology entrepreneurs into and sensitivity that can exceed that of the human eye. (Find out the business leaders of tomorrow by providing a new, inspiring set more about the winners on page 3).
    [Show full text]
  • When@Dinosaurs@Flyz@The@Role@Of@Firm@Capab
    p。ー・イ@エッ@「・@ーイ・ウ・ョエ・、@。エ@@druidQW nyu@sエ・イョ@s」ィッッャ@ッヲ@bオウゥョ・ウウL@n・キ@yッイォL@jオョ・@QRMQTL@RPQW when@dinosaurs@flyZ@the@role@of@firm@capabilities@in@the avianization@of@incumbents@during@disruptive technological@change r。ェ。@rッケ nッイエィ・。ウエ・イョ@iャャゥョッゥウ@uョゥカ・イウゥエケ m。ョ。ァ・ュ・ョエ イイッケ`ョ・ゥオN・、オ iイゥョ。@sエッケョ・カ。 pィゥャ。、・ャーィゥ。@uョゥカ・イウゥエケ m。ョ。ァ・ュ・ョエ sエッケョ・カ。i`ーィゥャ。オN・、オ cオイ「。@l。ュー・イエ fャッイゥ、。@iョエ・イョ。エゥッョ。ャ@uョゥカ・イウゥエケ m。ョァ・ュ・ョエ@。ョ、@iョエ・イョ。エゥッョ。ャ@bオウゥョ・ウウ 」ャ。ュー・イエ`ヲゥオN・、オ @ @ a「ウエイ。」エ pイゥッイ@イ・ウ・。イ」ィ@ウオァァ・ウエウ@エィ。エ@ャ。イァ・@ゥョ」オュ「・ョエウ@キゥャャ@「・」ッュ・@カゥ」エゥュウ@ッヲ@、ゥウイオーエゥカ・@エ・」ィョッャッァゥ」。ャ@」ィ。ョァ・N@w・ ゥョカ・ウエゥァ。エ・@エィ・@ゥュ。ァ・@ウ・ョウッイ@ゥョ、オウエイケ@ゥョ@キィゥ」ィ@エィ・@・ュ・イァ・ョ」・@ッヲ@cmos@ウ・ョウッイウ@」ィ。ャャ・ョァ・、@エィ・@ュ。ョオヲ。」エオイ・イウ ッヲ@ccd@ウ・ョウッイウN@aャエィッオァィ@エィゥウ@エ・」ィョッャッァゥ」。ャ@、ゥウイオーエゥッョ@ャ・、@エッ@エィ・@、ゥョッウ。オイゥコ。エゥッョ@ッヲ@ccd@エ・」ィョッャッァケL@ゥエ@。ャウッ@ャ・、 エッ@。カゥ。ョゥコ。エゥッョッイ@ウエイ。エ・ァゥ」@イ・ョ・キ。ャヲッイ@ウッュ・@ゥョ」オュ「・ョエウL@ウゥュゥャ。イ@エッ@ィッキ@ウッュ・@、ゥョッウ。オイウ@ウオイカゥカ・、@エィ・@ュ。ウウ cイ・エ。」・ッオウMt・イエゥ。イケ@・クエゥョ」エゥッョ@「ケ@・カッャカゥョァ@ゥョエッ@「ゥイ、ウN@w・@ヲゥョ、@エィ。エ@ccd@ュ。ョオヲ。」エオイ・イウ@エィ。エ@。カゥ。ョゥコ・、@キ・イ・ ーイ・。、。ーエ・、@エッ@エィ・@、ゥウイオーエゥカ・@cmos@エ・」ィョッャッァケ@ゥョ@エィ。エ@エィ・ケ@ーッウウ・ウウ・、@イ・ャ・カ。ョエ@」ッューャ・ュ・ョエ。イケ@エ・」ィョッャッァゥ・ウ 。ョ、@。」」・ウウ@エッ@ゥョMィッオウ・@オウ・イウ@エィ。エ@。ャャッキ・、@エィ・ュ@エッ@ウエイ。エ・ァゥ」。ャャケ@イ・ョ・キ@エィ・ュウ・ャカ・ウN j・ャ」ッ、・ウZoSRLM Powered by TCPDF (www.tcpdf.org) When Dinosaurs Fly ! ABSTRACT Prior research suggests that large incumbents will become victims of disruptive technological change.
    [Show full text]
  • Image-Revolutionaries.Pdf
    SOCIETY (L–R) Michael Tompsett, Eric Fossum, Nobukazu Teranishi and George Smith (not pictured) received the Queen Elizabeth Prize for Engineering for three innovations that have radically changed the visual world © Jason Alden IMAGE REVOLUTIONARIES In February 2017, the four engineers responsible for the creation of digital imaging sensors were awarded the Queen Elizabeth Prize for Engineering. Science writer and broadcaster Geoff Watts spoke to them about the development of the technology and how their contributions have revolutionised the way that visual information is captured and analysed. INGENIA ISSUE 73 DECEMBER 2017 23 IMAGE REVOLUTIONARIES SOCIETY The market for image-sensing technology is worth some $10 billion EXPLORING THE UNIVERSE annually and could be half as large again by 2020 Euclid is a European Space Agency mission due to be launched in 2020. Its ambitious aim is to investigate the dark energy that accounts for three In selecting the winners of the (PPD); and Eric Fossum, who Clarke CBE. He was teasing us, electronically on the surface of a quarters of the energy/matter 2017 Queen Elizabeth Prize developed the complementary but in this context, his wit has CCD, could be used to store and content of the universe, and for Engineering (QEPrize), metal-oxide semiconductor a double relevance. While most transfer information of the kind may explain why the rate the judges have managed to (CMOS) sensor. These users of traditional film cameras required by computer memories. © European Space Agency expansion of the universe is to more basic physics and, when ‘p’ side contains an excess of encompass four key stages in interlocking developments had at least a dim idea of how In fact, the CCD was soon to find accelerating.
    [Show full text]
  • Video Camera Technologies Systematization Yasuo Takemura
    Video Camera Technologies Systematization 2 Yasuo Takemura Abstract The video camera is a color television camera for consumer use that makes it possible for anyone to take, record and save a moving picture. This paper surveys developments in consumer video camera technology. Video cameras have been developed and manufactured in Japan for several decades and exported to global markets. Many kinds of video camera technologies developed in Japan have been applied to digital still cameras, mobile phones for communication, and even smartphones and tablets. Although compact in size, the video camera system includes a myriad of basic technologies covering a wide range of technical fields, including optical systems and lenses, image sensors – the key device in photoelectric conversion, digital signal processing for reproducing high-quality, highly-functional images, recording systems for recording images and high density mounting to bring it all together in a compact form. Furthermore, the video camera must also be small, lightweight, durable and energy-efficient, as well as the basic consumer requirements of low pricing and high reliability. The image sensor industry has developed into one of Japan’s most successful industries, supported by the timely and rapid advancement of semiconductor technology and accompanied by a wealth of specialized research. Japanese consumers expect high fidelity image quality, which has driven the development of high-quality television and video camera technologies through collaboration between sensor technology
    [Show full text]
  • Recent Progresses of Visible Light Image Sensors
    1 The Detector Seminar at CERN Recent Progresses of Visible Light Image Sensors February 23, 2018 Nobukazu Teranishi University of Hyogo / Shizuoka University ©2018 N. Teranishi 2 Contents 1. Basics of Visible Light Image Sensors 2. Dark Current and Blemish 3. Pinned Photodiode (PPD) Recent Progresses 4. Photon Counting Image Sensor 5. Stack 6. Near InfraRed (NIR) 7. ToF (Time of Flight) 8. Polarization Image Sensor 9. Monocular 3D Image Sensor 10. Queen Elizabeth Prize for Engineering ©2018 N. Teranishi 3 What is Image Sensors? - Semiconductor device, which converts light image to electric signal. - Used in cameras. Examples of applications Smart- Movie Automobile Endoscope Iris verification Security phone Light Image Sensor Microlens Color filter ● ● Photodiode Electron Image sensor Pixel array DSC ©2018 N. Teranishi Pixel cross-section Image Sensor (IS) Market 4 - IS sales amount has grown by camera phone. Camcoder PMP - IS spreads into various applications, DSLR Medical Smart glasses - “Others” includes scientific, Compact DSC Broadcast industrial, … Game Automobile Others Surveillance Bpcs PC/WEB camera 4 CMOS image sensor CCD image sensor Tablet 3 2 Camera phone 1 Sales amount 0 02 04 06 08 10 12 14 Application in amount (2015) 01 03 05 07 09 11 13 15 Year ©2018 N. Teranishi (Source: TSR) 5 Pixel Structure microlens (ML) Color filter (CF) Amplifier (SF) Sotrage Pinning layer Transfer gate (TG) + P+ N+ + P e- P e- Silicon Ne- P Detective capacitance (Floating diffusion (FD)) Cross-section of frontside illumination type CMOS image sensor pixel ©2018 N. Teranishi Sensitivity Expansion to Invisible 6 Inner Shell Excitation Large depletion is needed.
    [Show full text]
  • The Optical Society Congratulates Queen Elizabeth Prize Recipients Eric Fossum and George Smith | News Releases | the Optical Society
    2/26/2017 The Optical Society Congratulates Queen Elizabeth Prize Recipients Eric Fossum and George Smith | News Releases | The Optical Society Home / About OSA / Newsroom / News Releases The Optical Society Congratulates Queen Elizabeth Prize Recipients Eric Fossum and George Smith Rate this page. 22 February 2017 The Optical Society Congratulates Queen Elizabeth Prize Recipients Eric Fossum and George Smith OSA Members Honored for Development of ‘camera-on-a-chip’ Technology WASHINGTON — The Optical Society (OSA), the leading global professional association in optics and photonics, today announced that OSA Fellow Eric Fossum and OSA Emeritus member George E. Smith, 2009 Nobel Laureate in Physics, will receive the Queen Elizabeth Prize for Engineering (QEPrize) for work on Complementary Metal Oxide Semiconductor (CMOS) image sensor technology, also called ‘camera- on-a-chip’, for high-speed charge coupled devices (CCDs). “The Queen Elizabeth Prize for Engineering is one of the highest honors any researcher can receive, and recognizes those whose contributions have bene㈀tted humanity on a global scale,” said Elizabeth Rogan, CEO of The Optical Society. “On behalf of The Optical Society, I would like to congratulate Dr. Fossum and Dr. Smith and all of 2017’s QEPrize winners. They pioneered engineering technologies that are now part of our culture and launched high-quality portable digital cameras into ubiquity.” “I am very honored to share this prestigious award,” said Fossum. “We never set out with this invention to incorporate digital
    [Show full text]
  • New Scientist.Pdf
    2/2/2017 £1 million prize for engineers who invented digital camera tech | New Scientist Last chance to book! The world of Galileo: Eight days in Italy to discover the science of the Renaissance SHORT SHARP SCIENCE 1 February 2017 £1 million prize for engineers who invented digital camera tech Queen Elizabeth Prize winners Michael Tompsett, Nobukazu Teranishi and Eric Fossum qeprize.org By Victoria Turk A £1 million engineering prize has been awarded to the creators of digital imaging technology now used in everything from medical sensors to smartphone cameras. The winners of the 2017 Queen Elizabeth Prize for Engineering were announced at a ceremony at the Royal Academy of Engineering in London on Wednesday, and are Eric Fossum, George Smith, Nobukazu Teranishi, and Michael Tompsett. They worked on three technologies that made the cameras we use today possible. Smith worked with Willard Boyle, now deceased, to develop the charged couple device (CCD) at Bell Labs in the US in the 1970s. Tompsett then realised this could have applications as an image sensor. CCD sensors were used in early digital cameras, and work by producing electrical signals when they detect light. Teranishi invented the pinned photodiode (PPD) in 1980, while at the NEC Corporation in Japan. The PPD is a type of semiconductor that made it possible to capture images of higher quality. The following decade, Fossum and his team at NASA’s Jet Propulsion Laboratory worked on complementary metal oxide semiconductor (CMOS) sensor technology. Originally developed to make cameras used on spacecraft smaller and lighter, CMOS sensors require much less power than CCD sensors.
    [Show full text]
  • Winter Newsletter 2017
    HRH The Prince of Wales presents 2017 QEPrize n 6 December, the 2017 Queen Elizabeth Prize for across 10 global centres for engineering, including the US, Engineering (QEPrize) was presented at a ceremony held Japan, Turkey, India and Brazil. This year’s study examines the Oat Buckingham Palace. The day also marked the release changing perceptions of engineering worldwide. the second Create the Future report, an international survey on the perceptions of engineering. Key findings from this year’s report suggest that engineering is entering a new era, where technology-related innovations HRH The Prince of Wales presented three of the winners, are seen to have the greatest impact on our way of life. Eric Fossum, Nobukazu Teranishi and Michael Tompsett, with Artificial intelligence and robotics are hailed as the top modern their prize, while fourth winner George Smith was unable to inventions; however, the public believes that innovations such attend. One of the key aims of the QEPrize is to inspire the next as the internet and computers have more relevance to their generation of engineers, so attendees included representatives daily lives. from QEPrize donor companies and leading young engineers from the QEPrize Global Engineering Ambassadors’ network. The study also highlighted that engineering is becoming a Ambassadors and High Commissioners from around the world vessel for progress, with people seeing engineers as being were also in attendance, including His Excellency Mr Koji as influential as politicians in solving major world challenges. Tsuruoka, Japanese Ambassador to the United Kingdom, and His Overall, the industry is recognised as a respectable, prestigious Excellency Mr Robert Wood Johnson, United States Ambassador.
    [Show full text]