PERCEPTION and REALIZATION By

Total Page:16

File Type:pdf, Size:1020Kb

PERCEPTION and REALIZATION By ESSAYS ON THE NEGATIVE EXTERNALITIES OF ENERGY DEVELOPMENT: PERCEPTION AND REALIZATION by HAIYAN LIU (Under the Direction of SUSANA FERREIRA) ABSTRACT Nonrenewable energy development is known to have various negative externalities, with air and water pollution, and ecosystems deterioration being the major ones. While water pollution is mainly local and ecosystems deterioration is global, the effects of air pollution could be both local (particulate matter, sulfur dioxide) directly affecting human health and global (greenhouse gas emissions) causing climate change in the long run. To help inform energy and climate policies for a cleaner and sustainable future, this dissertation considers three separate markets to inspect public perception of climate change and other negative externalities of nonrenewable energy development. Chapter 2 investigates the reaction of energy capital markets to hurricanes. Climate change is expected to increase the intensity and frequency of extreme weather events. Provided that capital markets are rational and relatively efficient, the impact of any information that a hurricane conveys about the immediacy and severity of climate change should be reflected in short-run stock price changes. Because carbon dioxide emissions from the combustion of fossil fuels are a sizeable contributor to greenhouse gas concentrations, and their reduction is a key ingredient in any climate change mitigation strategy, I focus on energy companies. Four hurricanes are examined with an event-study approach: Hugo (1989), Andrew (1992), Katrina (2005), and Sandy (2012). Chapter 3 and Chapter 4 inspect two important external costs associated with unconventional oil and gas development. In Chapter 3, I use a difference-in-difference hedonic model to evaluate the seismic risk induced by wastewater disposal. Using data from Oklahoma County, I recover hedonic estimates of property value impacts from nearby shale gas development that vary with earthquake exposure. Chapter 4 estimates the costs of shale oil and gas development in Texas’ health care market, focusing on four short-term health conditions: circulatory, digestive, respiratory, and skin and sense organs. Using a rich individual hospital visit data from January to June 2010 and a genetic matching method, I estimate the average impact of fracking on hospitalization rate and per capita total (non-covered) costs on the four categories for the entire population and by age group. INDEX WORDS: CLIMATE CHANGE; HURRICANES; EARTHQUAKES; ENERGY; HYDRAULIC FRACTURING; SEISMICITY RISK; HEALTH CARE ESSAYS ON THE NEGATIVE EXTERNALITIES OF ENERGY DEVELOPMENT: PERCEPTION AND REALIZATION by HAIYAN LIU BS, NORTHWEST A & F UNIVERSITY, CHINA, 2009 MS, CHINESE ACADEMY OF SCIENCES, CHINA, 2012 MS, NORTH DAKOTA STATE UNIVERSITY, 2013 A Dissertation Submitted to the Graduate Faculty of The University of Georgia in Partial Fulfillment of the Requirements for the Degree DOCTOR OF PHILOSOPHY ATHENS, GEORGIA 2017 © 2017 Haiyan Liu All Rights Reserved ESSAYS ON THE NEGATIVE EXTERNALITIES OF ENERGY DEVELOPMENT: PERCEPTION AND REALIZATION by HAIYAN LIU Major Professor: Susana Ferreira Committee: Berna Karali Brady Brewer John Bergstrom Electronic Version Approved: Suzanne Barbour Dean of the Graduate School The University of Georgia August 2017 DEDICATION To my loving family iv ACKNOWLEDGEMENTS Eight years ago, I set off on an intellectual journey. The need to start this journey was fostered by the extensive poverty in rural China, the controversy on agricultural development, and the inspiring writings of many great economists. Now I appear to have come to some milestone. The latest leg has been long and, often, hard going. I have benefited to no end from the advice, encouragement, and inspiration of my advisors, Dr. Susana Ferreira, Dr. Berna Karali, Dr. Brady Brewer, and Dr. John Bergstrom. I am deeply grateful and indebted to all of them. Their guidance has pushed my thinking beyond what I could have imagined when I started my Ph.D., and my work would be radically different without their support. I owe a particular debt to Dr. Ferreira who took me under her wings at the very beginning of my doctoral journey and has shared seemingly endless amounts of her time and attention with me. I am forever thankful for her incredible patience, technical direction and life advice as I completed the entire dissertation research. Many colleagues and friends also generously took the time to help me during this dissertation process. The comments from Nicholas Magnan and Greg Colson have substantially improved and strengthened this work. I am grateful to Thomas Werth who has been tremendously helpful in producing my job market paper. Without his help on georeferencing the property data, it would have taken me a much longer period to complete the research. Oleksiy Tokovenko deserves a special mention. He has been a friend, a mentor, and an informal advisor when I walked this long and difficult path. Thank you so much for your friendship and advice, v for being so supportive, for always listening, and for helping me reach further and to strive to be more innovative and independent. I am especially thankful for all the faculty and staff of the Department of Agricultural and Applied Economics and the University of Georgia. I would like to thank the department for the financial support throughout the whole program of study and one extended semester. Finally, I would like to give my most sincere gratitude to my family for their undying love and support and for their willingness to sacrifice everything for my happiness. Thank you for having not a slightest doubt in my ability to excel. None of this would be possible without you being by my side. vi TABLE OF CONTENTS Page ACKNOWLEDGEMENTS .............................................................................................................v LIST OF TABLES ......................................................................................................................... ix LIST OF FIGURES ....................................................................................................................... xi CHAPTER 1 INTRODUCTION .........................................................................................................1 2 HURRICANES AS INFORMATION SHOCKS? ......................................................12 2.1 Abstract ............................................................................................................13 2.2 Introduction ......................................................................................................14 2.3 Method .............................................................................................................19 2.4 Data ..................................................................................................................23 2.5 Results ..............................................................................................................28 2.6 Conclusion and Discussion ..............................................................................35 2.7 References ........................................................................................................39 3 THE HOUSING MARKET IMPACTS OF WASTEWATER INJECTION INDUCED SEISMICITY RISK ..................................................................................61 3.1 Abstract ............................................................................................................62 3.2 Introduction ......................................................................................................63 3.3 Background: Injection Wells and Earthquakes in Oklahoma ..........................66 3.4 Methodology ....................................................................................................68 3.5 Data ..................................................................................................................74 vii 3.6 Results ..............................................................................................................77 3.7 Conclusion .......................................................................................................87 3.8 References ........................................................................................................90 4 THE HUMAN HEALTH CARE COST OF SHALE GAS DEVELOPMENT ........109 4.1 Abstract ..........................................................................................................110 4.2 Introduction ....................................................................................................111 4.3 Method ...........................................................................................................115 4.4 Data ................................................................................................................121 4.5 Results ............................................................................................................123 4.6 Conclusion .....................................................................................................128 4.7 References ......................................................................................................131 5 CONCLUSION ..........................................................................................................146 APPENDICES A APPENDIICES FROM CHAPTER 2 .........................................................................52 viii LIST OF TABLES Page Table 2.1: Events, Estimation and Event
Recommended publications
  • Air Quality Profile of Curtis Bay, Brooklyn and Hawkins Point, Maryland
    Air Quality Profile Of Curtis Bay, Brooklyn and Hawkins Point, Maryland © 2011, Curtis W. Wright, All Rights Reserved March 2012 Revised June 2012 About the Environmental Integrity Project The Environmental Integrity Project (EIP) is a nonpartisan, nonprofit organization dedicated to the enforcement of the nation’s anti-pollution laws and to the prevention of political interference with those laws. EIP provides objective analysis of how the failure to enforce or implement environmental laws increases pollution and harms public health. We also help local communities obtain the protection of environmental laws. Acknowledgement Environmental Integrity Project Research Analyst Robbie Orvis and Attorneys Abel Russ and Leah Kelly contributed to this report. Data Limitations EIP’s analysis of toxic emissions and potential health impacts is based on publicly available data retrieved and analyzed from EPA, state agencies and private companies. Occasionally, government data may contain errors, either because information is inaccurately reported by the regulated entities or incorrectly transcribed by government agencies. In addition, this report is based on data retrieved between August 2011 and February 2012, and subsequent data retrievals may differ slightly as some companies and agencies correct prior reports. EIP is committed to ensuring that the data we present are as accurate as possible. We will correct any errors that are verifiable. June 2012 Revision EIP revised this report in June of 2012 in order to exclude fine particulate matter (PM2.5) data recorded at the FMC Fairfield monitor in Curtis Bay during the year 2008. We did this because we were informed by the Maryland Department of the Environment that this monitor was removed in August of 2008, meaning that the average PM2.5 concentration for that year did not take into account the fall months, during which PM2.5 concentrations tend to be lower than in the summer.
    [Show full text]
  • Application of the Toxics Release Inventory to Nanomaterials
    Project on Emerging Nanotechnologies FEBRUARY 2008 PROJECT ON EMERGING NANOTECHNOLOGIES RESEARCH BRIEF Application of the Toxics Release PEN BRIEF No. 2 Inventory to Nanomaterials by Linda K. Breggin and Read D. Porter Background This research brief examines whether the legal authorities that establish the Toxics Release Inventory (TRI) in the Emergency Planning and Community-Right- to-Know Act (EPCRA)1 could be applied to nanomaterials. Although several organizations have published analyses of whether specifi c environmental laws could be used to regulate nanomaterials,2 none of these reviews has examined EPCRA or TRI in any detail. Examination of the principal federal right-to-know law seems opportune for several reasons. First, the only law that specifi cally addresses environmental, health, and safety of nanomaterials, enacted in 2006 by the City of Berkeley, California, takes a “right-to-know” approach that requires facilities that manufacture or use “manufactured nanoparticles” to disclose both the known toxicology of those materials and the facility’s plan for material handling, monitoring, containment, disposal, inventory tracking, release prevention, and mitigation. The City’s reporting guidance document expands on the ordinance by requiring disclosure of inhalation, dermal, oral, geno-, and reproductive toxicity information, as expressed through published research.3 The City of Cambridge, Massachusetts is currently considering Project on Emerging Nanotechnologies the adoption of a similar ordinance.4 is supported by Second, several
    [Show full text]
  • Validation of a Geospatial Liquefaction Model for Noncoastal Regions Including Nepal
    USGS Award G16AP00014 Validation of a Geospatial Liquefaction Model for Noncoastal Regions Including Nepal Laurie G. Baise and Vahid Rashidian Department of Civil and Environmental Engineering Tufts University 200 College Ave Medford, MA 02155 617-627-2211 617-627-2994 [email protected] March 2016 – September 2017 Validation of a Geospatial Liquefaction Model for Noncoastal Regions Including Nepal Laurie G. Baise and Vahid Rashidian Civil and Environmental Engineering Department, Tufts University, Medford, MA. 02155 1. Abstract Soil liquefaction can lead to significant infrastructure damage after an earthquake due to lateral ground movements and vertical settlements. Regional liquefaction hazard maps are important in both planning for earthquake events and guiding relief efforts. New liquefaction hazard mapping techniques based on readily available geospatial data allow for an integration of liquefaction hazard in loss estimation platforms such as USGS’s PAGER system. The global geospatial liquefaction model (GGLM) proposed by Zhu et al. (2017) and recommended for global application results in a liquefaction probability that can be interpreted as liquefaction spatial extent (LSE). The model uses ShakeMap’s PGV, topography-based Vs30, distance to coast, distance to river and annual precipitation as explanatory variables. This model has been tested previously with a focus on coastal settings. In this paper, LSE maps have been generated for more than 50 earthquakes around the world in a wide range of setting to evaluate the generality and regional efficacy of the model. The model performance is evaluated through comparisons with field observation reports of liquefaction. In addition, an intensity score for easy reporting and comparison is generated for each earthquake through the summation of LSE values and compared with the liquefaction intensity inferred from the reconnaissance report.
    [Show full text]
  • 2018 Toxics Release Inventory National Analysis
    TRI National Analysis 2018 www.epa.gov/trinationalanalysis/ February 2020 Introduction to the 2018 TRI National Analysis Industries and businesses in the United States (U.S.) use chemicals to make the products we depend on, such as pharmaceuticals, computers, paints, clothing, and automobiles. While the majority of chemicals included on the Toxics Release Inventory (TRI) chemical list are managed by industrial facilities in ways that minimize releases into the environment, releases still occur as part of their normal business operations. It is your right to know what TRI chemicals are being used in your community, and how they are managed TRI Reporting including how much is released into the environment, and Under the Emergency Planning whether such quantities are increasing or decreasing over and Community Right-to-Know time. Act (EPCRA) and the Pollution Prevention Act (PPA), facilities The TRI tracks the annual management of certain chemicals must report details about their based on the information reported to EPA by facilities in U.S. pollution prevention and waste industry sectors such as manufacturing, metal mining, management activities, including releases, of TRI-listed electric utilities, and hazardous waste management. The data chemicals for the prior calendar reported to TRI are compiled in a publicly available database year to EPA by July 1 of each maintained by EPA. For calendar year 2018, more than year. 21,000 facilities submitted TRI data to EPA. Each year, EPA prepares and publishes the TRI National Analysis. In support of EPA’s mission to protect human health and the environment, the TRI National Analysis summarizes recently submitted TRI data, explores data trends, and interprets the findings.
    [Show full text]
  • Improving Environmental Performance Assessment a Comparative Analysis of Weighting Methods Used to Evaluate Chemical Release Inventories
    Join an e-mail alert list and receive the latest JIE table of contents and news, visit: http://mitpress.mit.edu/jie/e-mail To subscribe to JIE, visit: http://mitpress.mit.edu/jie_subscribe This article is provided courtesy of The MIT Press. RESEARCH AND ANALYSIS Improving Environmental Performance Assessment A Comparative Analysis of Weighting Methods Used to Evaluate Chemical Release Inventories Michael W. Toffel and Julian D. Marshall Keywords Summary emissions environmental health Managers, management scholars, regulators, nonprofit orga- environmental management nizations, and the media are increasingly using emissions in- indicators ventory data to measure organizations’ environmental perfor- metrics mance. Whereas some analysts use total mass emitted, others toxic release inventory (TRI) have applied one or more of the growing number of toxicity- weighting databases aimed at predicting the environmental and health impacts of emissions. Little research is available to guide analysts in selecting among these databases. This article compares 13 methods in terms of their sophistication, com- plexity, and comprehensiveness. Seven of these methods are then evaluated as to their usefulness in weighting emissions data from the U.S. Environmental Protection Agency’s (U.S. EPA’s) toxic release inventory, and three pair-wise compari- sons are conducted. We recommend the U.S. EPA’s Risk Screening Environmental Indicators for estimating impacts to human health. We recommend the Tool for the Reduction and Assessment of Chemical Impacts for estimating impacts to human health and the environment. Address correspondence to: Michael W. Toffel Haas School of Business University of California 545 Student Services Building #1900 Berkeley, CA 94720 USA ͗[email protected]͘ ᭧ 2004 by the Massachusetts Institute of Technology and Yale University Volume 8, Number 1–2 http://mitpress.mit.edu/jie Journal of Industrial Ecology 143 RESEARCH AND ANALYSIS Introduction ground injection when their amounts exceed a minimum reporting threshold (U.S.
    [Show full text]
  • FY 2021 EPA Budget in Brief
    FY 2021 EPA Budget in Brief United States Environmental Protection Agency www.epa.gov United States Environmental Protection Agency Office of the Chief Financial Officer (2710A) Publication Number: EPA-190-S-20-002 February 2020 www.epa.gov Printed with vegetable-oil-based inks and is 100-percent postconsumer recycled material, chlorine-free-processed and recyclable. Cover Photo: Joseph Eugene Bailey – Blackwater Falls State Park, West Virginia Budget in Brief Table of Contents PAGE Forward.......................................................................................................................................................1 Overview .....................................................................................................................................................3 Summary Resource Charts EPA’s Budget by Goal............................................................................................................................15 EPA’s Budget by Appropriation ............................................................................................................17 EPA’s Resource History ........................................................................................................................19 EPA’s Resources by Major Category.....................................................................................................21 Goal Overviews Goal 1: A Cleaner, Healthier Environment...........................................................................................23 Goal 2:
    [Show full text]
  • Environmental Protection in the Information Age
    ARTICLES ENVIRONMENTAL PROTECTION IN THE INFORMATION AGE DANIEL C. ESTy* Information gaps and uncertaintieslie at the heart of many persistentpollution and natural resource management problems. This article develops a taxonomy of these gaps and argues that the emerging technologies of the Information Age will create new gap-filling options and thus expand the range of environmental protection strategies. Remote sensing technologies, modern telecommunications systems, the Internet, and computers all promise to make it much easier to identify harms, track pollution flows and resource consumption, and measure the resulting impacts. These developments will make possible a new structure of institutionalresponses to environmental problems including a more robust market in environmental prop- erty rights, expanded use of economic incentives and market-based regulatorystrat- egies, improved command-and-control regulation, and redefined social norms of environmental stewardship. Likewise, the degree to which policies are designed to promote information generation will determine whether and how quickly new insti- tutional approaches emerge. While some potential downsides to Information Age environmental protection remain, the promise of a more refined, individually tai- lored, and precise approach to pollution control and natural resourcemanagement looks to be significant. INTRODUCTION ................................................. 117 I. DEFINING THE ROLE OF INFORMATION IN THE ENVIRONMENTAL REALM ............................... 121 A. Information
    [Show full text]
  • Green Energy to Sustainability: Strategies for Global Industries, First Edition
    k 111 6 The Environmental Impact of Pollution Prevention and Other Sustainable Development Strategies Implemented by the Automotive Manufacturing Industry Sandra D. Gaona1, Cheryl Keenan2, Cyril Vallet3, Lawrence Reichle3 and Stephen C. DeVito1 1Toxics Release Inventory Program (mail code 7410M), United States Environmental Protection Agency, Washington, DC, 20460, USA 2Eastern Research Group Inc., Lexington, MA, 02421, USA 3Abt Associates Inc., Cambridge, MA, 02138, USA CHAPTER MENU Introduction, 111 Overview of the Automotive Manufacturing Industry, 112 Chemicals and Chemical Waste in Automotive Manufacturing, 114 Pollution Prevention in Automotive Manufacturing, 121 Perspectives, 131 k Disclaimer, 134 k References, 134 6.1 Introduction This chapter characterizes chemical release and other waste management quantities as well as pollution prevention activities carried out by the US automotive manufacturing industry over the 2005–2015 time-frame.1 Analysis of information available from federal databases such as the US Environmental Protection Agency’s (EPA’s) Toxics Release Inventory (TRI) and industry reports reveals the corresponding environmental impacts, and identifies opportunities for continued progress. Throughout this chapter several terms are used that may not be familiar to the reader. These terms are defined below. A ‘TRI chemical’ is a chemical that is included on the Toxics Release Inventory (TRI) list of chemicals, as established under Section 313(d)(2) of the Emergency Planning and Com- munity Right-to-Know Act. Chemicals
    [Show full text]
  • On the Potential for Induced Seismicity at the Cavone Oilfield: Analysis of Geological and Geophysical Data, and Geomechanical Modeling
    July, 2014 ON THE POTENTIAL FOR INDUCED SEISMICITY AT THE CAVONE OILFIELD: ANALYSIS OF GEOLOGICAL AND GEOPHYSICAL DATA, AND GEOMECHANICAL MODELING BY Luciana Astiz - University of California San Diego James H. Dieterich - University of California Riverside Cliff Frohlich - University of Texas at Austin Bradford H. Hager - Massachusetts Institute of Technology Ruben Juanes - Massachusetts Institute of Technology John H. Shaw –Harvard University 1 July, 2014 TABLE OF CONTENTS EXECUTIVE SUMMARY ……………………………………………………….... 5 INTRODUCTION ………………………………………………………………….9 1. TECTONIC FRAMEWORK OF THE EMILIA-ROMAGNA REGION .................... 11 1.1 SEISMOTECTONIC SETTING ............................................................................................................................ 11 1.1.1 HISTORICAL SEISMICITY IN THE EMILIA‐ROMAGNA REGION .................................................................... 12 1.2 CAVONE STRUCTURE ....................................................................................................................................... 19 1.3 GEOLOGIC EVIDENCE FOR TECTONIC ACTIVITY OF STRUCTURES IN THE FERRARESE‐ROMAGNOLO ARC ..................................................................................................................... 24 1.4 SEISMOTECTONIC ANALYSIS .......................................................................................................................... 26 1.5 GPS CONSTRAINTS ON TECTONICS — PRE‐EARTHQUAKE REGIONAL DEFORMATION RATES ............ 30 1.6 CONCLUSIONS OF
    [Show full text]
  • Corporate Codes of Conduct: Is Common Environmental Content Feasible?
    Corporate Codes of Conduct: Is Common Environmental Content Feasible? Carolyn Fischer, Ian Parry, Francisco Aguilar, and Puja Jawahar, Conducted for the Foreign Investment Advisory Service of the World Bank Group March 2005 • Discussion Paper 05–09 Resources for the Future 1616 P Street, NW Washington, D.C. 20036 Telephone: 202–328–5000 Fax: 202–939–3460 Internet: http://www.rff.org © 2005 Resources for the Future. All rights reserved. No portion of this paper may be reproduced without permission of the authors. Discussion papers are research materials circulated by their authors for purposes of information and discussion. They have not necessarily undergone formal peer review or editorial treatment. Corporate Codes of Conduct: Is Common Environmental Content Feasible? Carolyn Fischer, Ian Parry, Francisco Aguilar, and Puja Jawahar for the Foreign Investment Advisory Service of the World Bank Group Abstract In a developing country context, a policy to promote adoption of common environmental content for corporate codes of conduct (COCs) aspires to meaningful results on two fronts. First, adherence to COC provisions should offer economic benefits that exceed the costs of compliance; i.e., companies must receive a price premium, market expansion, efficiency gains, subsidized technical assistance, or some combination of these benefits in return for meeting the requirements. Second, compliance should produce significant improvements in environmental outcomes; i.e., the code must impose real requirements, and monitoring and enforcement must offer sufficient incentives to prevent evasion. With those goals in mind, we explore options for establishing common environmental content in voluntary COCs. Because the benefits of a COC rest on its ability to signal information, we ground our analysis in a review of experiences with a broad range of voluntary (and involuntary) information-based programs: not only existing corporate COCs, but also the International Organization for Standardization (ISO) family of standards, ecolabels, and information disclosure programs.
    [Show full text]
  • The Housing Market Impacts of Wastewater Injection Induced Seismicity Risk
    The Housing Market Impacts of Wastewater Injection Induced Seismicity Risk Haiyan Liu Ph.D. Candidate Department of Agricultural and Applied Economics University of Georgia [email protected] Susana Ferreira Associate Professor Department of Agricultural and Applied Economics University of Georgia [email protected] Brady Brewer Assistant Professor Department of Agricultural and Applied Economics University of Georgia [email protected] Selected Paper prepared for presentation at the Agricultural & Applied Economics Association’s 2016 AAEA Annual Meeting, Boston, MA, July 31- August 2, 2016. Copyright 2016 by Haiyan Liu, Susana Ferreira, and Brady Brewer. All rights reserved. Readers may make verbatim copies of this document for non-commercial purposes by any means, provided this copyright notice appears on all such copies. Abstract Using data from Oklahoma County, an area severely affected by the increased seismicity associated with injection wells, we recover hedonic estimates of property value impacts from nearby shale oil and gas development that vary with earthquake risk exposure. Results suggest that the 2011 Oklahoma earthquake in Prague, OK, and generally, earthquakes happening in the county and the state have enhanced the perception of risks associated with wastewater injection but not shale gas production. This risk perception is driven by injection wells within 2 km of the properties. Keywords: Earthquake, Wastewater Injection, Oil and Gas Production, Housing Market, Oklahoma JEL classification: L71, Q35, Q54, R31 1. Introduction The injection of fluids underground has been known to induce earthquakes since the mid-1960s (Healy et al. 1968; Raleigh et al. 1976). However, few cases were documented in the United States until 2009.
    [Show full text]
  • Natural Hazards on Whidbey Island
    Natural Hazards on Whidbey Island Protect and prepare your family and your home — a guide for surviving disasters caused by earthquakes, landslides, wildland fires, tsunamis, and windstorms Island County, Washington Department of Emergency Management Digital elevation map of Island County (Jessica Larson) ii Dealing with Natural Hazards on Whidbey Island This is a guide to the natural hazards that could affect you, your family, and your property. It offers a brief description of the ways you can prepare your home and family to survive disasters caused by earthquakes, landslides, wildland fires, tsunamis, and windstorms. Power outages caused by windstorms during the winter of 2006-2007 — as well as numerous other events in prior and more recent years — have made most residents of Whidbey Island amply aware of the difficulties of being without light, heat, water, and the ability to prepare meals or use health-related equipment. Although most of us have experienced being without power for less than a week, we have still been able to travel to a grocery, a hospital, or the mainland. Friends across the island could help each other. But what if there were a major natural disaster that cut off the island from the mainland and we were entirely on our own for two or three weeks? A truly large storm or an earthquake could destroy or damage docks at the Clinton and Coupeville ferries systems and seriously compromise footings of the Deception Pass bridge, disrupting delivery of food, water, fuel, emergency services, and many other vitally necessary elements of our Island life. These realities are even more evident recently as we have had record rains, experienced more landslides, and observed the damage suffered by the islands of New Zealand and Japan.
    [Show full text]