A Primitive Pathway of Porphyrin Biosynthesis and Enzymology in Desulfovibrio Vulgaris

Total Page:16

File Type:pdf, Size:1020Kb

A Primitive Pathway of Porphyrin Biosynthesis and Enzymology in Desulfovibrio Vulgaris Proc. Natl. Acad. Sci. USA Vol. 95, pp. 4853–4858, April 1998 Biochemistry A primitive pathway of porphyrin biosynthesis and enzymology in Desulfovibrio vulgaris TETSUO ISHIDA*, LING YU*, HIDEO AKUTSU†,KIYOSHI OZAWA†,SHOSUKE KAWANISHI‡,AKIRA SETO§, i TOSHIRO INUBUSHI¶, AND SEIYO SANO* Departments of *Biochemistry and §Microbiology and ¶Division of Biophysics, Molecular Neurobiology Research Center, Shiga University of Medical Science, Seta, Ohtsu, Shiga 520-21, Japan; †Department of Bioengineering, Faculty of Engineering, Yokohama National University, 156 Tokiwadai, Hodogaya-ku, Yokohama 240, Japan; and ‡Department of Public Health, Graduate School of Medicine, Kyoto University, Sakyou-ku, Kyoto 606, Japan Communicated by Rudi Schmid, University of California, San Francisco, CA, February 23, 1998 (received for review March 15, 1998) ABSTRACT Culture of Desulfovibrio vulgaris in a medium billion years ago (3). Therefore, it is important to establish the supplemented with 5-aminolevulinic acid and L-methionine- biosynthetic pathway of porphyrins in D. vulgaris, not only methyl-d3 resulted in the formation of porphyrins (sirohydro- from the biochemical point of view, but also from the view- chlorin, coproporphyrin III, and protoporphyrin IX) in which point of molecular evolution. In this paper, we describe a the methyl groups at the C-2 and C-7 positions were deuter- sequence of intermediates in the conversion of uroporphy- ated. A previously unknown hexacarboxylic acid was also rinogen III to coproporphyrinogen III and their stepwise isolated, and its structure was determined to be 12,18- enzymic conversion. didecarboxysirohydrochlorin by mass spectrometry and 1H NMR. These results indicate a primitive pathway of heme biosynthesis in D. vulgaris consisting of the following enzy- MATERIALS AND METHODS matic steps: (i) methylation of the C-2 and C-7 positions of Materials. Uroporphyrin III octamethyl ester, copropor- uroporphyrinogen III to form precorrin-2 (dihydrosirohydro- phyrin III tetramethyl ester, and protoporphyrin IX dimethyl chlorin); (ii) decarboxylation of acetate groups at the C-12 ester were obtained from Sigma. ALA was obtained from and C-18 positions of precorrin-2 to form 12,18-didecar- Wako Pure Chemical (Kyoto). Deuterated L-methionine- boxyprecorrin-2; (iii) elimination of acetate groups of the C-2 methyl-d3 was purchased from Cambridge Isotope Laborato- and C-7 positions of 12,18-didecarboxyprecorrin-2 to form ries (Cambridge, MA). coproporphyrinogen III; and (iv) conversion of coproporphy- Culture Conditions. D. vulgaris Miyazaki F and Hildenbor- rinogen III to protoporphyrin IX via protoporphyrinogen IX. ough cells were cultured anaerobically on Postgate medium C We isolated the following three enzymatic activities involved in (4) containing ALA (10 mgyliter) and L-methionine (0.2 steps i–iii from the soluble fraction of the cells by anion- gyliter) for 18 h at 37°C. exchange chromatography: S-adenosyl-L-methionine:uropor- Isolation and Characterization of Porphyrins. The bacterial phyrinogen III methyltransferase, precorrin-2 12,18-acetate cells were collected by centrifuging the culture medium at decarboxylase, and 12,18-didecarboxyprecorrin-2 2,7- 11,000 3 g. The pellets were resuspended in 5 vol of l0 mM decarboxymethylase; all enzymic products were converted TriszHCl, pH 7.3, containing 5 mM dithiothreitol (DTT). The into autooxidized methyl esters and analyzed by thin-layer chromatography, UV–visible (UV-VIS) absorption, and mass mixture was sonicated with 10–15 1-min bursts at 0°C. After DNase I (Sigma) was added, the mixture was centrifuged at spectrometry. The enzymatic reactions in D. vulgaris shed new 3 light on porphyrin biosynthesis at an early stage in the 45,000 g for1hat4°C. The supernatant and the pellet were evolution of prokaryotes. regarded as the soluble and cell membrane fractions, respec- tively. Porphyrins were extracted from the soluble and the mem- Porphyrin biosynthesis in aerobic organisms has been exten- brane fractions with 10–20 vol of 0.1 M HClyacetone and 0.5 sively investigated and the pathway is well established (1). M HClyacetone, respectively, according to a method described Although the source of 5-aminolevulinic acid (ALA) can be previously (5, 6). The HClyacetone solution was evaporated to either glycine plus succinyl-CoA or glutamate, depending on the species, the biosynthetic pathway from ALA to protopor- dryness under reduced pressure, and the solid was subjected to phyrin IX is common to all aerobic organisms so far examined. methyl esterification. An efficient way to prepare methyl esters of siro- and siro-type hydrochlorin without formation of However, Akutsu, Park, and Sano discovered in 1993 that the m methyl groups at the C-2 and C-7 positions of heme c in lactone is as follows. The extracted porphyrins (about 1 mol) were kept in one arm of a Thunberg-type tube and anhydrous cytochrome c3 from the obligate anaerobe Desulfovibrio vul- garis Miyazaki F arise, not from C-2 of ALA, as in the HCl in methanol (5–7%, 5–7 ml) containing 50 mg of pow- established pathway, but from the methyl group of L- dered anhydrous FeSO4 was kept in the other arm of the tube. methionine (2). This finding suggested that an alternative The system was flushed slowly with nitrogen and the contents pathway from uroporphyrinogen III to protoheme operates in were mixed, followed by the passage of nitrogen gas into the this sulfate-reducing bacterium. solution at a very fast flow for 2 min at 50°C. After the tube Sulfate-reducing bacteria belonging to the genus Desulfo- was closed, the mixture was kept overnight at room temper- vibrio are included among the domain eubacteria and are ature. The mixture was then neutralized with saturated sodium considered to be closely related phylogenetically to the earliest acetate and the ester was extracted into ethyl acetate, washed living organisms, which appeared on earth approximately 3 Abbreviations: ALA, 5-aminolevulinic acid; LDIMS, laser desorption The publication costs of this article were defrayed in part by page charge ionization mass spectrometry; LSIMS, liquid secondary ion mass spectrometry; UV-VIS, UV-visible; SAM, S-adenosyl-L-methionine; payment. This article must therefore be hereby marked ‘‘advertisement’’ in SUMT, S-adenosyl-L-methionine:uroporphyrinogen III methyltrans- accordance with 18 U.S.C. §1734 solely to indicate this fact. ferase. i © 1998 by The National Academy of Sciences 0027-8424y98y954853-6$2.00y0 To whom reprint requests should be addressed. e-mail: ssano@mbox. PNAS is available online at http:yywww.pnas.org. kyoto-inet.or.jp. 4853 Downloaded by guest on September 29, 2021 4854 Biochemistry: Ishida et al. Proc. Natl. Acad. Sci. USA 95 (1998) with water, dried over sodium sulfate, and evaporated to ylase activity was measured in a final volume of 2 ml containing dryness under reduced pressure. 0.1 M TriszHCl buffer at pH 7.7, 0.1 M NaCl, 5 mM DTT, 0.5 For purification of porphyrin esters, preparative TLC was mM S-adenosyl-L-methionine (SAM), 5 mM uroporphyrino- performed on silica gel plates (Kieselgel 60, Merck) with gen III [prepared by the reduction of uroporphyrin III with benzeneyethyl acetateymethanol (85:12:3, volyvol) as an sodium amalgam (7)], and the enzyme solution. The same eluent. The methyl esters of porphyrins were also separated by experiment was done in the absence of SAM. The mixture was HPLC using a YMC porous silica column (s-5 120A SIL, incubated anaerobically in the dark at 37°C for 1–3 h, and the Yamamura Chemical Laboratories, Kyoto; 2 3 25 cm) or a reaction was stopped by the addition of 20 ml of HClyacetone Cosmosil 5SL column (Nacalai Tesque, Kyoto; 4.6 3 150 mm). (0.5 M) at 0°C. After being centrifuged, the supernatant was The various porphyrin esters were eluted with n-heptaneyethyl completely dried under reduced pressure. The extracted por- acetateydichloromethaneymethanol (60:25:15:2.7, volyvol) phyrins were subjected to methyl esterification and separated and were detected by monitoring fluorescence at 600 nm with by TLC. SUMT activity was determined by the amount of excitation at 380 nm (siro- or siro-type porphyrins) or fluo- sirohydrochlorin octamethyl ester recovered from the reaction rescence at 620 nm with excitation at 400 nm (uroporphyrin, mixtures. coproporphyrin, protoporphyrin, etc.) by means of a Shimadzu (ii) Precorrin-2 decarboxylase assay. Precorrin-2 decarboxyl- RF-535 fluorescence detector. ase catalyzes the conversion of precorrin-2 to 12,18- Absorption spectra were recorded by a Shimadzu UV- didecarboxyprecorrin-2. Because precorrin-2 is extremely sen- 3100PC UV-VIS-NIR scanning spectrophotometer or a Shi- sitive to oxidation and the reduction of sirohydrochlorin with madzu UV-2200 spectrophotometer. Laser desorption ioniza- sodium amalgam resulted in a compound different from tion mass spectrometry (LDIMS) was performed on a Shi- precorrin-2, the precorrin-2 was generated from uroporphy- madzuyKratos Kompact MALDI III laser ionization time-of- rinogen III and SAM by using partially purified SUMT. Thus, flight mass spectrometer equipped with a nitrogen laser (337 the decarboxylase activity was anaerobically measured in a nm). Ions were accelerated to a kinetic energy of 5 keV and final volume of 2 ml containing 0.1 M TriszHCl at pH 7.7, 0.1 were analyzed in the positive linear mode of operation. The M NaCl, 5 mM DTT, 0.5 mM SAM, 0.5 mM NADH, 0.5 mM laser power density was 106 Wzcm22. High-resolution liquid NADPH, 5 mM uroporphyrinogen III, partially purified secondary ion mass spectrometry (LSIMS) was performed SUMT, and the enzyme solution. As a control, the same with a ShimadzuyKratos Concept I.H. instrument. 1H NMR experiment was done in the absence of SAM. After incubation, spectra were obtained with a JEOL JNM-GX-270 NMR the porphyrins were extracted and subjected to methyl ester- spectrometer. ification as described for SUMT assay. The decarboxylase Preparation of Enzymes.
Recommended publications
  • Metabolic Versatility of the Nitrite-Oxidizing Bacterium Nitrospira
    bioRxiv preprint doi: https://doi.org/10.1101/2020.07.02.185504; this version posted July 4, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 1 Metabolic versatility of the nitrite-oxidizing bacterium Nitrospira 2 marina and its proteomic response to oxygen-limited conditions 3 Barbara Bayer1*, Mak A. Saito2, Matthew R. McIlvin2, Sebastian Lücker3, Dawn M. Moran2, 4 Thomas S. Lankiewicz1, Christopher L. Dupont4, and Alyson E. Santoro1* 5 6 1 Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, 7 CA, USA 8 2 Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, 9 Woods Hole, MA, USA 10 3 Department of Microbiology, IWWR, Radboud University, Nijmegen, The Netherlands 11 4 J. Craig Venter Institute, La Jolla, CA, USA 12 13 *Correspondence: 14 Barbara Bayer, Department of Ecology, Evolution and Marine Biology, University of California, 15 Santa Barbara, CA, USA. E-mail: [email protected] 16 Alyson E. Santoro, Department of Ecology, Evolution and Marine Biology, University of 17 California, Santa Barbara, CA, USA. E-mail: [email protected] 18 19 Running title: Genome and proteome of Nitrospira marina 20 21 Competing Interests: The authors declare that they have no conflict of interest. 22 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.07.02.185504; this version posted July 4, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • Electron Carriers and Energy Conservation in Mitochondrial Respiration
    ChemTexts (2019) 5:9 https://doi.org/10.1007/s40828-019-0085-4 LECTURE TEXT Electron carriers and energy conservation in mitochondrial respiration Rona R. Ramsay1 Received: 22 January 2019 / Accepted: 5 April 2019 © The Author(s) 2019 Abstract The chemical system for the transformation of energy in eukaryotic mitochondria has engaged researchers for almost a cen‑ tury. This summary of four lectures on the electron transport system in mitochondria is an introduction to the mammalian electron transport chain for those unfamiliar with mitochondrial oxidative phosphorylation. It gives references chosen to refect the history of the feld and to highlight some of the recent advances in bioenergetics. The electron transport chain converts the energy that is released as electrons are passed to carriers of progressively higher redox potential into a proton gradient across the membrane that drives adenosine triphosphate (ATP) synthesis. The electron carriers include favins, iron–sulfur centers, heme groups, and copper to divide the redox change from reduced nicotinamide adenine dinucleotide (NADH) at −320 mV to oxygen at +800 mV into steps that allow conversion and conservation of the energy released in three major complexes (Complexes I, III, and IV) by moving protons across the mitochondrial inner membrane. The three processes of proton pumping are now known after the successful determination of the structures of the large membrane protein complexes involved. Mitochondria and their proteins play roles not only in the production of ATP but also in cell survival, for which energy supply is the key. Keywords Mitochondria · Oxidative phosphorylation · Proton gradient · Redox potential · Flavin · Heme · Iron–sulfur cluster · Respiratory complexes Introduction can drive ATP synthesis or transport systems.
    [Show full text]
  • Scheller, Silvan; Ermler, Ulrich; Shima, Seigo Catabolic Pathways and Enzymes Involved in Anaerobic Methane Oxidation
    This is an electronic reprint of the original article. This reprint may differ from the original in pagination and typographic detail. Scheller, Silvan; Ermler, Ulrich; Shima, Seigo Catabolic Pathways and Enzymes Involved in Anaerobic Methane Oxidation Published in: Anaerobic Utilization of Hydrocarbons, Oils, and Lipids Published: 01/01/2017 Document Version Peer reviewed version Published under the following license: Unspecified Please cite the original version: Scheller, S., Ermler, U., & Shima, S. (2017). Catabolic Pathways and Enzymes Involved in Anaerobic Methane Oxidation. In M. Boll (Ed.), Anaerobic Utilization of Hydrocarbons, Oils, and Lipids (Handbook of Hydrocarbon and Lipid Microbiology). https://doi.org/10.1007/978-3-319-33598-8_3-1 This material is protected by copyright and other intellectual property rights, and duplication or sale of all or part of any of the repository collections is not permitted, except that material may be duplicated by you for your research use or educational purposes in electronic or print form. You must obtain permission for any other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not an authorised user. Powered by TCPDF (www.tcpdf.org) Catabolic Pathways and Enzymes Involved in the Anaerobic Oxidation of Methane (revised: Jan. 31st 2017) Silvan Scheller, Ulrich Ermler and Seigo Shima Prof. Dr. Silvan Scheller; Aalto University, Kemistintie 1; 02150 Espoo; Finland. [email protected] PD Dr. Ulrich Ermler; Max-Planck-Institut für Biophysik, Max-von-Laue-Straße 3; 60438 Frankfurt am Main; Deutschland. [email protected] Dr. Seigo Shima; Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch- Strasse 10; 35043 Marburg; Deutschland.
    [Show full text]
  • Characterisation, Classification and Conformational Variability Of
    Characterisation, Classification and Conformational Variability of Organic Enzyme Cofactors Julia D. Fischer European Bioinformatics Institute Clare Hall College University of Cambridge A thesis submitted for the degree of Doctor of Philosophy 11 April 2011 This dissertation is the result of my own work and includes nothing which is the outcome of work done in collaboration except where specifically indicated in the text. This dissertation does not exceed the word limit of 60,000 words. Acknowledgements I would like to thank all the members of the Thornton research group for their constant interest in my work, their continuous willingness to answer my academic questions, and for their company during my time at the EBI. This includes Saumya Kumar, Sergio Martinez Cuesta, Matthias Ziehm, Dr. Daniela Wieser, Dr. Xun Li, Dr. Irene Pa- patheodorou, Dr. Pedro Ballester, Dr. Abdullah Kahraman, Dr. Rafael Najmanovich, Dr. Tjaart de Beer, Dr. Syed Asad Rahman, Dr. Nicholas Furnham, Dr. Roman Laskowski and Dr. Gemma Holli- day. Special thanks to Asad for allowing me to use early development versions of his SMSD software and for help and advice with the KEGG API installation, to Roman for knowing where to find all kinds of data, to Dani for help with R scripts, to Nick for letting me use his E.C. tree program, to Tjaart for python advice and especially to Gemma for her constant advice and feedback on my work in all aspects, in particular the chemistry side. Most importantly, I would like to thank Prof. Janet Thornton for giving me the chance to work on this project, for all the time she spent in meetings with me and reading my work, for sharing her seemingly limitless knowledge and enthusiasm about the fascinating world of enzymes, and for being such an experienced and motivational advisor.
    [Show full text]
  • Cheminformatics for Genome-Scale Metabolic Reconstructions
    CHEMINFORMATICS FOR GENOME-SCALE METABOLIC RECONSTRUCTIONS John W. May European Molecular Biology Laboratory European Bioinformatics Institute University of Cambridge Homerton College A thesis submitted for the degree of Doctor of Philosophy June 2014 Declaration This thesis is the result of my own work and includes nothing which is the outcome of work done in collaboration except where specifically indicated in the text. This dissertation is not substantially the same as any I have submitted for a degree, diploma or other qualification at any other university, and no part has already been, or is currently being submitted for any degree, diploma or other qualification. This dissertation does not exceed the specified length limit of 60,000 words as defined by the Biology Degree Committee. This dissertation has been typeset using LATEX in 11 pt Palatino, one and half spaced, according to the specifications defined by the Board of Graduate Studies and the Biology Degree Committee. June 2014 John W. May to Róisín Acknowledgements This work was carried out in the Cheminformatics and Metabolism Group at the European Bioinformatics Institute (EMBL-EBI). The project was fund- ed by Unilever, the Biotechnology and Biological Sciences Research Coun- cil [BB/I532153/1], and the European Molecular Biology Laboratory. I would like to thank my supervisor, Christoph Steinbeck for his guidance and providing intellectual freedom. I am also thankful to each member of my thesis advisory committee: Gordon James, Julio Saez-Rodriguez, Kiran Patil, and Gos Micklem who gave their time, advice, and guidance. I am thankful to all members of the Cheminformatics and Metabolism Group.
    [Show full text]
  • A Primitive Pathway of Porphyrin Biosynthesis and Enzymology in Desulfovibrio Vulgaris
    Proc. Natl. Acad. Sci. USA Vol. 95, pp. 4853–4858, April 1998 Biochemistry A primitive pathway of porphyrin biosynthesis and enzymology in Desulfovibrio vulgaris TETSUO ISHIDA*, LING YU*, HIDEO AKUTSU†,KIYOSHI OZAWA†,SHOSUKE KAWANISHI‡,AKIRA SETO§, i TOSHIRO INUBUSHI¶, AND SEIYO SANO* Departments of *Biochemistry and §Microbiology and ¶Division of Biophysics, Molecular Neurobiology Research Center, Shiga University of Medical Science, Seta, Ohtsu, Shiga 520-21, Japan; †Department of Bioengineering, Faculty of Engineering, Yokohama National University, 156 Tokiwadai, Hodogaya-ku, Yokohama 240, Japan; and ‡Department of Public Health, Graduate School of Medicine, Kyoto University, Sakyou-ku, Kyoto 606, Japan Communicated by Rudi Schmid, University of California, San Francisco, CA, February 23, 1998 (received for review March 15, 1998) ABSTRACT Culture of Desulfovibrio vulgaris in a medium billion years ago (3). Therefore, it is important to establish the supplemented with 5-aminolevulinic acid and L-methionine- biosynthetic pathway of porphyrins in D. vulgaris, not only methyl-d3 resulted in the formation of porphyrins (sirohydro- from the biochemical point of view, but also from the view- chlorin, coproporphyrin III, and protoporphyrin IX) in which point of molecular evolution. In this paper, we describe a the methyl groups at the C-2 and C-7 positions were deuter- sequence of intermediates in the conversion of uroporphy- ated. A previously unknown hexacarboxylic acid was also rinogen III to coproporphyrinogen III and their stepwise isolated, and its structure was determined to be 12,18- enzymic conversion. didecarboxysirohydrochlorin by mass spectrometry and 1H NMR. These results indicate a primitive pathway of heme biosynthesis in D. vulgaris consisting of the following enzy- MATERIALS AND METHODS matic steps: (i) methylation of the C-2 and C-7 positions of Materials.
    [Show full text]
  • Engineered Holocytochrome C Synthases That Biosynthesize New Cytochromes C
    Engineered holocytochrome c synthases that biosynthesize new cytochromes c Deanna L. Mendeza, Shalon E. Babbitta, Jeremy D. Kinga, John D’Alessandroa, Michael B. Watsonb, Robert E. Blankenshipa, Liviu M. Miricab, and Robert G. Kranza,1 aDepartment of Biology, Washington University in St. Louis, St. Louis, MO 63130; and bDepartment of Chemistry, Washington University in St. Louis, St. Louis, MO 63130 Edited by Robert Haselkorn, University of Chicago, Chicago, IL, and approved January 20, 2017 (received for review September 27, 2016) Cytochrome c (cyt c), required for electron transport in mitochon- Thus, these are lower in steady-state levels of HCCS/cyt c complex dria, possesses a covalently attached heme cofactor. Attachment is (Fig. 1, steps 2 and 3) but yield higher levels of released and folded catalyzed by holocytochrome c synthase (HCCS), leading to two cyt c product. thioether bonds between heme and a conserved CXXCH motif of Evidence suggests there is a balance in requirements for heme cyt c.Incytc, histidine (His19) of CXXCH acts as an axial ligand to binding by HCCS in step 1 and need for heme release in step heme iron and upon release of holocytochrome c from HCCS, folding 4 (as holocyt c). Studies on HCCS E159 substitutions, the MLS leads to formation of a second axial interaction with methionine residue, provide some of this evidence (5). An HCCS E159K (Met81). We previously discovered mutations in human HCCS that substitution is defective in step 1 and results in reduced cyt c facilitate increased biosynthesis of cyt c in recombinant Escherichia biosynthesis in recombinant E.
    [Show full text]
  • X-Ray Absorption Spectroscopic Analysis of the High-Spin Ferriheme Site in Substrate-Bound Neuronal Nitric-Oxide Synthase1
    J. Biochem. 130. 191-198 (2001) X-Ray Absorption Spectroscopic Analysis of the High-Spin Ferriheme Site in Substrate-Bound Neuronal Nitric-Oxide Synthase1 Nathaniel J. Cosper,* Robert A. Scott,*,2 Hiroyuki Hori,•õ Takeshi Nishino,•õ and Toshio Iwasaki•õ,2 Department of Chemistry; University of Georgia, Athens. GA 30602-2556, USA; and *Depatment of Biochemistry and Molecular Biology, Nippon Medical School. 1-1-5 Sendogi. Buukyo-ku, Tokyo 113-8602 Received March 27, 2001; accepted April 17, 2001 Nitric oxide synthase (NOS) catalyzes the conversion of L-arginine to citrulline and nitric oxide through two stepwise oxygenation reactions involving NƒÖ-hydroxy-L-argin ine, an enzyme-bound intermediate. The NƒÖ-hydroxy-L-arginine- and arginine-bound NOS ferriheme centers show distinct, high-spin electron paramagnetic resonance sig nals. Iron X-ray absorption spectroscopy (XAS) has been used to examine the structure of the ferriheme site in the NƒÖ-hydroxy-L-arginine-bound full-length neuronal NOS in the presence of (6R)-5,6,7,8-tetrahydro-L-biopterin. Iron XAS shows that the high-spin ferriheme sites in the NƒÖ-hydroxy-L-arginine- and arginine-bound forms are strikingly similar, both being coordinated by the heme and an axial thiolate ligand, with an Fe-S distance of ca. 2.29 A. Cu2+ inhibition slightly affects the spin-state equilibrium, but causes no XAS-detectable changes in the immediate ferriheme coordination environ ment of neuronal NOS. The structure and ligand geometry of the high-spin ferriheme in arginine-bound neuronal NOS are essentially identical to those of the NƒÖ-hydroxy-L-argi nine-bound form and only slightly affected by the divalent cation inhibitor of consitu tive NOS.
    [Show full text]
  • Sensing Superfund Chemicals with Recombinant Systems
    Sensing Superfund Chemicals with Recombinant Systems Sapna K. Deo, S. Xu, D. Ghosh, X. Guan, A. Rothert, J. Feliciano, E. D’Angelo, Leonidas G. Bachas, and Sylvia Daunert Department of Chemistry and Department of Agricultural Sciences University of Kentucky Lexington, KY Molecular Recognition in Analytical Chemistry • Proteins • Cells • High Throughput Screening • Whole Cell-Based Sensing Systems Analyte No Analyte Signal Reporter protein No Expression of Reporter Protein Arsenic Poisoning • Applications • Agriculture • Treatment for diseases • Industrial uses • Long exposure to low doses of arsenic • Skin hyperpigmentation and cancer • Other cancers • Inhibition of cellular enzymes New Bangladesh Disaster: Wells that Pump Poison... New York Times November 10, 1998 Arsenic contamination in the USA U. S. Geological Survey, Fact Sheet FS 063-00, May 2000 Arsenite Resistance in E. coli O/P arsR arsD arsA arsB arsC Schematic Representation of the Antimonite/Arsenite Pump - - AsO2 SbO2 Cytoplasm ADP ATP AsO - ATP 3- 2 AsO4 ADP ArsA ArsA ArsC Periplasm Membrane ArsB - - AsO2 SbO2 Fluorescent Reporter Proteins in Array Detection Protein Excitation Emission λ max λ max GFP 395 (470) 509 EGFP 488 509 BFP 380 440 GFPuv 395 509 YFP 513 527 CFP 433 475 CobA 357 605 RFP 558 583 P H C 3 A Production of fluorescent A P porphyrinoid compounds H3C N HN oxidation NH N A A P A P H C 3 A A A P P P P NH HN H3C N HN UMT sirohydrochlorin NH HN SAM P A NH HN H3C A A A A A UMT P HN P P P P H3C N SAM urogen III Dihydrosirohydrochlorin (Precorrin-2) NH N A CH3
    [Show full text]
  • Bioenergetics and Anaerobic Respiratory Chains of Aceticlastic Methanogens☆
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Biochimica et Biophysica Acta 1837 (2014) 1130–1147 Contents lists available at ScienceDirect Biochimica et Biophysica Acta journal homepage: www.elsevier.com/locate/bbabio Review Bioenergetics and anaerobic respiratory chains of aceticlastic methanogens☆ Cornelia Welte a,b, Uwe Deppenmeier a,⁎ a Institute of Microbiology and Biotechnology, University of Bonn, Meckenheimer Allee 168, 53115 Bonn, Germany b Department of Microbiology, IWWR, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands article info abstract Article history: Methane-forming archaea are strictly anaerobic microbes and are essential for global carbon fluxes since they Received 28 October 2013 perform the terminal step in breakdown of organic matter in the absence of oxygen. Major part of methane Received in revised form 2 December 2013 produced in nature derives from the methyl group of acetate. Only members of the genera Methanosarcina and Accepted 5 December 2013 Methanosaeta are able to use this substrate for methane formation and growth. Since the free energy change Available online 12 December 2013 coupled to methanogenesis from acetate is only −36 kJ/mol CH4, aceticlastic methanogens developed efficient energy-conserving systems to handle this thermodynamic limitation. The membrane bound electron transport Keywords: Methanogenesis system of aceticlastic methanogens is a complex branched respiratory chain that can accept electrons from Methane hydrogen, reduced coenzyme F420 or reduced ferredoxin. The terminal electron acceptor of this anaerobic Energy conservation respiration is a mixed disulfide composed of coenzyme M and coenzyme B. Reduced ferredoxin has an important Ion translocation function under aceticlastic growth conditions and novel and well-established membrane complexes oxidizing Anaerobic respiration ferredoxin will be discussed in depth.
    [Show full text]
  • The Role of Cytochrome C in the Electron Transport Chain
    The Role of Cytochrome c in the Electron Transport Chain Rebecca Rosamond, Ashleigh Keeler, Josh Diaz Texas A&M University, College Station, TX 77843 Introduction Cytochrome c Applications in Research Iron is an important element for sustaining life. Iron appears in many different Heme iron metal center forms in the body, one of which is in a heme type protein, a cytochrome. These Electrochemistry12 cytochromes bind heme as a cofactor and function as electron transfer agents, • Octahedral geometry • Coordinated by 6 ligands • Cytochrome c encapsulated most commonly in the electron transport chain. The electron transport chain (ETC) within a methyl-modified silica is a series of complexes and molecules that transfer electrons from donors to o 4 nitrogen atoms of the porphyrin ring film to enhance electrochemical acceptors via redox reactions coupled with the transport of protons across the reduction rates inner mitochondrial membrane to create a concentration gradient.1 This gradient is . Tetradentate chelating ligand • Advancements in this field help then used to supply the energy for ATP synthase to generate ATP, the principle to create more efficient molecule for providing energy to cells. The complexes and molecules the ETC o 1 sulfur atom of biotechnologies Cyt c redox reaction to sense H O consists of are Complex I, Ubiquinone, Complex II, Complex III, cytochrome c, and methionine residue 2 2 Complex IV (cytochrome c oxidase). Of these complexes and molecules Complex o 1 nitrogen atom of III, cytochrome c, and Complex IV contain heme type proteins. Cytochrome c is histidine imidazole ring unique as it is not part of a larger complex, and freely diffuses through the inner Biosensors11 2 membrane to react with Complex III and cytochrome c oxidase.
    [Show full text]
  • Effect of Nitrate, Fumarate, and Oxygen on the Formation of the Membrane-Bound Electron Transport System of Haemophilus Parainfluenzae
    JOURNAL OF BACTERIOLOGY, Feb. 1970, p. 365-372 Vol. 101, No. 2 Copyright a 1970 American Society for Microbiology Printed In U.S.A. Effect of Nitrate, Fumarate, and Oxygen on the Formation of the Membrane-Bound Electron Transport System of Haemophilus parainfluenzae PETER R. SINCLAIR AND DAVID C. WHITE Department of Biochemistry, University of Kentucky Medical Center, Lexington, Kentucky 40506 Received for publication 15 August 1969 The composition of the membrane-bound electron transport system of Haemoph- ilus parainfluenzae underwent modification in response to the terminal electron ac- ceptor in the growth medium. H. parainfluenzae was able to grow with 02, nitrate, fumarate, pyruvate, and substrate amounts of nicotinamide adenine dinucleotide (NAD) as electron acceptors. When 02 served as the electron acceptor and its con- centration was lowered below 20 ,uM, the bacteria formed more cytochromes b, c, a, , a2, and o than were present in the cells grown at 150 to 200 uM 02. Nitrate and nitrite reductase activities also appeared during growth at the low 02 concentrations in the absence of added nitrate. Cytochrome levels in cells grown anaerobically with fumarate, pyruvate, or NAD as terminal acceptors were similar to those formed in cells grown at low 02 concentrations. Cells grown with nitrate had higher levels of cytochromes c, b, and o, and of nitrate and nitrite reductases, than did cells grown with the other acceptors. The formation of cytochrome oxidase a2 was repressed by the presence of nitrate in the growth medium. The critical 02 concentration (the 02 concentration at which the rate of 02 uptake becomes demonstrably dependent on the 02 concentration) was about 100 ,uM in cells grown with nitrate and about 15 ,uM in cells grown with the other acceptors.
    [Show full text]