Sensing Superfund Chemicals with Recombinant Systems

Total Page:16

File Type:pdf, Size:1020Kb

Sensing Superfund Chemicals with Recombinant Systems Sensing Superfund Chemicals with Recombinant Systems Sapna K. Deo, S. Xu, D. Ghosh, X. Guan, A. Rothert, J. Feliciano, E. D’Angelo, Leonidas G. Bachas, and Sylvia Daunert Department of Chemistry and Department of Agricultural Sciences University of Kentucky Lexington, KY Molecular Recognition in Analytical Chemistry • Proteins • Cells • High Throughput Screening • Whole Cell-Based Sensing Systems Analyte No Analyte Signal Reporter protein No Expression of Reporter Protein Arsenic Poisoning • Applications • Agriculture • Treatment for diseases • Industrial uses • Long exposure to low doses of arsenic • Skin hyperpigmentation and cancer • Other cancers • Inhibition of cellular enzymes New Bangladesh Disaster: Wells that Pump Poison... New York Times November 10, 1998 Arsenic contamination in the USA U. S. Geological Survey, Fact Sheet FS 063-00, May 2000 Arsenite Resistance in E. coli O/P arsR arsD arsA arsB arsC Schematic Representation of the Antimonite/Arsenite Pump - - AsO2 SbO2 Cytoplasm ADP ATP AsO - ATP 3- 2 AsO4 ADP ArsA ArsA ArsC Periplasm Membrane ArsB - - AsO2 SbO2 Fluorescent Reporter Proteins in Array Detection Protein Excitation Emission λ max λ max GFP 395 (470) 509 EGFP 488 509 BFP 380 440 GFPuv 395 509 YFP 513 527 CFP 433 475 CobA 357 605 RFP 558 583 P H C 3 A Production of fluorescent A P porphyrinoid compounds H3C N HN oxidation NH N A A P A P H C 3 A A A P P P P NH HN H3C N HN UMT sirohydrochlorin NH HN SAM P A NH HN H3C A A A A A UMT P HN P P P P H3C N SAM urogen III Dihydrosirohydrochlorin (Precorrin-2) NH N A CH3 A-CH2COOH A P-CH2CH2COOH SAM - S-adenosyl-L-methionine P P UMT- uroporphyrinogen methyltransferase III trimethylpyrrocorphin Construction of pSD601 plasmid O/P arsR bla arsD PCR pRLUX arsR O/P luxAB arsR + pSD601 ampR cobA cobA cobA pISA417 PCR Time Study for Arsenite 10000 -5 1 x 10 M NaAsO2 8000 6000 4000 2000 Fluorescence (cps) 0 -2000 024681012 Time (h) ALA in Urogen Pathway P A P A COOH COOH A P A P COOH NH HN NH HN ALA PBG Urogen III HO O dehydratase deaminase synthase N NH HN NH HN H P A A A H N H N 2 2 ALA PBG A P P P HMB Urogen III ALA - δ-aminolevulinic acid PBG - Porphobilinogen HMB- Hydroxymethylbilane Urogen- Uroporphyrinogen Time Study of Arsenite with ALA 10000 NO ALA NO ALA 8000 1mM ALA 6000 4000 2000 Fluorescence (cps) 0 -2000 024681012 Time (h) Calibration Plot with ALA 45000 40000 35000 30000 25000 20000 15000 Fluorescence (cps) 10000 5000 0 -8 -7 -6 -5 -4 -3 log[sodium-m-arsenite] Selectivity Study 40 Induction time = 1 h 35 Analyte concentration = 5 x 10-6 M (cps) 30 25 Intensity 20 15 10 Fluorescence 5 0 - - - 3- 2- - - Br Cl NO3 PO4 SO4 AsO2 SbO2 Field Challenges • Conventional analytical techniques • Field-kits • Background signal • Viability of the cells • Freeze drying • Strips (β-galactosidase) Addressing Environmental Analysis with Self-Contained Kits Lyophilized Reagents “The bacteria are dim in tap water (top) but glow brightly when arsenic is present 0 0.1 0.2 0.5 1 (bottom).” Arsenite (µM) Strip Sensors http://www.nature.com/nsu/030929/030929-7.html Centrifugal Microfluidic Platform for Micro-Total Analysis Systems Low power and space requirements Less reagent and sample consumption Easy disposal Short analysis time Integrate washing, sample preparation, and calibration Prototype Compact Disc 7 6 5 4 3 1 2 1. Waste Reservoir 2. Optode 3-7. Solution Reservoirs Prototype CD for four simultaneous analyses Incorporation of Whole-cell Sensing System for Arsenite/Antimonite on the CD Platform 140 130 120 (Counts) Fluorescence110 Intensity 100 90 0 15 Time (min) 30 45 60 0.4 0.5 0. 0. 6 7 Optical Density of Cells Calibration Curves Antimonite Arsenite 120 120 Detection Limit: 1 x 10-6 M Detection Limit: 1 x 10-6 M 100 100 80 80 60 60 40 40 20 Normalized Fluorescence 20 Normalized Fluorescence 0 0 -6.5 -5.5 -4.5 -3.5 -6.5 -5.5 -4.5 -3.5 log (Antimonite, M) log (Arsenite, M) Clc Operon and 3-chlorocatechol Pathway clcR o/p clcA clcB clcD O HOOC OH ClcA COOH ClcB ClcD COOH O COOH O COOH Cl Cl OH clcR clcA clcB′ pSMM50R-B′ r amp lacZ Calibration Curves 5 (5 min induction) ) 5 3-clc 10 4 × 3 2 4-clc 1 catechol Light Intensity (counts 0 -10 -9 -8 -7 -6 -5 -4 -3 -2 log (concentration, M) Selectivity Study 1.5 1) 3-chlorocatechol; 2) 4-chlorocatechol; 3) 4-chlorobiphenyl ) 6 4-7) catechol, biphenyl, 2-chlorophenol, and 4-chlorophenol 1 10 × 1.0 0.5 2 Light Intensity (counts 3 0 4-7 -10 -9 -8 -7 -5 -4 -3 -6 log (concentration, M) Challenges in Environmental Sample Analysis of Chlorocatechol 1. Extraction Method • Free Chlorocatechol Can be extracted by organic solvent O Fe • Bound Chlorocatechol O Cl OH Difficult to be extracted 2. Matrix Effect Selected Chemical Characteristics of Soils Organi Electric cal Oxal atextractablee Soils car cbon onductivity pH P Al Fe -1 -1 (%) (µmhos•cm ) (mg kg ) Acid washed sand 0.02 12 6.1 8 32 54 Maury silt loam 3.3 53 5.0 704 1894 4126 Woolper 7.5 38 5.9 3203 3086 3203 Organic humus 15.3 1099 6.4 415 3575 1106 Optimized Protocol for Soil Analysis Pellet (Intact, induced bacteria ) Supernatant 2 (Water + Bacteria) centrifuge Mixture 1 (10,000 ×g) (Soil + Water +Bacteria) Supernatant Induction (2h), Precipitate (Discarded) centrifuge (400×g) (Soil) Results of Soils HPLC Bacterial sensing system Sample Theoretical Experimental ± Theoretical Experimental ± matrix Value (mg•kg-1) SD (mg•kg-1) Value (mg•kg-1) SD (mg•kg-1) 0.5 0.49 ± 0.02 0.5 0.51 ± 0.02 Sand 2.0 2.03 ± 0.04 2.0 1.95 ± 0.08 10 9.75 ± 0.55 50 52.0 ± 2.6 Woolper 0.5 0.0 ± 0.0 0.5 0.52 ± 0.04 2.0 0.0 ± 0.0 2.0 1.90 ± 0.18 10 9.55 ± 0.75 50 54.0 ± 4.5 Maury 0.5 0.0 ± 0.0 0.5 0.43 ± 0.08 2.0 0.0 ± 0.0 2.0 2.24 ± 0.30 Organic 0.5 0.0 ± 0.0 0.5 0.43 ± 0.09 potting soil 2.0 0.0 ± 0.0 2.0 1.73 ± 0.28 Detection of PCBs Based on Dechlorination Followed by whole cell Sensing Clx Mg/K2Pd6 +H2O Cly - +(X+Y)Cl+H2 PCB Dechlorination Reaction HPLC Chromatogram of Dechlorinated Product: Biphenyl Whole cell Sensing of Biphenyl Based on bph Operon from P. pseudoalcaligenes KF707 pE R1 A1A2(orf3)A3A4 B C No biphenyl No Transcription HOPD O OH Transcription Biphenyl COOH pE Bphoperonof P. pseudoalcaligenes KF707 Biphenyl mol/L Increase in Light Intensity (%) lacZ pSD7001 1x 10-5 81.9 ± 9.5 ampR 1x 10-6 37 ± 6.2 1x 10-7 21 ± 4.8 Degradation Pathway of Hydroxylated-Biphenyl in the strain Pseudomonas azelaica HBP1 hbpR hbpC hbpA hbpD OH OH COOH COOH + + NADH+H NAD O2 O H2O OH OH OH COOH HbpC HbpD O2 H2O HbpA Whole Cell-Based Sensing System for Hydroxylated PCBS 10000 7500 5000 2500 Relative Light Units 0 -9 -8 -7 -6 -5 -4 -3 -2 Log (2-hydroxy-3',4'-dichlorobiphenyl, M) Collaborators Leonidas Bachas Marc Madou Barry Rosen Jan Roelof van der Meer Acknowledgments NIEHS-Superfund Basic Research Program the past and present members of the Daunert Group .
Recommended publications
  • Erythropoietic Protoporphyrias: Studies of the Natural History, Genotype-Phenotype Correlations, and Psychosocial Impact
    Erythropoietic Protoporphyrias: Studies of the Natural History, Genotype-Phenotype Correlations, and Psychosocial Impact PI: Dr. Manisha Balwani NCT01688895 Document Date: Jun 26, 2015 RDCRN PC #7207 EPP Natural History Version Date: V2 26Jun2015 Rare Diseases Clinical Research Network Porphyrias Consortium Erythropoietic Protoporphyrias: Studies of the Natural History, Genotype-Phenotype Correlations, and Psychosocial Impact This protocol is for research purposes only and should not be copied, redistributed, or used for any other purpose. The procedures in this protocol are intended only for use by the Porphyrias Consortium investigators in carefully controlled settings. The Study Chair of this study should be consulted before using this protocol. Study Chair: Manisha Balwani, MD, MS Department of Genetics & Genomic Sciences Icahn School of Medicine at Mount Sinai One Gustave L. Levy Place, Box 1497 New York, NY 10029 Phone: 212-241-0915 Fax: 212-426-9065 Email: [email protected] Page 1 of 31 RDCRN PC #7207 EPP Natural History Version Date: V2 26Jun2015 Table of Contents Contents Participating Institutions/Investigators Table (contact information)............................................................... 4 1. Synopsis .................................................................................................................................................... 6 1.A. Protocol Overview .............................................................................................................................. 8 2. Objective
    [Show full text]
  • Noncanonical Coproporphyrin-Dependent Bacterial Heme Biosynthesis Pathway That Does Not Use Protoporphyrin
    Noncanonical coproporphyrin-dependent bacterial heme biosynthesis pathway that does not use protoporphyrin Harry A. Daileya,b,c,1, Svetlana Gerdesd, Tamara A. Daileya,b,c, Joseph S. Burcha, and John D. Phillipse aBiomedical and Health Sciences Institute and Departments of bMicrobiology and cBiochemistry and Molecular Biology, University of Georgia, Athens, GA 30602; dMathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439; and eDivision of Hematology, Department of Medicine, University of Utah School of Medicine, Salt Lake City, UT 84132 Edited by J. Clark Lagarias, University of California, Davis, CA, and approved January 12, 2015 (received for review August 25, 2014) It has been generally accepted that biosynthesis of protoheme of a “primitive” pathway in Desulfovibrio vulgaris (13). This path- (heme) uses a common set of core metabolic intermediates that way, named the “alternative heme biosynthesis” path (or ahb), has includes protoporphyrin. Herein, we show that the Actinobacteria now been characterized by Warren and coworkers (15) in sulfate- and Firmicutes (high-GC and low-GC Gram-positive bacteria) are reducing bacteria. In the ahb pathway, siroheme, synthesized unable to synthesize protoporphyrin. Instead, they oxidize copro- from uroporphyrinogen III, can be further metabolized by suc- porphyrinogen to coproporphyrin, insert ferrous iron to make Fe- cessive demethylation and decarboxylation to yield protoheme (14, coproporphyrin (coproheme), and then decarboxylate coproheme 15) (Fig. 1 and Fig. S1). A similar pathway exists for protoheme- to generate protoheme. This pathway is specified by three genes containing archaea (15, 16). named hemY, hemH, and hemQ. The analysis of 982 representa- Current gene annotations suggest that all enzymes for pro- tive prokaryotic genomes is consistent with this pathway being karyotic heme synthetic pathways are now identified.
    [Show full text]
  • Metabolic Versatility of the Nitrite-Oxidizing Bacterium Nitrospira
    bioRxiv preprint doi: https://doi.org/10.1101/2020.07.02.185504; this version posted July 4, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 1 Metabolic versatility of the nitrite-oxidizing bacterium Nitrospira 2 marina and its proteomic response to oxygen-limited conditions 3 Barbara Bayer1*, Mak A. Saito2, Matthew R. McIlvin2, Sebastian Lücker3, Dawn M. Moran2, 4 Thomas S. Lankiewicz1, Christopher L. Dupont4, and Alyson E. Santoro1* 5 6 1 Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, 7 CA, USA 8 2 Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, 9 Woods Hole, MA, USA 10 3 Department of Microbiology, IWWR, Radboud University, Nijmegen, The Netherlands 11 4 J. Craig Venter Institute, La Jolla, CA, USA 12 13 *Correspondence: 14 Barbara Bayer, Department of Ecology, Evolution and Marine Biology, University of California, 15 Santa Barbara, CA, USA. E-mail: [email protected] 16 Alyson E. Santoro, Department of Ecology, Evolution and Marine Biology, University of 17 California, Santa Barbara, CA, USA. E-mail: [email protected] 18 19 Running title: Genome and proteome of Nitrospira marina 20 21 Competing Interests: The authors declare that they have no conflict of interest. 22 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.07.02.185504; this version posted July 4, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • Mapping Mass Spectral Databases in Genome-Scale Metabolic Networks Reveals Poorly Covered Areas
    H OH metabolites OH Article Mind the Gap: Mapping Mass Spectral Databases in Genome-Scale Metabolic Networks Reveals Poorly Covered Areas Clément Frainay 1 , Emma L. Schymanski 2,3, Steffen Neumann 4,5 , Benjamin Merlet 1, Reza M. Salek 6 , Fabien Jourdan 1,* and Oscar Yanes 7,8,* 1 Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, 31555 Toulouse, France; [email protected] (C.F.); [email protected] (B.M.) 2 Eawag: Swiss Federal Institute for Aquatic Science and Technology, Überlandstrasse 133, 8600 Dübendorf, Switzerland; [email protected] 3 Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg 4 Leibniz Institute of Plant Biochemistry, Department of Stress and Developmental Biology, Weinberg 3, 06120 Halle, Germany; [email protected] 5 German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig Deutscher Platz 5e, 04103 Leipzig, Germany 6 The International Agency for Research on Cancer (IARC), 150 Cours Albert Thomas, 69372 Lyon CEDEX 08, France; [email protected] 7 Metabolomics Platform, IISPV, Department of Electronic Engineering, Universitat Rovira i Virgili, Avinguda Paisos Catalans 26, 43007 Tarragona, Spain 8 Spanish Biomedical Research Center in Diabetes and Associated Metabolic Disorders (CIBERDEM), Monforte de Lemos 3-5, 28029 Madrid, Spain * Correspondence: [email protected] (F.J.); [email protected] (O.Y.); Tel.: +33-582-066-395 (F.J.); +34-977-776-617 (O.Y.) Received: 18 July 2018; Accepted: 7 September 2018; Published: 15 September 2018 Abstract: The use of mass spectrometry-based metabolomics to study human, plant and microbial biochemistry and their interactions with the environment largely depends on the ability to annotate metabolite structures by matching mass spectral features of the measured metabolites to curated spectra of reference standards.
    [Show full text]
  • Cheminformatics for Genome-Scale Metabolic Reconstructions
    CHEMINFORMATICS FOR GENOME-SCALE METABOLIC RECONSTRUCTIONS John W. May European Molecular Biology Laboratory European Bioinformatics Institute University of Cambridge Homerton College A thesis submitted for the degree of Doctor of Philosophy June 2014 Declaration This thesis is the result of my own work and includes nothing which is the outcome of work done in collaboration except where specifically indicated in the text. This dissertation is not substantially the same as any I have submitted for a degree, diploma or other qualification at any other university, and no part has already been, or is currently being submitted for any degree, diploma or other qualification. This dissertation does not exceed the specified length limit of 60,000 words as defined by the Biology Degree Committee. This dissertation has been typeset using LATEX in 11 pt Palatino, one and half spaced, according to the specifications defined by the Board of Graduate Studies and the Biology Degree Committee. June 2014 John W. May to Róisín Acknowledgements This work was carried out in the Cheminformatics and Metabolism Group at the European Bioinformatics Institute (EMBL-EBI). The project was fund- ed by Unilever, the Biotechnology and Biological Sciences Research Coun- cil [BB/I532153/1], and the European Molecular Biology Laboratory. I would like to thank my supervisor, Christoph Steinbeck for his guidance and providing intellectual freedom. I am also thankful to each member of my thesis advisory committee: Gordon James, Julio Saez-Rodriguez, Kiran Patil, and Gos Micklem who gave their time, advice, and guidance. I am thankful to all members of the Cheminformatics and Metabolism Group.
    [Show full text]
  • A Primitive Pathway of Porphyrin Biosynthesis and Enzymology in Desulfovibrio Vulgaris
    Proc. Natl. Acad. Sci. USA Vol. 95, pp. 4853–4858, April 1998 Biochemistry A primitive pathway of porphyrin biosynthesis and enzymology in Desulfovibrio vulgaris TETSUO ISHIDA*, LING YU*, HIDEO AKUTSU†,KIYOSHI OZAWA†,SHOSUKE KAWANISHI‡,AKIRA SETO§, i TOSHIRO INUBUSHI¶, AND SEIYO SANO* Departments of *Biochemistry and §Microbiology and ¶Division of Biophysics, Molecular Neurobiology Research Center, Shiga University of Medical Science, Seta, Ohtsu, Shiga 520-21, Japan; †Department of Bioengineering, Faculty of Engineering, Yokohama National University, 156 Tokiwadai, Hodogaya-ku, Yokohama 240, Japan; and ‡Department of Public Health, Graduate School of Medicine, Kyoto University, Sakyou-ku, Kyoto 606, Japan Communicated by Rudi Schmid, University of California, San Francisco, CA, February 23, 1998 (received for review March 15, 1998) ABSTRACT Culture of Desulfovibrio vulgaris in a medium billion years ago (3). Therefore, it is important to establish the supplemented with 5-aminolevulinic acid and L-methionine- biosynthetic pathway of porphyrins in D. vulgaris, not only methyl-d3 resulted in the formation of porphyrins (sirohydro- from the biochemical point of view, but also from the view- chlorin, coproporphyrin III, and protoporphyrin IX) in which point of molecular evolution. In this paper, we describe a the methyl groups at the C-2 and C-7 positions were deuter- sequence of intermediates in the conversion of uroporphy- ated. A previously unknown hexacarboxylic acid was also rinogen III to coproporphyrinogen III and their stepwise isolated, and its structure was determined to be 12,18- enzymic conversion. didecarboxysirohydrochlorin by mass spectrometry and 1H NMR. These results indicate a primitive pathway of heme biosynthesis in D. vulgaris consisting of the following enzy- MATERIALS AND METHODS matic steps: (i) methylation of the C-2 and C-7 positions of Materials.
    [Show full text]
  • A High Urinary Urobilinogen / Serum Total Bilirubin Ratio Reported in Abdominal Pain Patients Can Indicate Acute Hepatic Porphyria
    A High Urinary Urobilinogen / Serum Total Bilirubin Ratio Reported in Abdominal Pain Patients Can Indicate Acute Hepatic Porphyria Chengyuan Song Shandong University Qilu Hospital Shaowei Sang Shandong University Qilu Hospital Yuan Liu ( [email protected] ) Shandong University Qilu Hospital https://orcid.org/0000-0003-4991-552X Research Keywords: acute hepatic porphyria, urinary urobilinogen, serum total bilirubin Posted Date: June 14th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-587707/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/10 Abstract Background: Due to its variable symptoms and nonspecic laboratory test results during routine examinations, acute hepatic porphyria (AHP) has always been a diagnostic dilemma for physicians. Misdiagnoses, missed diagnoses, and inappropriate treatments are very common. Correct diagnosis mainly depends on the detection of a high urinary porphobilinogen (PBG) level, which is not a routine test performed in the clinic and highly relies on the physician’s awareness of AHP. Therefore, identifying a more convenient indicator for use during routine examinations is required to improve the diagnosis of AHP. Results: In the present study, we retrospectively analyzed laboratory examinations in 12 AHP patients and 100 patients with abdominal pain of other causes as the control groups between 2015 and 2021. Compared with the control groups, AHP patients showed a signicantly higher urinary urobilinogen level during the urinalysis (P < 0.05). However, we showed that the higher urobilinogen level was caused by a false- positive result due to a higher level of urine PBG in the AHP patients. Hence, we used serum total bilirubin, an upstream substance of urinary urobilinogen synthesis, for calibration.
    [Show full text]
  • Significance of Heme and Heme Degradation in the Pathogenesis Of
    International Journal of Molecular Sciences Review Significance of Heme and Heme Degradation in the Pathogenesis of Acute Lung and Inflammatory Disorders Stefan W. Ryter Proterris, Inc., Boston, MA 02118, USA; [email protected] Abstract: The heme molecule serves as an essential prosthetic group for oxygen transport and storage proteins, as well for cellular metabolic enzyme activities, including those involved in mitochondrial respiration, xenobiotic metabolism, and antioxidant responses. Dysfunction in both heme synthesis and degradation pathways can promote human disease. Heme is a pro-oxidant via iron catalysis that can induce cytotoxicity and injury to the vascular endothelium. Additionally, heme can modulate inflammatory and immune system functions. Thus, the synthesis, utilization and turnover of heme are by necessity tightly regulated. The microsomal heme oxygenase (HO) system degrades heme to carbon monoxide (CO), iron, and biliverdin-IXα, that latter which is converted to bilirubin-IXα by biliverdin reductase. Heme degradation by heme oxygenase-1 (HO-1) is linked to cytoprotection via heme removal, as well as by activity-dependent end-product generation (i.e., bile pigments and CO), and other potential mechanisms. Therapeutic strategies targeting the heme/HO-1 pathway, including therapeutic modulation of heme levels, elevation (or inhibition) of HO-1 protein and activity, and application of CO donor compounds or gas show potential in inflammatory conditions including sepsis and pulmonary diseases. Keywords: acute lung injury; carbon monoxide; heme; heme oxygenase; inflammation; lung dis- ease; sepsis Citation: Ryter, S.W. Significance of Heme and Heme Degradation in the Pathogenesis of Acute Lung and Inflammatory Disorders. Int. J. Mol. 1. Introduction Sci.
    [Show full text]
  • Vitamin B, and B,-Proteins Edited by Bernhard Krautler, Duilio Arigoni and Bernard T
    Vitamin B, and B,-Proteins Edited by Bernhard Krautler, Duilio Arigoni and Bernard T. Golding Lectures presented at the 4th European Symposium on Vitamin B,, and B,,-Proteins @ W I LEY-VCH Weinheim - Chichester - New York - Toronto. Brisbane - Singapore This Page Intentionally Left Blank Vitamin B, and BIZ-Proteins Edited by B. Krautler, D. Arigoni and B.T. Golding 633 WILEY-VCH This Page Intentionally Left Blank Vitamin B, and B,-Proteins Edited by Bernhard Krautler, Duilio Arigoni and Bernard T. Golding Lectures presented at the 4th European Symposium on Vitamin B,, and B,,-Proteins @ W I LEY-VCH Weinheim - Chichester - New York - Toronto. Brisbane - Singapore Prof. Dr. B. Krautler Prof. Dr. D. Arigoni Prof. Dr. B.T. Golding Leopold-Franzens-Universitat ETH-Zurich Department of Chemistry Innsbruck Laboratoriuin fur University of Newcastle Institut fur Organische Chemie Organische Chemie NE 17 RU Newcastle Iiinrain 52a Universitatsstrasse 16 upon Thyne A-6020 Innsbruck CH-8092 Zurich This book was carefully produced. Nevertheless, authors, editor and publisher do not warrant the in- formation contained theirein to be free of errors. Readers are advised to keep in mind that statements, data, illustrations, procedural details or other items may inadvertently be inaccurate. L I The cover picture shows a cartoon of B,,-dependent methionine synthase (see contribution by Drennan et al. in this book). The picture was kindly provided by Martin Tollinger, University of Innsbruck. Library of Congress Card No.: applied for British Library Cataloguing-in-Publication Data: A catalogue record for this book is available from the British Library Die Deutsche Bibliothek - CIP-Einheitsaufnahme Vitamin B,, and B,,-proteins :lectures presented at the 4th European Symposium on Vitamin B,, and B,,-Proteins / ed.
    [Show full text]
  • Concerning the Biosynthesis of Sirohaem in Bacillus Mesaterium the Relationship with Cohalamin Metabolism
    Concerning the Biosynthesis of Sirohaem in Bacillus mesaterium The Relationship with Cohalamin Metabolism Presented by Mr. Richard Beck For the award of Doctorate (Ph.D.) in Biochemistry at the University of London (University College London). Department of Molecular Genetics, Institute of Ophthalmology, University College London, Bath Street, London EClV 9EL. United Kingdom. March 1997 ProQuest Number: 10044378 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest. ProQuest 10044378 Published by ProQuest LLC(2016). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code. Microform Edition © ProQuest LLC. ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 Abstract Concerning the Biosynthesis of Sirohaem in Bacillus megaterium: The Relationship with Cobalamin Metabolism Sirohaem and vitamin B 12 (cyanocobalamin) share a significant part of their biosynthetic pathways, the last common intermediate being precorrin -2 (dihydrosirohydrochlorin). Dehydrogenation of precorrin-2 leads to sirohaem formation, whereas méthylation at C-20 directs production of vitamin B 12. A novel enzyme has been identified which may play a crucial role in regulating sirohaem and cobalamin biosynthesis at the precorrin-2 branch-point. In vivo, the CbiX protein from Bacillus megaterium has been shown to catalyse the final two steps of sirohaem synthesis, namely dehydrogenation and ferrochelation.
    [Show full text]
  • The Marvels of Biosynthesis: Tracking Nature's Pathways
    Pergamon Bioorganic & Medicinal Chemistry, Vol. 4, No. 7, pp 937-964, 1996 Copyright © 1996 Elsevier Science Ltd Printed in Great Britain. All rights reserved PIh S0968-0896(96)00102-2 0968-0896/96 $15.00+0.00 The Marvels of Biosynthesis: Tracking Nature's Pathways Alan R. Battersby University of Cambridge, University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, U.K. Introduction and nitric acids, zinc, sulphur, copper sulphate and many more materials. Those days are gone and there How ever did it come about that a substantial part of are pluses and minuses to the change. At any rate, I my research has been aimed at understanding the was able to assemble a good set of equipment to run marvellous chemistry used by living systems to lots of simple experiments which I enjoyed enormously. ,:onstruct the substances they produce? I must admit ".hat I had not in the past thought much about that I believe the next important influence on me came at 9articular 'pathway' but was encouraged to do so by school where I had the great good fortune to be taught Derek Barton, Chairman of the Executive Board of more about chemistry by a superb teacher, Mr Evans. Editors for Tetrahedron Publications. He suggested The seed of my love for chemistry which had been that this article, invited by Professor Chi-Huey Wong, planted earlier by my father's books was strongly fed by should be a personal one giving some background on his teaching. Then I read my first books about organic how my interests evolved.
    [Show full text]
  • Acute Intermittent Porphyria Antonio Dajer, MD; Louis Cooper, MD
    CASE REPORT Acute Intermittent Porphyria Antonio Dajer, MD; Louis Cooper, MD A 34-year-old pregnant woman presented for evaluation of severe, persistent abdominal pain. Case A 34-year-old woman presented to the ED with severe, persistent abdomi- nal pain that had begun 18 days earlier. She was 7 weeks pregnant and had been seen in the same ED the day before. During that visit, ultra- sound had shown a single pregnancy of doubtful viability. Abdominal magnetic resonance imaging was normal. She was given multiple doses of hydromorphone. The discharge diagnosis was “missed abortion.” Since the onset of her pain, she had been hospitalized twice elsewhere, with no clear diagnosis to explain her pain. Treatment consisted of repeat doses of hydromorphone. During the second hospitalization, a sodium level of 109 mEq/L had been corrected with hypertonic saline, and a urinary tract infection (UTI) had been treated with cephalexin. Our patient had never experienced similar abdomi- nal pain. Her medical history included depression and asthma. Her family history was notable for an aunt who had died of lung cancer. On this ED visit, the patient’s vital signs were nor- mal. On examination, she was moaning in pain and clutching her abdomen. The abdomen was tender in both lower quadrants, with guarding but no re- bound. Her sodium level was 125 mEq/L; the day before it had been 132 mEq/L. Urine dipstick testing showed 2+ glucose and 2+ bilirubin; both had been within normal range (negative) the day before. An abdominal/pelvic computed tomography scan with intravenous (IV) and oral contrast did not reveal any potential cause of the patient’s pain.
    [Show full text]