BRD4 PROTAC Degrader ARV-825 Inhibits T
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Functional Roles of Bromodomain Proteins in Cancer
cancers Review Functional Roles of Bromodomain Proteins in Cancer Samuel P. Boyson 1,2, Cong Gao 3, Kathleen Quinn 2,3, Joseph Boyd 3, Hana Paculova 3 , Seth Frietze 3,4,* and Karen C. Glass 1,2,4,* 1 Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Colchester, VT 05446, USA; [email protected] 2 Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA; [email protected] 3 Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA; [email protected] (C.G.); [email protected] (J.B.); [email protected] (H.P.) 4 University of Vermont Cancer Center, Burlington, VT 05405, USA * Correspondence: [email protected] (S.F.); [email protected] (K.C.G.) Simple Summary: This review provides an in depth analysis of the role of bromodomain-containing proteins in cancer development. As readers of acetylated lysine on nucleosomal histones, bromod- omain proteins are poised to activate gene expression, and often promote cancer progression. We examined changes in gene expression patterns that are observed in bromodomain-containing proteins and associated with specific cancer types. We also mapped the protein–protein interaction network for the human bromodomain-containing proteins, discuss the cellular roles of these epigenetic regu- lators as part of nine different functional groups, and identify bromodomain-specific mechanisms in cancer development. Lastly, we summarize emerging strategies to target bromodomain proteins in cancer therapy, including those that may be essential for overcoming resistance. Overall, this review provides a timely discussion of the different mechanisms of bromodomain-containing pro- Citation: Boyson, S.P.; Gao, C.; teins in cancer, and an updated assessment of their utility as a therapeutic target for a variety of Quinn, K.; Boyd, J.; Paculova, H.; cancer subtypes. -
Function of Bromodomain and Extra-Terminal Motif Proteins (Bets) in Gata1-Mediated Transcription
University of Pennsylvania ScholarlyCommons Publicly Accessible Penn Dissertations 2015 Function of Bromodomain and Extra-Terminal Motif Proteins (bets) in Gata1-Mediated Transcription Aaron James Stonestrom University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/edissertations Part of the Molecular Biology Commons, and the Pharmacology Commons Recommended Citation Stonestrom, Aaron James, "Function of Bromodomain and Extra-Terminal Motif Proteins (bets) in Gata1-Mediated Transcription" (2015). Publicly Accessible Penn Dissertations. 1148. https://repository.upenn.edu/edissertations/1148 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/1148 For more information, please contact [email protected]. Function of Bromodomain and Extra-Terminal Motif Proteins (bets) in Gata1-Mediated Transcription Abstract Bromodomain and Extra-Terminal motif proteins (BETs) associate with acetylated histones and transcription factors. While pharmacologic inhibition of this ubiquitous protein family is an emerging therapeutic approach for neoplastic and inflammatory disease, the mechanisms through which BETs act remain largely uncharacterized. Here we explore the role of BETs in the physiologically relevant context of erythropoiesis driven by the transcription factor GATA1. First, we characterize functions of the BET family as a whole using a pharmacologic approach. We find that BETs are broadly required for GATA1-mediated transcriptional activation, but that repression is largely BET-independent. BETs support activation by facilitating both GATA1 occupancy and transcription downstream of its binding. Second, we test the specific olesr of BETs BRD2, BRD3, and BRD4 in GATA1-activated transcription. BRD2 and BRD4 are required for efficient anscriptionaltr activation by GATA1. Despite co-localizing with the great majority of GATA1 binding sites, we find that BRD3 is not equirr ed for GATA1-mediated transcriptional activation. -
Bromodomain Protein BRDT Directs ΔNp63 Function and Super
Cell Death & Differentiation (2021) 28:2207–2220 https://doi.org/10.1038/s41418-021-00751-w ARTICLE Bromodomain protein BRDT directs ΔNp63 function and super-enhancer activity in a subset of esophageal squamous cell carcinomas 1 1 2 1 1 2 Xin Wang ● Ana P. Kutschat ● Moyuru Yamada ● Evangelos Prokakis ● Patricia Böttcher ● Koji Tanaka ● 2 3 1,3 Yuichiro Doki ● Feda H. Hamdan ● Steven A. Johnsen Received: 25 August 2020 / Revised: 3 February 2021 / Accepted: 4 February 2021 / Published online: 3 March 2021 © The Author(s) 2021. This article is published with open access Abstract Esophageal squamous cell carcinoma (ESCC) is the predominant subtype of esophageal cancer with a particularly high prevalence in certain geographical regions and a poor prognosis with a 5-year survival rate of 15–25%. Despite numerous studies characterizing the genetic and transcriptomic landscape of ESCC, there are currently no effective targeted therapies. In this study, we used an unbiased screening approach to uncover novel molecular precision oncology targets for ESCC and identified the bromodomain and extraterminal (BET) family member bromodomain testis-specific protein (BRDT) to be 1234567890();,: 1234567890();,: uniquely expressed in a subgroup of ESCC. Experimental studies revealed that BRDT expression promotes migration but is dispensable for cell proliferation. Further mechanistic insight was gained through transcriptome analyses, which revealed that BRDT controls the expression of a subset of ΔNp63 target genes. Epigenome and genome-wide occupancy studies, combined with genome-wide chromatin interaction studies, revealed that BRDT colocalizes and interacts with ΔNp63 to drive a unique transcriptional program and modulate cell phenotype. Our data demonstrate that these genomic regions are enriched for super-enhancers that loop to critical ΔNp63 target genes related to the squamous phenotype such as KRT14, FAT2, and PTHLH. -
Structure of the Human Clamp Loader Reveals an Autoinhibited Conformation of a Substrate-Bound AAA+ Switch
Structure of the human clamp loader reveals an autoinhibited conformation of a substrate-bound AAA+ switch Christl Gaubitza,1, Xingchen Liua,b,1, Joseph Magrinoa,b, Nicholas P. Stonea, Jacob Landecka,b, Mark Hedglinc, and Brian A. Kelcha,2 aDepartment of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester MA 01605; bGraduate School of Biomedical Sciences, University of Massachusetts Medical School, Worcester MA 01605; and cDepartment of Chemistry, The Pennsylvania State University, University Park, PA 16802 Edited by Michael E. O’Donnell, HHMI and Rockefeller University, New York, NY, and approved July 27, 2020 (received for review April 20, 2020) DNA replication requires the sliding clamp, a ring-shaped protein areflexia syndrome (15), Hutchinson–Gilford progeria syn- complex that encircles DNA, where it acts as an essential cofactor drome (16), and in the replication of some viruses (17–19). It for DNA polymerases and other proteins. The sliding clamp needs is unknown whether loading by RFC contributes to PARD to be opened and installed onto DNA by a clamp loader ATPase of disease. the AAA+ family. The human clamp loader replication factor C Clamp loaders are members of the AAA+ family of ATPases (RFC) and sliding clamp proliferating cell nuclear antigen (PCNA) (ATPases associated with various cellular activities), a large are both essential and play critical roles in several diseases. De- protein family that uses the chemical energy of adenosine 5′- spite decades of study, no structure of human RFC has been re- triphosphate (ATP) to generate mechanical force (20). Most solved. Here, we report the structure of human RFC bound to AAA+ proteins form hexameric motors that use an undulating PCNA by cryogenic electron microscopy to an overall resolution ∼ spiral staircase mechanism to processively translocate a substrate of 3.4 Å. -
Overcoming BET Inhibitor Resistance in Malignant Peripheral Nerve Sheath Tumors
Author Manuscript Published OnlineFirst on February 22, 2019; DOI: 10.1158/1078-0432.CCR-18-2437 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Cooper and Patel, et al. Page 1 Overcoming BET inhibitor resistance in malignant peripheral nerve sheath tumors Jonathan M. Cooper1,6, Amish J. Patel1,2,6, Zhiguo Chen1,7, Chung-Ping Liao1,7, Kun Chen1,7, Juan Mo1, Yong Wang1, Lu Q. Le1,3,4,5 1Department of Dermatology, 2Cancer Biology Graduate Program, 3Simmons Comprehensive Cancer Center, 4UTSW Comprehensive Neurofibromatosis Clinic, 5Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, 75390-9133, USA 6Co-first authors. 7These authors contributed equally. Author for correspondence: Lu Q. Le, M.D., Ph.D. Associate Professor Department of Dermatology Simmons Comprehensive Cancer Center UT Southwestern Medical Center Phone: (214) 648-5781 Fax: (214) 648-5553 E-mail: [email protected] Running Title: Cancer cell sensitivity and resistance to BET inhibitors Keywords: Neurofibromatosis Type1, NF1, Malignant Peripheral Nerve Sheath Tumor, MPNST, Neurofibrosarcomas, JQ1, BRD4 levels, BET inhibitor sensitivity and resistance, BET Bromodomain, PROTAC, ARV771 The authors have declared that no conflict of interest exists. Downloaded from clincancerres.aacrjournals.org on September 26, 2021. © 2019 American Association for Cancer Research. Author Manuscript Published OnlineFirst on February 22, 2019; DOI: 10.1158/1078-0432.CCR-18-2437 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Cooper and Patel, et al. Page 2 Statement of Translational Relevance Malignant peripheral nerve sheath tumors (MPNST) are aggressive sarcomas with no effective therapies. -
Targeting MYC Dependence in Cancer by Inhibiting BET Bromodomains
Targeting MYC dependence in cancer by inhibiting BET bromodomains Jennifer A. Mertz1, Andrew R. Conery1, Barbara M. Bryant, Peter Sandy, Srividya Balasubramanian, Deanna A. Mele, Louise Bergeron, and Robert J. Sims III2 Constellation Pharmaceuticals, Inc., Cambridge, MA 02142 Edited* by Robert N. Eisenman, Fred Hutchinson Cancer Research Center, Seattle, WA, and approved August 30, 2011 (received for review May 23, 2011) The MYC transcription factor is a master regulator of diverse in preclinical animal models of endotoxic shock caused by acti- cellular functions and has been long considered a compelling vation of Toll-like receptors that trigger the up-regulation of therapeutic target because of its role in a range of human cytokines controlled by NF-κB (7). Importantly, although RNAi- malignancies. However, pharmacologic inhibition of MYC function mediated depletion of any one individual BET protein has broad has proven challenging because of both the diverse mechanisms effects on transcription, pharmacologic inhibition of the BET driving its aberrant expression and the challenge of disrupting bromodomains perturbs the transcription of a narrower range protein–DNA interactions. Here, we demonstrate the rapid and po- of genes (7). These findings suggest an opportunity to use BET- tent abrogation of MYC gene transcription by representative small bromodomain inhibitors to fine-tune key regulatory pathways for molecule inhibitors of the BET family of chromatin adaptors. MYC therapeutic benefit. transcriptional suppression was observed in the context of the nat- BET inhibitors exhibit anticancer effects in both in vitro and ural, chromosomally translocated, and amplified gene locus. Inhi- in vivo models of midline carcinoma (8), a rare but lethal disease bition of BET bromodomain–promoter interactions and subsequent that frequently harbors a chromosomal translocation in which reduction of MYC transcript and protein levels resulted in G1 arrest the bromodomains of BRD4 are fused to the NUT gene (9). -
BET Family Members Bdf1/2 Modulate Global Transcription Initiation and Elongation in Saccharomyces Cerevisiae Rafal Donczew*, Steven Hahn*
RESEARCH ARTICLE BET family members Bdf1/2 modulate global transcription initiation and elongation in Saccharomyces cerevisiae Rafal Donczew*, Steven Hahn* Fred Hutchinson Cancer Research Center, Division of Basic Sciences, Seattle, United States Abstract Human bromodomain and extra-terminal domain (BET) family members are promising targets for therapy of cancer and immunoinflammatory diseases, but their mechanisms of action and functional redundancies are poorly understood. Bdf1/2, yeast homologues of the human BET factors, were previously proposed to target transcription factor TFIID to acetylated histone H4, analogous to bromodomains that are present within the largest subunit of metazoan TFIID. We investigated the genome-wide roles of Bdf1/2 and found that their important contributions to transcription extend beyond TFIID function as transcription of many genes is more sensitive to Bdf1/2 than to TFIID depletion. Bdf1/2 co-occupy the majority of yeast promoters and affect preinitiation complex formation through recruitment of TFIID, Mediator, and basal transcription factors to chromatin. Surprisingly, we discovered that hypersensitivity of genes to Bdf1/2 depletion results from combined defects in transcription initiation and early elongation, a striking functional similarity to human BET proteins, most notably Brd4. Our results establish Bdf1/2 as critical for yeast transcription and provide important mechanistic insights into the function of BET proteins in all eukaryotes. *For correspondence: [email protected] (RD); Introduction [email protected] (SH) Bromodomains (BDs) are reader modules that allow protein targeting to chromatin via interactions with acetylated histone tails. BD-containing factors are usually involved in gene transcription, and Competing interests: The their deregulation has been implicated in a spectrum of cancers and immunoinflammatory and neu- authors declare that no rological conditions (Fujisawa and Filippakopoulos, 2017; Wang et al., 2021). -
Involvement of Brd4 in Different Steps of the Papillomavirus Life Cycle
Virus Research 231 (2017) 76–82 Contents lists available at ScienceDirect Virus Research j ournal homepage: www.elsevier.com/locate/virusres Review Involvement of Brd4 in different steps of the papillomavirus life cycle a,∗ a b,c Thomas Iftner , Juliane Haedicke-Jarboui , Shwu-Yuan Wu , b,c,d,∗∗ Cheng-Ming Chiang a Division of Experimental Virology, Institute for Medical Virology, University Hospital Tübingen, Elfriede-Aulhorn-Str. 6, 72076 Tübingen, Germany b Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA c Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA d Department of Pharmacology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA a r t i a b s c t l e i n f o r a c t Article history: Bromodomain-containing protein 4 (Brd4) is a cellular chromatin-binding factor and transcriptional reg- Received 13 September 2016 ulator that recruits sequence-specific transcription factors and chromatin modulators to control target Received in revised form 2 December 2016 gene transcription. Papillomaviruses (PVs) have evolved to hijack Brd4’s activity in order to create a facili- Accepted 2 December 2016 tating environment for the viral life cycle. Brd4, in association with the major viral regulatory protein E2, is Available online 10 December 2016 involved in multiple steps of the PV life cycle including replication initiation, viral gene transcription, and viral genome segregation and maintenance. Phosphorylation of Brd4, regulated by casein kinase II (CK2) Keywords: and protein phosphatase 2A (PP2A), is critical for viral gene transcription as well as E1- and E2-dependent Brd4 origin replication. -
Targeting Transcriptional Regulation of SARS-Cov-2 Entry Factors ACE2 and TMPRSS2
Targeting transcriptional regulation of SARS-CoV-2 entry factors ACE2 and TMPRSS2 Yuanyuan Qiaoa,b,c,1, Xiao-Ming Wanga,b,1, Rahul Mannana,b,1, Sethuramasundaram Pitchiayaa,b, Yuping Zhanga,b, Jesse W. Wotringd, Lanbo Xiaoa,b, Dan R. Robinsona,b, Yi-Mi Wua,b, Jean Ching-Yi Tiena,b, Xuhong Caoa,b,e, Stephanie A. Simkoa,b, Ingrid J. Apela,b, Pushpinder Bawaa,b, Steven Kregela,b, Sathiya P. Narayanana, Gregory Raskinda, Stephanie J. Ellisona, Abhijit Paroliaa,b, Sylvia Zelenka-Wanga,b, Lisa McMurrya,b, Fengyun Sua, Rui Wanga, Yunhui Chenga, Andrew D. Delektaa, Zejie Meif, Carla D. Prettog, Shaomeng Wanga,c,d,g,h, Rohit Mehraa,b,c,2, Jonathan Z. Sextond,g,i,j,2, and Arul M. Chinnaiyana,b,c,e,k,2,3 aMichigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109; bDepartment of Pathology, University of Michigan, Ann Arbor, MI 48109; cRogel Cancer Center, University of Michigan, Ann Arbor, MI 48109; dDepartment of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109; eHoward Hughes Medical Institute, University of Michigan, Ann Arbor, MI 48109; fState Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Shanghai 200031, China; gDepartment of Internal Medicine, University of Michigan, Ann Arbor, MI 48109; hDepartment of Pharmacology, University of Michigan, Ann Arbor, MI 48109; iCenter for Drug Repurposing, University of Michigan, Ann Arbor, MI 48109; jMichigan Institute for Clinical and Health Research, University of Michigan, Ann Arbor, MI 48109; and kDepartment of Urology, University of Michigan, Ann Arbor, MI 48109 Contributed by Arul M. -
Response and Resistance to BET Bromodomain Inhibitors in Triple Negative Breast Cancer
HHS Public Access Author manuscript Author ManuscriptAuthor Manuscript Author Nature. Manuscript Author Author manuscript; Manuscript Author available in PMC 2016 July 06. Published in final edited form as: Nature. 2016 January 21; 529(7586): 413–417. doi:10.1038/nature16508. Response and resistance to BET bromodomain inhibitors in triple negative breast cancer Shaokun Shu#1,2, Charles Y. Lin#1,2, Housheng Hansen He#1,2,3,4,5, Robert M. Witwicki#1,2, Doris P. Tabassum1, Justin M. Roberts1, Michalina Janiszewska1,2, Sung Jin Huh1,2, Yi Liang4, Jeremy Ryan1,2, Ernest Doherty1,6, Hisham Mohammed7, Hao Guo3, Daniel G. Stover1,2, Muhammad B. Ekram1,2, Jonathan Brown1,2, Clive D'Santos7, Ian E. Krop1,2, Deborah Dillon1,8, Michael McKeown1,2, Christopher Ott1,2, Jun Qi1,2, Min Ni1,2, Prakash K. Rao9, Melissa Duarte9, Shwu-Yuan Wu10, Cheng-Ming Chiang10, Lars Anders11, Richard A. Young11, Eric Winer1,2, Antony Letai1,2, William T. Barry2,3, Jason S. Carroll7, Henry Long9, Myles Brown1,2,9, X. Shirley Liu3,9,12, Clifford A. Meyer1,2,3, James E. Bradner1,2,12, and Kornelia Polyak1,2,9,12 1Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA. 2Department of Medicine, Brigham and Women's Hospital, and Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA. 3Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, and Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts USA. 4Princess Margaret Cancer Center/University Health Network, Toronto, Ontario, M5G1L7, Canada. 5Department of Medical Biophysics, University of Toronto, Toronto, Ontario, M5G2M9, Canada. -
TG-1601 Combo a Demonstrate Correlated 2 Did Drug Mg/Kg, 94 (Blue Mg/Kg, a Anti 20 Mg/Kg Group Week
TG-1601 is a novel BET inhibitor with strong binding affinity and long-lasting effect in preclinical models 5790 Emmanuel Normant1, Leonid Gorelik2, Rama Shmeis1, Henry Le1, Robert Nisch1, Karen TenHuisen1, Teja Turpuseema1, James Oliviero2, Dhanalakshmi Sivanandhan3, Payal Kiran Parikh3, Hari P. Miskin1, Peter Sportelli1 and Michael S. Weiss1 1) TG Therapeutics, New York, NY; 2) Checkpoint Therapeutics, New York, NY, 3) Jubilant Biosys, Bangalore, India Background In vitro and in vivo Pharmacodynamic activity In vivo anti-tumor activity Pharmacodynamic markers ❖ BET (bromodomain and extra-terminal) proteins bind to acetylated Kd (nM) In vitro pharmacodynamic activity of TG-1601 In vivo anti-tumor activity in MM1s multiple myeloma model In vivo and ex-vivo validation of CCR2 and IL1RN lysine residues on chromatin and participate in the regulation of gene TG-1601 and two related BET inhibitors bromodomain TG-1601 JQ1 OTX-015 transcription. Inhibition of BET protein binding to chromatin with small TG-1601 (µM) – 24h BRD2(BD1) 8.2 57 20 Left panel: Tumor volume; molecules selectively suppresses the transcription of a set of The black solid bar on the X oncogenes, including MYC and BCL-2. BRD2(BD2) 0.65 35 3 axis indicated the period of BRD3(BD1) 4 32 12 treatment. Right panel: Body weight changes compare to ❖ TG-1601 (aka CK-103) is a novel, selective and potent small molecule BRD3(BD2) 0.46 38 2 pre-dose weight. inhibitor of BET bromodomains. TG-1601 binds to the first and second BRD4(BD1) 11 31 13 The blue rectangles represent bromodomains (BD1, BD2) of the BET protein family, BRD2, BRD3, the interruption of dosing BRD4(BD2) 0.81 29 4.9 from Day 18 to Day 25 to BRD4, and BRDT, with Kd values ranging from 0.5 nM to 9.1 nM. -
BRD2-2 (His) (Bromodomain Containing Protein 2 (RING3), Bromodomain 2)
BRD2-2 (His) (Bromodomain containing protein 2 (RING3), bromodomain 2) CATALOG NO.: RD-11-145 LOT NO.: DESCRIPTION: Human recombinant BRD2, bromodomain-2 (residues 344-454; Genbank Accession # NM_005104; MW = 15.7 kDa) expressed in E. coli with an N-terminal His-tag. BRD2, like other human members of the BET family of chromatin-binding proteins (BRD3, BRD4, BRDT), comprises two bromodomains (see reviews 1,2 ), protein modules that bind ε-N-acetyllysine residues 3,4 . When overexpressed in 293 cells, BRD2, along with BRD3, binds the hyperacetylated chromatin of transcribed genes, regions enriched in acetylated histone H4 lysine-5 (H4K5Ac), H4K12Ac, H3K14Ac, but deficient in H4K16Ac and H3K9me 5. A single H4K5AcK12Ac peptide can bind two copies of BRD2-2 (BRD2, bromodomain 2), each interacting with one of the two acetylated lysines 6. In an in vitro RNA polymerase II transcription system, binding of either BRD2 or BRD3 to a chromatin template assembled with hyperacetylated histones enabled transcription through the nucleosomes 5. Further, BRD2 displayed histone chaperone activity, catalyzing the transfer of histone octamers from hyperacetylated oligonucleosomes to a labeled 190 bp 5s rDNA fragment 5. Like BRD4, BRD2 is a ubiquitously expressed 7 transcriptional regulator 8 and atypical protein kinase 9, with functions in cell cycle progression 8 and embryogenesis 10,11 . BRD2 binds preferentially to hyperacetylated histone H4 in H2A.Z-containing nucleosomes and this interaction is required for activation of androgen receptor (AR)-regulated genes in prostate cancer cells 12 . In addition to prostate cancer, leukemia is a potential indication for specific BRD2 inhibition9,13 . BRD2 suppresses HIV transcription in latently infected cells and may therefore represent a target in therapeutic strategies involving viral reactivation 14 .