Variations on Taylor's Formula

Total Page:16

File Type:pdf, Size:1020Kb

Variations on Taylor's Formula LECTURE 1 Variations on Taylor's Formula Numerical metho ds are ipso facto approximate metho ds. This b eing the case, it will b e imp ortant through- out this course to determine the accuracy of numerical results. We shall b egin by reviewing the analytic metho ds by whichwe approximate functions and howwe b ound the errors that arise from such approxima- tions. n Definition 1.1. We denote by C [a; b] the set of functions on the interval [a; b] R that have continuous n derivatives up to order n. We denote by C R the set of functions on the real line that have continuous 1 1 derivatives up to order n. We denote by C [a; b] and C R the sets of functions for which derivatives of al l orders exist on, respectively, [a; b] and R. 2 1 2 Example 1.2. If f x x sin1=x then f is in C R but not in C R. To see this, note 1 2 =0 lim f x = lim x sin x!0 x!0 x 1 2 0 since x ! 0 and sin is b ounded b etween 1 and 1. Thus f 2 C R. x df f x f 0 lim x!0 dx x x=0 1 x sin = lim x!0 x = 0 again b ecause it the limit of a function that is the pro duct of a function that vanishes at the limit p oint 1 and a function that remains b ounded. So f is also in C R. However, 2 0 0 d f f x f 0 lim 2 x!0 dx x x=0 1 2x sin1=x cos 0 x = lim x!0 x 1 cos x = lim x!0 x 2 do es not exist. Thus, f=2 C R. Remark 1.3. In general, wehave 1 3 2 1 0 C [a; b] C [a; b] C [a; b] C [a; b] C [a; b] n+1 Theorem 1.4. Taylor's Theorem with Integral Remainder. If f 2 C [a; b], then for any points x; x 2 [a; b], o n X 1 k k f x x x + R x f x= o o n k ! k =0 where Z x 1 n+1 n R x f tx t dt n n! x o 1 1. VARIATIONS ON TAYLOR'S FORMULA 2 Proof. This theorem is surprisingly easy to prove. We start by using integration by parts to evaluate the right hand side of the de nition of the error term R x: Setting n 1 n n+1 u = x t dv = f tdt n! 1 n1 n x t v = f t du = n1! and using the integration by parts formula Z Z x x x udv = uv j vdu x o x x o o we nd Z x x 1 1 n n n n1 x t f t f tx t dt + R x n n! n 1! x o x o 1 n n f x x x + R x = o o n1 n! Wethus have a recursive formula for R x. Using this recursive formula over and over again we can reduce n the right hand side to 1 1 n n n1 n1 R x = f x x x f x x x + n o o o o n! n 1! 1 1 0 n f x x x + R x o o 0 1! 0! Z n x X 1 n 0 0 n f tx t dt = f x x x + o o 0! x o n=1 Z n x X n 0 n = f tdt f x x x + o o x o n=1 n X n n = f x x x + f x f x o o o n=1 n X n n = f x x x + f x o o n=0 Solving the extreme sides for f x yields n X 1 k k f x= f x x x + R x o o n k ! k =0 Remark 1.5. Note that in this formulation of Taylor's Theorem, wehave an explicit formula for computing the error term R x. However, since the error term dep ends on the choice of x and x in a non-trivial way, n o we do not have at least at face value an understanding of how the error term changes as wevary x. Such an understanding would b e critical if we are to regard n X 1 k k f x f x x x n o o k ! k =0 as a p olynomial function approximate to the original function f x. Belowwe'll deduce b ounds on the error term R xasx ranges throughout the interval [a; b]. n Theorem 1.6. Mean Value Theorem for Integrals. Let u and v becontinuous real-valued functions on an interval [a; b], and suppose that v x 0 for al l x 2 [a; b]. Then there exists a point 2 [a; b] such that Z Z b b uxv xdx = u v xdx . a a 1. VARIATIONS ON TAYLOR'S FORMULA 3 Proof. Let and denote, resp ectively, the minimal and maximal values of uxon[a; b]. Then v x uxv x vx ; 8 x 2 [a; b] Integrating this relationship b etween a and b yields Z Z Z b b b v xdx uxv xdx v xdx a a a or R b uxv xdx a R b v xdx a Nowbyhyp othesis, = u x and = u x for some x ;x 2 [a; b] . By the Intermediate Value Theorem 1 2 1 2 for Continuous Functions, for anynumber between and there must exist a p oint 2 [a; b] such that u = . In particular, there must exist a p oint 2 [a; b] such that R b uxv xdx a u = R b v xdx a Hence there exists a p oint 2 [a; b] such that Z Z b b v xdx uxv xdx = u a a Remark 1.7. The usual Mean Value Theorem; i.e., the statement that if f xiscontinuous and di eren- tiable on [a; b] then there is a p oint 2 [a; b] such that f b f a 0 f = b a 0 is a sp ecial case of the formulation ab ove. To see this, note that if we take ux=f x and v x = 1, then the ab ove theorem implies Z Z b b 0 0 f xdx = f dx a a Carrying out the integrations on b oth sides yields f b f a 0 0 f b f a=f b a f = b a n n+1 Theorem 1.8. Taylor's Theorem with Lagrange Remainder. If f 2 C [a; b] and f x exists on a; b then for any point x and x in [a; b] o n X 1 k k f x= f x x x + E x o o n k ! k =0 where 1 n+1 n+1 E x= f x x n o n + 1! for some point between x and x : o Proof. According to Taylor's Theorem with Integral Remainder is Z n x X 1 1 k k n+1 n f x= f x x x + f tx t dt o o k ! n! x o k =0 By the Mean Value Theorem for Integrals Z Z x x 1 1 1 n+1 n+1 n+1 n+1 n n f f x x f tx t dt = x t dt = o n! n! n + 1! x x o o 1. PROBLEMS 4 for some between x and x . Hence, o n X 1 1 n+1 k k n+1 f x= f x x x + f x x o o o k ! n + 1! k =0 for some between x and x . o Remark 1.9. Note that in this formulation of Taylor's theorem the error term is still not precisely deter- mined; b ecause the p oint in the theorem statement is left undetermined. We know only that there is some p oint 2 [a; b] such that n X 1 1 n+1 k k n+1 f x x x = f x x f x o o o k ! n + 1! k =0 However, what we gain in this formulation are solid b ounds on the size of the error term over a range of x. n+1 To see this let M b e the maximum value of f x on the interval [a; b], then n X M 1 n+1 k k f x x x jx x j f x o o o k ! n + 1! k =0 Note that this b ound is indep endent of the choice of x and x in [a; b]. o n+1 Corollary 1.10. Alternative Form of Taylor's Theorem.Iff 2 C [a; b], then for any points x and x + h 2 [a; b], n X 1 k k f x + h= f xh + E h n k ! k =0 where 1 n+1 n+1 E h= f h n n + 1! in which the point lies between x and x + h. 1. Problems 1.1. Given that n d n1 ln jxj =1 n 1! n dx x=1 a Use the Taylor Theorem with Integral Remainder to nd the magnitude of the error term R 1:99 100 when one approximates ln[1:99] using the rst 101 terms of the Taylor expansion ab out 1 of ln jxj.
Recommended publications
  • Notes on Calculus II Integral Calculus Miguel A. Lerma
    Notes on Calculus II Integral Calculus Miguel A. Lerma November 22, 2002 Contents Introduction 5 Chapter 1. Integrals 6 1.1. Areas and Distances. The Definite Integral 6 1.2. The Evaluation Theorem 11 1.3. The Fundamental Theorem of Calculus 14 1.4. The Substitution Rule 16 1.5. Integration by Parts 21 1.6. Trigonometric Integrals and Trigonometric Substitutions 26 1.7. Partial Fractions 32 1.8. Integration using Tables and CAS 39 1.9. Numerical Integration 41 1.10. Improper Integrals 46 Chapter 2. Applications of Integration 50 2.1. More about Areas 50 2.2. Volumes 52 2.3. Arc Length, Parametric Curves 57 2.4. Average Value of a Function (Mean Value Theorem) 61 2.5. Applications to Physics and Engineering 63 2.6. Probability 69 Chapter 3. Differential Equations 74 3.1. Differential Equations and Separable Equations 74 3.2. Directional Fields and Euler’s Method 78 3.3. Exponential Growth and Decay 80 Chapter 4. Infinite Sequences and Series 83 4.1. Sequences 83 4.2. Series 88 4.3. The Integral and Comparison Tests 92 4.4. Other Convergence Tests 96 4.5. Power Series 98 4.6. Representation of Functions as Power Series 100 4.7. Taylor and MacLaurin Series 103 3 CONTENTS 4 4.8. Applications of Taylor Polynomials 109 Appendix A. Hyperbolic Functions 113 A.1. Hyperbolic Functions 113 Appendix B. Various Formulas 118 B.1. Summation Formulas 118 Appendix C. Table of Integrals 119 Introduction These notes are intended to be a summary of the main ideas in course MATH 214-2: Integral Calculus.
    [Show full text]
  • Calculus for the Life Sciences I Lecture Notes – Limits, Continuity, and the Derivative
    Limits Continuity Derivative Calculus for the Life Sciences I Lecture Notes – Limits, Continuity, and the Derivative Joseph M. Mahaffy, [email protected] Department of Mathematics and Statistics Dynamical Systems Group Computational Sciences Research Center San Diego State University San Diego, CA 92182-7720 http://www-rohan.sdsu.edu/∼jmahaffy Spring 2013 Lecture Notes – Limits, Continuity, and the Deriv Joseph M. Mahaffy, [email protected] — (1/24) Limits Continuity Derivative Outline 1 Limits Definition Examples of Limit 2 Continuity Examples of Continuity 3 Derivative Examples of a derivative Lecture Notes – Limits, Continuity, and the Deriv Joseph M. Mahaffy, [email protected] — (2/24) Limits Definition Continuity Examples of Limit Derivative Introduction Limits are central to Calculus Lecture Notes – Limits, Continuity, and the Deriv Joseph M. Mahaffy, [email protected] — (3/24) Limits Definition Continuity Examples of Limit Derivative Introduction Limits are central to Calculus Present definitions of limits, continuity, and derivative Lecture Notes – Limits, Continuity, and the Deriv Joseph M. Mahaffy, [email protected] — (3/24) Limits Definition Continuity Examples of Limit Derivative Introduction Limits are central to Calculus Present definitions of limits, continuity, and derivative Sketch the formal mathematics for these definitions Lecture Notes – Limits, Continuity, and the Deriv Joseph M. Mahaffy, [email protected] — (3/24) Limits Definition Continuity Examples of Limit Derivative Introduction Limits
    [Show full text]
  • Hegel on Calculus
    HISTORY OF PHILOSOPHY QUARTERLY Volume 34, Number 4, October 2017 HEGEL ON CALCULUS Ralph M. Kaufmann and Christopher Yeomans t is fair to say that Georg Wilhelm Friedrich Hegel’s philosophy of Imathematics and his interpretation of the calculus in particular have not been popular topics of conversation since the early part of the twenti- eth century. Changes in mathematics in the late nineteenth century, the new set-theoretical approach to understanding its foundations, and the rise of a sympathetic philosophical logic have all conspired to give prior philosophies of mathematics (including Hegel’s) the untimely appear- ance of naïveté. The common view was expressed by Bertrand Russell: The great [mathematicians] of the seventeenth and eighteenth cen- turies were so much impressed by the results of their new methods that they did not trouble to examine their foundations. Although their arguments were fallacious, a special Providence saw to it that their conclusions were more or less true. Hegel fastened upon the obscuri- ties in the foundations of mathematics, turned them into dialectical contradictions, and resolved them by nonsensical syntheses. .The resulting puzzles [of mathematics] were all cleared up during the nine- teenth century, not by heroic philosophical doctrines such as that of Kant or that of Hegel, but by patient attention to detail (1956, 368–69). Recently, however, interest in Hegel’s discussion of calculus has been awakened by an unlikely source: Gilles Deleuze. In particular, work by Simon Duffy and Henry Somers-Hall has demonstrated how close Deleuze and Hegel are in their treatment of the calculus as compared with most other philosophers of mathematics.
    [Show full text]
  • Limits and Derivatives 2
    57425_02_ch02_p089-099.qk 11/21/08 10:34 AM Page 89 FPO thomasmayerarchive.com Limits and Derivatives 2 In A Preview of Calculus (page 3) we saw how the idea of a limit underlies the various branches of calculus. Thus it is appropriate to begin our study of calculus by investigating limits and their properties. The special type of limit that is used to find tangents and velocities gives rise to the central idea in differential calcu- lus, the derivative. We see how derivatives can be interpreted as rates of change in various situations and learn how the derivative of a function gives information about the original function. 89 57425_02_ch02_p089-099.qk 11/21/08 10:35 AM Page 90 90 CHAPTER 2 LIMITS AND DERIVATIVES 2.1 The Tangent and Velocity Problems In this section we see how limits arise when we attempt to find the tangent to a curve or the velocity of an object. The Tangent Problem The word tangent is derived from the Latin word tangens, which means “touching.” Thus t a tangent to a curve is a line that touches the curve. In other words, a tangent line should have the same direction as the curve at the point of contact. How can this idea be made precise? For a circle we could simply follow Euclid and say that a tangent is a line that intersects the circle once and only once, as in Figure 1(a). For more complicated curves this defini- tion is inadequate. Figure l(b) shows two lines and tl passing through a point P on a curve (a) C.
    [Show full text]
  • A Quotient Rule Integration by Parts Formula Jennifer Switkes ([email protected]), California State Polytechnic Univer- Sity, Pomona, CA 91768
    A Quotient Rule Integration by Parts Formula Jennifer Switkes ([email protected]), California State Polytechnic Univer- sity, Pomona, CA 91768 In a recent calculus course, I introduced the technique of Integration by Parts as an integration rule corresponding to the Product Rule for differentiation. I showed my students the standard derivation of the Integration by Parts formula as presented in [1]: By the Product Rule, if f (x) and g(x) are differentiable functions, then d f (x)g(x) = f (x)g(x) + g(x) f (x). dx Integrating on both sides of this equation, f (x)g(x) + g(x) f (x) dx = f (x)g(x), which may be rearranged to obtain f (x)g(x) dx = f (x)g(x) − g(x) f (x) dx. Letting U = f (x) and V = g(x) and observing that dU = f (x) dx and dV = g(x) dx, we obtain the familiar Integration by Parts formula UdV= UV − VdU. (1) My student Victor asked if we could do a similar thing with the Quotient Rule. While the other students thought this was a crazy idea, I was intrigued. Below, I derive a Quotient Rule Integration by Parts formula, apply the resulting integration formula to an example, and discuss reasons why this formula does not appear in calculus texts. By the Quotient Rule, if f (x) and g(x) are differentiable functions, then ( ) ( ) ( ) − ( ) ( ) d f x = g x f x f x g x . dx g(x) [g(x)]2 Integrating both sides of this equation, we get f (x) g(x) f (x) − f (x)g(x) = dx.
    [Show full text]
  • Calculus Terminology
    AP Calculus BC Calculus Terminology Absolute Convergence Asymptote Continued Sum Absolute Maximum Average Rate of Change Continuous Function Absolute Minimum Average Value of a Function Continuously Differentiable Function Absolutely Convergent Axis of Rotation Converge Acceleration Boundary Value Problem Converge Absolutely Alternating Series Bounded Function Converge Conditionally Alternating Series Remainder Bounded Sequence Convergence Tests Alternating Series Test Bounds of Integration Convergent Sequence Analytic Methods Calculus Convergent Series Annulus Cartesian Form Critical Number Antiderivative of a Function Cavalieri’s Principle Critical Point Approximation by Differentials Center of Mass Formula Critical Value Arc Length of a Curve Centroid Curly d Area below a Curve Chain Rule Curve Area between Curves Comparison Test Curve Sketching Area of an Ellipse Concave Cusp Area of a Parabolic Segment Concave Down Cylindrical Shell Method Area under a Curve Concave Up Decreasing Function Area Using Parametric Equations Conditional Convergence Definite Integral Area Using Polar Coordinates Constant Term Definite Integral Rules Degenerate Divergent Series Function Operations Del Operator e Fundamental Theorem of Calculus Deleted Neighborhood Ellipsoid GLB Derivative End Behavior Global Maximum Derivative of a Power Series Essential Discontinuity Global Minimum Derivative Rules Explicit Differentiation Golden Spiral Difference Quotient Explicit Function Graphic Methods Differentiable Exponential Decay Greatest Lower Bound Differential
    [Show full text]
  • Limits of Functions
    Chapter 2 Limits of Functions In this chapter, we define limits of functions and describe some of their properties. 2.1. Limits We begin with the ϵ-δ definition of the limit of a function. Definition 2.1. Let f : A ! R, where A ⊂ R, and suppose that c 2 R is an accumulation point of A. Then lim f(x) = L x!c if for every ϵ > 0 there exists a δ > 0 such that 0 < jx − cj < δ and x 2 A implies that jf(x) − Lj < ϵ. We also denote limits by the `arrow' notation f(x) ! L as x ! c, and often leave it to be implicitly understood that x 2 A is restricted to the domain of f. Note that we exclude x = c, so the function need not be defined at c for the limit as x ! c to exist. Also note that it follows directly from the definition that lim f(x) = L if and only if lim jf(x) − Lj = 0: x!c x!c Example 2.2. Let A = [0; 1) n f9g and define f : A ! R by x − 9 f(x) = p : x − 3 We claim that lim f(x) = 6: x!9 To prove this, let ϵ >p 0 be given. For x 2 A, we have from the difference of two squares that f(x) = x + 3, and p x − 9 1 jf(x) − 6j = x − 3 = p ≤ jx − 9j: x + 3 3 Thus, if δ = 3ϵ, then jx − 9j < δ and x 2 A implies that jf(x) − 6j < ϵ.
    [Show full text]
  • Integration by Parts
    3 Integration By Parts Formula ∫∫udv = uv − vdu I. Guidelines for Selecting u and dv: (There are always exceptions, but these are generally helpful.) “L-I-A-T-E” Choose ‘u’ to be the function that comes first in this list: L: Logrithmic Function I: Inverse Trig Function A: Algebraic Function T: Trig Function E: Exponential Function Example A: ∫ x3 ln x dx *Since lnx is a logarithmic function and x3 is an algebraic function, let: u = lnx (L comes before A in LIATE) dv = x3 dx 1 du = dx x x 4 v = x 3dx = ∫ 4 ∫∫x3 ln xdx = uv − vdu x 4 x 4 1 = (ln x) − dx 4 ∫ 4 x x 4 1 = (ln x) − x 3dx 4 4 ∫ x 4 1 x 4 = (ln x) − + C 4 4 4 x 4 x 4 = (ln x) − + C ANSWER 4 16 www.rit.edu/asc Page 1 of 7 Example B: ∫sin x ln(cos x) dx u = ln(cosx) (Logarithmic Function) dv = sinx dx (Trig Function [L comes before T in LIATE]) 1 du = (−sin x) dx = − tan x dx cos x v = ∫sin x dx = − cos x ∫sin x ln(cos x) dx = uv − ∫ vdu = (ln(cos x))(−cos x) − ∫ (−cos x)(− tan x)dx sin x = −cos x ln(cos x) − (cos x) dx ∫ cos x = −cos x ln(cos x) − ∫sin x dx = −cos x ln(cos x) + cos x + C ANSWER Example C: ∫sin −1 x dx *At first it appears that integration by parts does not apply, but let: u = sin −1 x (Inverse Trig Function) dv = 1 dx (Algebraic Function) 1 du = dx 1− x 2 v = ∫1dx = x ∫∫sin −1 x dx = uv − vdu 1 = (sin −1 x)(x) − x dx ∫ 2 1− x ⎛ 1 ⎞ = x sin −1 x − ⎜− ⎟ (1− x 2 ) −1/ 2 (−2x) dx ⎝ 2 ⎠∫ 1 = x sin −1 x + (1− x 2 )1/ 2 (2) + C 2 = x sin −1 x + 1− x 2 + C ANSWER www.rit.edu/asc Page 2 of 7 II.
    [Show full text]
  • Integration-By-Parts.Pdf
    Integration INTEGRATION BY PARTS Graham S McDonald A self-contained Tutorial Module for learning the technique of integration by parts ● Table of contents ● Begin Tutorial c 2003 [email protected] Table of contents 1. Theory 2. Usage 3. Exercises 4. Final solutions 5. Standard integrals 6. Tips on using solutions 7. Alternative notation Full worked solutions Section 1: Theory 3 1. Theory To differentiate a product of two functions of x, one uses the product rule: d dv du (uv) = u + v dx dx dx where u = u (x) and v = v (x) are two functions of x. A slight rearrangement of the product rule gives dv d du u = (uv) − v dx dx dx Now, integrating both sides with respect to x results in Z dv Z du u dx = uv − v dx dx dx This gives us a rule for integration, called INTEGRATION BY PARTS, that allows us to integrate many products of functions of x. We take one factor in this product to be u (this also appears on du the right-hand-side, along with dx ). The other factor is taken to dv be dx (on the right-hand-side only v appears – i.e. the other factor integrated with respect to x). Toc JJ II J I Back Section 2: Usage 4 2. Usage We highlight here four different types of products for which integration by parts can be used (as well as which factor to label u and which one dv to label dx ). These are: sin bx (i) R xn· or dx (ii) R xn·eaxdx cos bx ↑ ↑ ↑ ↑ dv dv u dx u dx sin bx (iii) R xr· ln (ax) dx (iv) R eax · or dx cos bx ↑ ↑ ↑ ↑ dv dv dx u u dx where a, b and r are given constants and n is a positive integer.
    [Show full text]
  • MATH M25BH: Honors: Calculus with Analytic Geometry II 1
    MATH M25BH: Honors: Calculus with Analytic Geometry II 1 MATH M25BH: HONORS: CALCULUS WITH ANALYTIC GEOMETRY II Originator brendan_purdy Co-Contributor(s) Name(s) Abramoff, Phillip (pabramoff) Butler, Renee (dbutler) Balas, Kevin (kbalas) Enriquez, Marcos (menriquez) College Moorpark College Attach Support Documentation (as needed) Honors M25BH.pdf MATH M25BH_state approval letter_CCC000621759.pdf Discipline (CB01A) MATH - Mathematics Course Number (CB01B) M25BH Course Title (CB02) Honors: Calculus with Analytic Geometry II Banner/Short Title Honors: Calc/Analy Geometry II Credit Type Credit Start Term Fall 2021 Catalog Course Description Reviews integration. Covers area, volume, arc length, surface area, centers of mass, physics applications, techniques of integration, improper integrals, sequences, series, Taylor’s Theorem, parametric equations, polar coordinates, and conic sections with translations. Honors work challenges students to be more analytical and creative through expanded assignments and enrichment opportunities. Additional Catalog Notes Course Credit Limitations: 1. Credit will not be awarded for both the honors and regular versions of a course. Credit will be awarded only for the first course completed with a grade of "C" or better or "P". Honors Program requires a letter grade. 2. MATH M16B and MATH M25B or MATH M25BH combined: maximum one course for transfer credit. Taxonomy of Programs (TOP) Code (CB03) 1701.00 - Mathematics, General Course Credit Status (CB04) D (Credit - Degree Applicable) Course Transfer Status (CB05)
    [Show full text]
  • Mathematics for Economics Anthony Tay 7. Limits of a Function The
    Mathematics for Economics Anthony Tay 7. Limits of a function The concept of a limit of a function is one of the most important in mathematics. Many key concepts are defined in terms of limits (e.g., derivatives and continuity). The primary objective of this section is to help you acquire a firm intuitive understanding of the concept. Roughly speaking, the limit concept is concerned with the behavior of a function f around a certain point (say a ) rather than with the value fa() of the function at that point. The question is: what happens to the value of fx() when x gets closer and closer to a (without ever reaching a )? ln x Example 7.1 Take the function fx()= . 5 x2 −1 4 This function is not defined at the point x =1, because = 3 the denominator at x 1 is zero. However, as x f(x) = ln(x) / (x2-1) 1 2 ‘tends’ to 1, the value of the function ‘tends’ to 2 . We 1 say that “the limit of the function fx() is 2 as x 1 approaches 1, or 0 0 0.5 1 1.5 2 lnx 1 lim = x→1 x2 −1 2 It is important to be clear: the limit of a function and the value of a function are two completely different concepts. In example 7.1, for instance, the value of fx() at x =1 does not even exist; the function is undefined there. However, the limit as x →1 does exist: the value of the function fx() does tend to 1 something (in this case: 2 ) as x gets closer and closer to 1.
    [Show full text]
  • Maximum and Minimum Definition
    Maximum and Minimum Definition: Definition: Let f be defined in an interval I. For all x, y in the interval I. If f(x) < f(y) whenever x < y then we say f is increasing in the interval I. If f(x) > f(y) whenever x < y then we say f is decreasing in the interval I. Graphically, a function is increasing if its graph goes uphill when x moves from left to right; and if the function is decresing then its graph goes downhill when x moves from left to right. Notice that a function may be increasing in part of its domain while decreasing in some other parts of its domain. For example, consider f(x) = x2. Notice that the graph of f goes downhill before x = 0 and it goes uphill after x = 0. So f(x) = x2 is decreasing on the interval (−∞; 0) and increasing on the interval (0; 1). Consider f(x) = sin x. π π 3π 5π 7π 9π f is increasing on the intervals (− 2 ; 2 ), ( 2 ; 2 ), ( 2 ; 2 )...etc, while it is de- π 3π 5π 7π 9π 11π creasing on the intervals ( 2 ; 2 ), ( 2 ; 2 ), ( 2 ; 2 )...etc. In general, f = sin x is (2n+1)π (2n+3)π increasing on any interval of the form ( 2 ; 2 ), where n is an odd integer. (2m+1)π (2m+3)π f(x) = sin x is decreasing on any interval of the form ( 2 ; 2 ), where m is an even integer. What about a constant function? Is a constant function an increasing function or decreasing function? Well, it is like asking when you walking on a flat road, as you going uphill or downhill? From our definition, a constant function is neither increasing nor decreasing.
    [Show full text]