Matapopore Cultural Design Strategy Whiti-Reia / the Cathedral Square
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Kaiapoi Street Map
Kaiapoi Street Map www.northcanterbury.co.nz www.visitwaimakariri.co.nz 5 19 To Woodend, Kaikoura and Picton North To Rangiora T S S M A I L L I W 2 D R E 62 D I S M A C 29 54 E V A 64 E To Pines, O H and Kairaki 52 U T 39 45 4 57 44 10 7 63 46 47 30 8 32 59 9 38 33 24 65 11 37 66 48 18 16 23 61 26 20 17 27 25 49 13 58 14 12 28 21 51 15 22 31 41 56 50 55 3 1 35 Sponsored by 36 JIM BRYDEN RESERVE LICENSED AGENT REAA 2008 To Christchurch Harcourts Twiss-Keir Realty Ltd. 6 MREINZ Licensed Agent REAA 2008. Phone: 03 327 5379 Email: [email protected] Web: www.twisskeir.co.nz 40 60 © Copyright Enterprise North Canterbury 2016 For information and bookings contact Kaiapoi i-SITE Visitor Centre Kaiapoi Street and Information Index Phone 03 327 3134 Adams Street C5 Cressy Ave F3 Lees Rd A5 Sneyd St F2 Accommodation Attractions Adderley Tce E2 Cridland St E4 Lower Camside Rd B4 Sovereign Bvd C5 1 H3 Blue Skies Holiday & Conference Park 32 F4 Kaiapoi Historic Railway Station Akaroa St G3 Cumberland Pl H2 Magnate Dr C5 Stark Pl D5 2 C4 Grenmora B & B 55 Old North Rd 33 F4 Kaiapoi Museum And Art Gallery Aldersgate St G2 Dale St D4 Magnolia Bvd D5 Sterling Cres C5 3 H3 Kaiapoi on Williams Motel 35 H3 National Scout Museum Alexander Ln F3 Davie St F4 Main Drain Rd D1 Stone St H4 64 F6 Kairaki Beach Cottage 36 H5 Woodford Glen Speedway Allison Cres D5 Dawson Douglas Pl G4 Main North Rd I3 Storer St F1 4 F3 Morichele B & B Alpine Ln F3 Day Pl F5 Mansfield Dr G3 Sutherland Dr C6 5 A5 Pine Acres Holiday Park & Motels Recreation Ansel Pl D5 Doubledays -
Unsettling Recovery: Natural Disaster Response and the Politics of Contemporary Settler Colonialism
UNSETTLING RECOVERY: NATURAL DISASTER RESPONSE AND THE POLITICS OF CONTEMPORARY SETTLER COLONIALISM A DISSERTATION SUBMITTED TO THE FACULTY OF THE UNIVERSITY OF MINNESOTA BY STEVEN ANDREW KENSINGER IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DR. DAVID LIPSET, ADVISER JULY 2019 Steven Andrew Kensinger, 2019 © Acknowledgements The fieldwork on which this dissertation is based was funded by a Doctoral Dissertation Fieldwork Grant No. 8955 awarded by the Wenner-Gren Foundation for Anthropological Research. I also want to thank Dr. Robert Berdahl and the Berdahl family for endowing the Daphne Berdahl Memorial Fellowship which provided funds for two preliminary fieldtrips to New Zealand in preparation for the longer fieldwork period. I also received funding while in the field from the University of Minnesota Graduate School through a Thesis Research Travel Grant. I want to thank my advisor, Dr. David Lipset, and the members of my dissertation committee, Dr. Hoon Song, Dr. David Valentine, and Dr. Margaret Werry for their help and guidance in preparing the dissertation. In the Department of Anthropology at the University of Minnesota, Dr. William Beeman, Dr. Karen Ho, and Dr. Karen-Sue Taussig offered personal and professional support. I am grateful to Dr. Kieran McNulty for offering me a much-needed funding opportunity in the final stages of dissertation writing. A special thanks to my colleagues Dr. Meryl Puetz-Lauer and Dr. Timothy Gitzen for their support and encouragement. Dr. Carol Lauer graciously offered to read and comment on several of the chapters. My fellow graduate students and writing-accountability partners Dr. -
Future Christchurch Update
Future Christchurch Update The voice of the Canterbury rebuild MAY 2016 Regenerate Christchurch board announced Page 3 Exciting time for Sumner Pages 6–7 SCIRT – rebuilding stronger and better Pages 8–9 Pacific women celebrating post-quake identity Page 14 Words designed to reflect the feelings of the people of Christchurch now adorn this 100-metre-long wall in the central city as part of this year’s SPECTRUM Festival. Street art for the people of Christchurch I always knew you would come back. Local writer Hannah Herchenbach came up with the They were painted on a prominent wall in the South phrase, I always knew you would come back. Frame by international street artist Elliott Routledge, These are the words that took out the recent WORD aka Numskull (pictured above). UP competition to find a phrase that captured the way Festival Director George Shaw says the words Christchurch people feel about their city. describe the personal journey that resonates with More details on page 15. many Christchurch people. WORD UP formed part of the finale of the third annual SPECTRUM street art festival in central Christchurch. Future Christchurch Update May 2016 CHRISTCHURCH CITY COUNCIL Karleen Edwards Inside: Christchurch City Council Chief Executive Officer 3 New regeneration leaders announced This month we experienced organisations which will have such an and development of much-loved a significant development in impact on our city’s rejuvenation. I am community facilities such as the 4–5 Christchurch City Christchurch’s rebuild journey. confident that in working alongside new Aranui-Wainoni Community Council facilities Regenerate Christchurch and Ōtākaro Centre. -
Seismic Ratings for Degrading Structural Systems
205 GEOTECHNICAL ASPECTS OF THE 22 FEBRUARY 2011 CHRISTCHURCH EARTHQUAKE Misko Cubrinovski1, Brendon Bradley1, Liam Wotherspoon2, Russell Green3, Jonathan Bray4, Clint Wood5, Michael Pender2, 6 7 8 1 John Allen , Aaron Bradshaw , Glenn Rix , Merrick Taylor , Kelly Robinson1, Duncan Henderson1, Simona Giorgini1, Kun Ma1, Anna Winkley1, Josh Zupan4, Thomas O’Rourke9, 10 11 Greg DePascale , Donnald Wells SUMMARY The 22 February 2011, Mw6.2-6.3 Christchurch earthquake is the most costly earthquake to affect New Zealand, causing 181 fatalities and severely damaging thousands of residential and commercial buildings, and most of the city lifelines and infrastructure. This manuscript presents an overview of observed geotechnical aspects of this earthquake as well as some of the completed and on-going research investigations. A unique aspect, which is particularly emphasized, is the severity and spatial extent of liquefaction occurring in native soils. Overall, both the spatial extent and severity of liquefaction in the city was greater than in the preceding 4th September 2010 Darfield earthquake, including numerous areas that liquefied in both events. Liquefaction and lateral spreading, variable over both large and short spatial scales, affected commercial structures in the Central Business District (CBD) in a variety of ways including: total and differential settlements and tilting; punching settlements of structures with shallow foundations; differential movements of components of complex structures; and interaction of adjacent structures via common foundation soils. Liquefaction was most severe in residential areas located to the east of the CBD as a result of stronger ground shaking due to the proximity to the causative fault, a high water table approximately 1m from the surface, and soils with composition and states of high susceptibility and potential for liquefaction. -
The Public Realm of Central Christchurch Narrative
THE PUBLIC REALM OF CENTRAL CHRISTCHURCH NARRATIVE Written by Debbie Tikao, Landscape Architect and General Manager of the Matapopore Charitable Trust. Kia atawhai ki te iwi – Care for the people Pita Te Hori, Upoko – Ngāi Tūāhuriri Rūnanga, 1861 The Public Realm of Central Christchurch Narrative 1 2 CERA Grand Narratives INTRODUCTION This historical narrative weaves together Ngāi Tahu cultural values, stories and traditional knowledge associated with Ōtautahi (Christchurch) and the highly mobile existence of hapū and whānau groups within the Canterbury area and the wider landscape of Te Waipounamu (South Island). The focus of this historical narrative therefore is on this mobile way of life and the depth of knowledge of the natural environment and natural phenomena that was needed to navigate the length and breadth of the diverse and extreme landscape of Te Waipounamu. The story that will unfold is not one of specific sites or specific areas, but rather a story of passage and the detailed cognitive maps that evolved over time through successive generations, which wove together spiritual, genealogical, historical and physical information that bound people to place and provided knowledge of landscape features, mahinga kai and resting places along the multitude of trails that established the basis for an economy based on trade and kinship. This knowledge system has been referred to in other places as an oral map or a memory map, which are both good descriptions; however, here it is referred to as a cognitive map in an attempt to capture the multiple layers of ordered and integrated information it contains. This historical narrative has been written to guide the design of the public realm of the Christchurch central business area, including the public spaces within the East and South frames. -
Comparison of Liquefaction-Induced Land Damage and Geomorphic Variability in Avonside, New Zealand
6th International Conference on Earthquake Geotechnical Engineering 1-4 November 2015 Christchurch, New Zealand Comparison of Liquefaction-induced Land Damage and Geomorphic Variability in Avonside, New Zealand S.H. Bastin1, M.C. Quigley2, K. Bassett3 Abstract Field mapping, LiDAR, and aerial photography are used to map surface liquefaction-induced lateral spreading fissures and aligned sand blow vents formed during the 22 February 2011 Mw 6.2 Christchurch earthquake. Classification of the study area into 164 polygons enables comparison of liquefaction severity metrics including linear liquefaction feature density, ejecta surface area, and horizontal and vertical ground surface displacements with geomorphic metrics including distance from the downslope free-face, surface elevation, sediment type, and the liquefaction potential index (LPI). Preliminary analyses indicate (i) mean fissure density decreases with increasing distance from the free face at distances of 0-50 m, no relationship is observed at distances >50 m, (ii) mean horizontal ground displacement increases with increasing LPI, and (iii) vertical subsidence is invariant with elevation, implying that other factors (e.g. LPI) may contribute to a complex liquefaction strain field. The basic geology and geomorphology are derived from LiDAR and modern river morphology. Comparison of the liquefaction data with geomorphic mapping indicates geomorphic mapping may be applied to determine the likely distribution of sediments susceptible to liquefaction. Introduction Cyclic shearing of loosely consolidated, fluid saturated sediments during earthquake-induced ground motion results in excess pore-water pressures and reduced shear strength in the affected media. Liquefaction occurs as the grain arrangement collapses causing pore water pressures to exceed the confining pressure (Seed & Idriss, 1982; Idriss & Boulanger, 2008). -
Richmond Residential Red Zone: Summary of Technical Information As at Area ID: 15A, September 2016 15B
Richmond residential red zone: Summary of Technical Information as at Area ID: 15A, September 2016 15B Purpose of this document: The following information provides a summary of the local environmental values, conditions and potential hazards. The information has been gathered using the best available technical data held by a number of agencies and organisations. It does not identify or assess land use options or the feasibility of land uses. The information in this document is not, and should not be interpreted as, a pre-determination, recommendation or decision about future use. No decisions regarding the future use of this land have been made. Overview of Richmond residential red zone (Area 15): Area 15 is approximately 27 hectares in area and adjoins River Road along the margins of the Ōtākaro/Avon River from Banks Avenue to the east and Fitzgerald Avenue to the west. To the north and west, Area 15 adjoins existing urban areas. This Area had a number of significant home gardens with mature trees some of which are still being tended. Area 15 is susceptible to a number of natural hazards, which can potentially occur either in isolation or collectively leading to a number of adverse cascading effects. The risk from many of these hazards will increase over time due to the accelerating effects of sea level rise. The area is particularly prone to lateral spreading. Land contamination may be an issue for much of the site. Location Map 1 Natural Environment and Cultural Setting and Features Natural Environment Adjacent to the Ōtākaro/Avon River and Tributaries Significant Ecological Site (site ID no. -
GEOTECHNICAL RECONNAISSANCE of the 2011 CHRISTCHURCH, NEW ZEALAND EARTHQUAKE Version 1: 15 August 2011
GEOTECHNICAL RECONNAISSANCE OF THE 2011 CHRISTCHURCH, NEW ZEALAND EARTHQUAKE Version 1: 15 August 2011 (photograph by Gillian Needham) EDITORS Misko Cubrinovski – NZ Lead (University of Canterbury, Christchurch, New Zealand) Russell A. Green – US Lead (Virginia Tech, Blacksburg, VA, USA) Liam Wotherspoon (University of Auckland, Auckland, New Zealand) CONTRIBUTING AUTHORS (alphabetical order) John Allen – (TRI/Environmental, Inc., Austin, TX, USA) Brendon Bradley – (University of Canterbury, Christchurch, New Zealand) Aaron Bradshaw – (University of Rhode Island, Kingston, RI, USA) Jonathan Bray – (UC Berkeley, Berkeley, CA, USA) Misko Cubrinovski – (University of Canterbury, Christchurch, New Zealand) Greg DePascale – (Fugro/WLA, Christchurch, New Zealand) Russell A. Green – (Virginia Tech, Blacksburg, VA, USA) Rolando Orense – (University of Auckland, Auckland, New Zealand) Thomas O’Rourke – (Cornell University, Ithaca, NY, USA) Michael Pender – (University of Auckland, Auckland, New Zealand) Glenn Rix – (Georgia Tech, Atlanta, GA, USA) Donald Wells – (AMEC Geomatrix, Oakland, CA, USA) Clint Wood – (University of Arkansas, Fayetteville, AR, USA) Liam Wotherspoon – (University of Auckland, Auckland, New Zealand) OTHER CONTRIBUTORS (alphabetical order) Brady Cox – (University of Arkansas, Fayetteville, AR, USA) Duncan Henderson – (University of Canterbury, Christchurch, New Zealand) Lucas Hogan – (University of Auckland, Auckland, New Zealand) Patrick Kailey – (University of Canterbury, Christchurch, New Zealand) Sam Lasley – (Virginia Tech, Blacksburg, VA, USA) Kelly Robinson – (University of Canterbury, Christchurch, New Zealand) Merrick Taylor – (University of Canterbury, Christchurch, New Zealand) Anna Winkley – (University of Canterbury, Christchurch, New Zealand) Josh Zupan – (University of California at Berkeley, Berkeley, CA, USA) TABLE OF CONTENTS 1.0 INTRODUCTION 2.0 SEISMOLOGICAL ASPECTS 3.0 GEOLOGICAL ASPECTS 4.0 LIQUEFACTION AND LATERAL SPREADING 5.0 IMPROVED GROUND 6.0 STOPBANKS 7.0 BRIDGES 8.0 LIFELINES 9.0 LANDSLIDES AND ROCKFALLS 1. -
Seismic Ratings for Degrading Structural Systems
117 Bulletin of the New Zealand Society for Earthquake Engineering, Vol. 50, No. 2, June 2017 GEOTECHNICAL ASPECTS OF THE 2016 KAIKŌURA EARTHQUAKE ON THE SOUTH ISLAND OF NEW ZEALAND Mark E. Stringer1, Sarah Bastin2, Christopher R. McGann2, Claudio Cappellaro2, Maya El Kortbawi3, Rebecca McMahon4, Liam. M. Wotherspoon4, Russell A. Green3, Jason Aricheta4, Ross Davis5, Leigh McGlynn5, Sally Hargraves6, Sjoerd van Ballegooy7, Misko Cubrinovski2, Brendon A. Bradley2, Xavier Bellagamba2, Kevin Foster2, Carlo Lai8, Dan Ashfield7, Abdul Baki2, Adda Zekkos9, Robin Lee2 and Nikolaos Ntritsos2 (Submitted March 2017; Reviewed April 2017; Accepted May 2017) ABSTRACT The magnitude Mw7.8 ‘Kaikōura’ earthquake occurred shortly after midnight on 14 November 2016. This paper presents an overview of the geotechnical impacts on the South Island of New Zealand recorded during the post- event reconnaissance. Despite the large moment magnitude of this earthquake, relatively little liquefaction was observed across the South Island, with the only severe manifestation occurring in the young, loose alluvial deposits in the floodplains of the Wairau and Opaoa Rivers near Blenheim. The spatial extent and volume of liquefaction ejecta across South Island is significantly less than that observed in Christchurch during the 2010-2011 Canterbury Earthquake Sequence, and the impact of its occurrence to the built environment was largely negligible on account of the severe manifestations occurring away from the areas of major development. Large localised lateral displacements occurred in Kaikōura around Lyell Creek. The soft fine-grained material in the upper portions of the soil profile and the free face at the creek channel were responsible for the accumulation of displacement during the ground shaking. -
Canterbury Residential Red Zone Household Hazardous Waste Project
Canterbury Residential Red Zone Household Hazardous Waste Project The Canterbury Residential Red Zone Household Hazardous Waste Project was developed to support earthquake recovery by enabling the collection and appropriate disposal of hazardous materials from red zoned residential properties prior to demolition. The key purpose was to minimise the associated risks to human health and the environment. The devastating effects of the Canterbury Earthquakes of September 2010 and February 2011 continue to shape the city around us as Christchurch recovers. We have seen the overwhelming task of rebuilding a city realised, with a new precinct based central city, changes to transport networks and the re-zoning of land to manage new risks of liquefaction. On a daily basis the changes to the urban landscape remind us of the significance of the events that literally shape the redevelopment of Christchurch. Decimating the central business district and the majority of historic and tall buildings across the city, the earthquakes also had significant effects in the east and north east residential suburbs. Huge swathes of these suburbs, where liquefaction created a number of issues including the immediate disruption of services and damage to infrastructure, were subsequently assessed and rezoned for demolition, due the property damage which had occurred and instability of land. Affected properties were acquired (compulsorily) by the Crown to ensure the removal of the hazard posed by residential development on instable ground, creating the Canterbury Residential Red Zone (RRZ). The dispersion of people as a result of the earthquake and the restricted access meant that many of these properties were left in an as is state, still containing an undisturbed cache of personal possessions and household items, including hazardous substances and materials which would need appropriate disposal. -
Pegasus & Woodend COMMUNITY DIRECTORY 2015
Pegasus & Woodend COMMUNITY DIRECTORY 2015 Local services, businesses, retail & community groups. Compiled and produced by the Pegasus Residents’ Group Inc. Post or drop off: 60 Infinity Drive, Pegasus 7612 Email: [email protected] www.pegasusresidentsgroup.com Photos courtesy of Todd Property Pegasus Town Ltd and Allan McGregor Photography Want to see rows and rows of “worn-out” Japanese “sewing-machines”? DON’T VISIT LIMITED 65 MAIN ROAD, WOODEND Always an interesting selection of quality used vehicles from $3,000 to $30,000 Call FRANZ anytime on 0800 92 34 34 Looking a er North Canterbury motorists for over 40 years! Page 2 Pegasus Community Directory 2nd Edition September 2015 INDEX ESSENTIAL SERVICES ...............................5 Real Estate .................................................11 LOCAL SERVICES, BUSINESSES, RETAIL Retail Dairy ................................................11 Accommodation ..........................................6 Retail Fruit And Vegetables .......................11 Auto ATV Sales and Service .........................6 Retail General Store ...................................12 Auto Motorcycle Repair...............................6 Retail Giftware ...........................................12 Auto Upholstery ..........................................6 Schools and Education ...............................12 Auto Used Car Sales ....................................6 Security ......................................................12 Celebrant .....................................................6 -
Presentation of September 4, 2010 Canterbury Earthquake
Presentation of September 4, 2010 Canterbury Earthquake William Godwin, PG, CEG AEG Vice President, 2019-20 Webinar – May 6, 2020 Introduction ► This presentation is on the 2010 Mw 7.1 Canterbury Earthquake. The earthquake occurred as I was traveling from San Francisco to Auckland, New Zealand to attend the IAEG Congress. Upon arrival I was asked to join the Geotechnical Extreme Events Reconnaissance (GEER) team to document damage from the event in the Christchurch area of the South Island. Little did I know that another smaller (Mw 6.2), yet deadlier earthquake would strike 5 months later in close to the same area. Introduction ► The purpose of the GEER is to observe and record earthquake induced phenomena and impacts to infrastructure before evidence is removed or altered as part of cleanup efforts. ► The reconnaissance was conducted by a joint USA-NZ-Japan team with the main funding for the USA contingent coming from GEER and partial support from PEER and EERI. ► This presentation includes my photographs from Sept. 8-10 supplemented with a few photos and observations noted in the GEER report, Nov. 2010. I also describe other seismic events from 2011-16. Sept 4th Darfield Earthquake ► At 4:35 am on September 4th NZ Standard Time (16:35 Sept 3rd UTC) the rupture of a previously unrecognized strike-slip fault (Greendale Fault) beneath the Canterbury Plains of New Zealand’s South Island produced a Mw 7.1 earthquake that caused widespread damage throughout the region. Surprisingly only two people were seriously injured, with approximately 100 total injuries. This compares with 185 deaths in the 2011 event Canterbury Earthquake Sequence Greendale Fault Rupture Characteristics Epicenter (focal) depth: 10.8km Tectonic Setting Ground Motion (pga) Geographical Setting Preliminary Observations ► Rock Avalanche, Castle Rock Reserve, Littleton, Christchurch ► Fault Offset, Telegraph Rd at Grange Rd.