Evolution of Networks
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Evolution of Switching Techniques Frequency Division Multiplexing
Evolution of Switching Techniques 1. Dedicate Channel. Separate wire frequency division multiplexing (FDM) time division multiplexing (TDM) Multiplexor (MUX) Demultiplexor (Concentrator) DEMUX individual lines shared individual lines high speed line Frequency Frequency Channel 1 available bandwidth 2 1 2 3 4 1 2 3 4 1 2 3 4 3 4 FDM Time TDM Time chow CS522 F2001—Multiplexing and Switching—10/17/2001—Page 1 Frequency Division Multiplexing (FDM) chow CS522 F2001—Multiplexing and Switching—10/17/2001—Page 2 Wavelength Division Multiplexing chow CS522 F2001—Multiplexing and Switching—10/17/2001—Page 3 Impact of WDM z Many big organizations are starting projects to design WDM system or DWDN (Dense Wave Division Mutiplexing Network). We may see products appear in next three years.In Fujitsu and CCL/Taiwan, 128 different wavelengthes on the same strand of fiber was reported working in the lab. z We may have optical routers between end systems that can take one wavelenght signal, covert to different wavelenght, send it out on different links. Some are designing traditional routers that covert optical signal to electronical signal, and use time slot interchange based on high speed memory to do the switching, the convert the electronic signal back to optical signal. z With this type of optical networks, we will have a virtual circuit network, where each connection is assigned some wave length. Each connection can have 2.4 gbps tremedous bandwidth. z With inital 128 different wavelength, we can have about 10 end users. If each pair of end users needs to communicate simultaneously, it will use 10*10=100 different wavelength. -
Lecture 8: Overview of Computer Networking Roadmap
Lecture 8: Overview of Computer Networking Slides adapted from those of Computer Networking: A Top Down Approach, 5th edition. Jim Kurose, Keith Ross, Addison-Wesley, April 2009. Roadmap ! what’s the Internet? ! network edge: hosts, access net ! network core: packet/circuit switching, Internet structure ! performance: loss, delay, throughput ! media distribution: UDP, TCP/IP 1 What’s the Internet: “nuts and bolts” view PC ! millions of connected Mobile network computing devices: server Global ISP hosts = end systems wireless laptop " running network apps cellular handheld Home network ! communication links Regional ISP " fiber, copper, radio, satellite access " points transmission rate = bandwidth Institutional network wired links ! routers: forward packets (chunks of router data) What’s the Internet: “nuts and bolts” view ! protocols control sending, receiving Mobile network of msgs Global ISP " e.g., TCP, IP, HTTP, Skype, Ethernet ! Internet: “network of networks” Home network " loosely hierarchical Regional ISP " public Internet versus private intranet Institutional network ! Internet standards " RFC: Request for comments " IETF: Internet Engineering Task Force 2 A closer look at network structure: ! network edge: applications and hosts ! access networks, physical media: wired, wireless communication links ! network core: " interconnected routers " network of networks The network edge: ! end systems (hosts): " run application programs " e.g. Web, email " at “edge of network” peer-peer ! client/server model " client host requests, receives -
Guidelines on Mobile Device Forensics
NIST Special Publication 800-101 Revision 1 Guidelines on Mobile Device Forensics Rick Ayers Sam Brothers Wayne Jansen http://dx.doi.org/10.6028/NIST.SP.800-101r1 NIST Special Publication 800-101 Revision 1 Guidelines on Mobile Device Forensics Rick Ayers Software and Systems Division Information Technology Laboratory Sam Brothers U.S. Customs and Border Protection Department of Homeland Security Springfield, VA Wayne Jansen Booz-Allen-Hamilton McLean, VA http://dx.doi.org/10.6028/NIST.SP. 800-101r1 May 2014 U.S. Department of Commerce Penny Pritzker, Secretary National Institute of Standards and Technology Patrick D. Gallagher, Under Secretary of Commerce for Standards and Technology and Director Authority This publication has been developed by NIST in accordance with its statutory responsibilities under the Federal Information Security Management Act of 2002 (FISMA), 44 U.S.C. § 3541 et seq., Public Law (P.L.) 107-347. NIST is responsible for developing information security standards and guidelines, including minimum requirements for Federal information systems, but such standards and guidelines shall not apply to national security systems without the express approval of appropriate Federal officials exercising policy authority over such systems. This guideline is consistent with the requirements of the Office of Management and Budget (OMB) Circular A-130, Section 8b(3), Securing Agency Information Systems, as analyzed in Circular A- 130, Appendix IV: Analysis of Key Sections. Supplemental information is provided in Circular A- 130, Appendix III, Security of Federal Automated Information Resources. Nothing in this publication should be taken to contradict the standards and guidelines made mandatory and binding on Federal agencies by the Secretary of Commerce under statutory authority. -
Research on the System Structure of IPV9 Based on TCP/IP/M
International Journal of Advanced Network, Monitoring and Controls Volume 04, No.03, 2019 Research on the System Structure of IPV9 Based on TCP/IP/M Wang Jianguo Xie Jianping 1. State and Provincial Joint Engineering Lab. of 1. Chinese Decimal Network Working Group Advanced Network, Monitoring and Control Shanghai, China 2. Xi'an, China Shanghai Decimal System Network Information 2. School of Computer Science and Engineering Technology Ltd. Xi'an Technological University e-mail: [email protected] Xi'an, China e-mail: [email protected] Wang Zhongsheng Zhong Wei 1. School of Computer Science and Engineering 1. Chinese Decimal Network Working Group Xi'an Technological University Shanghai, China Xi'an, China 2. Shanghai Decimal System Network Information 2. State and Provincial Joint Engineering Lab. of Technology Ltd. Advanced Network, Monitoring and Control e-mail: [email protected] Xi'an, China e-mail: [email protected] Abstract—Network system structure is the basis of network theory, which requires the establishment of a link before data communication. The design of network model can change the transmission and the withdrawal of the link after the network structure from the root, solve the deficiency of the transmission is completed. It solves the problem of original network system, and meet the new demand of the high-quality real-time media communication caused by the future network. TCP/IP as the core network technology is integration of three networks (communication network, successful, it has shortcomings but is a reasonable existence, broadcasting network and Internet) from the underlying will continue to play a role. Considering the compatibility with structure of the network, realizes the long-distance and the original network, the new network model needs to be large-traffic data transmission of the future network, and lays compatible with the existing TCP/IP four-layer model, at the a solid foundation for the digital currency and virtual same time; it can provide a better technical system to currency of the Internet. -
Evolution of Access Network Sharing and Its Role in 5G Networks
applied sciences Review Evolution of Access Network Sharing and Its Role in 5G Networks Nima Afraz * , Frank Slyne , Harleen Gill and Marco Ruffini * CONNECT Centre, Trinity College, The University of Dublin, 2 Dublin, Ireland; [email protected] (F.S.); [email protected] (H.G.) * Correspondence: [email protected] (N.A.); marco.ruffi[email protected] (M.R.) Received: 3 October 2019; Accepted: 18 October 2019; Published: 28 October 2019 Abstract: This paper details the evolution of access network sharing models from legacy DSL to the most recent fibre-based technology and the main challenges faced from technical and business perspectives. We first give an overview of existing access sharing models, that span physical local loop unbundling and virtual unbundled local access. We then describe different types of optical access technologies and highlight how they support network sharing. Next, we examine how the concept of SDN and network virtualization has been pivotal in enabling the idea of “true multi-tenancy”, through the use of programmability, flexible architecture and resource isolation. We give examples of recent developments of cloud central office and OLT virtualization. Finally, we provide an insight into the role that novel business models, such as blockchain and smart contract technology, could play in 5G networks. We discuss how these might evolve, to provide flexibility and dynamic operations that are needed in the data and control planes. Keywords: access networks; network sharing; 5G networks; multi tenancy; optical access; sharing economics 1. Introduction By its nature, a telecommunications network is a shared resource that interconnects multiple nodes. Network sharing is part of a fundamental principle of statistical multiplexing of link capacity. -
Circuit-Switched Coherence
Circuit-Switched Coherence ‡Natalie Enright Jerger, ‡Mikko Lipasti, and ?Li-Shiuan Peh ‡Electrical and Computer Engineering Department, University of Wisconsin-Madison ?Department of Electrical Engineering, Princeton University Abstract—Circuit-switched networks can significantly lower contention, overall system performance can degrade by 20% the communication latency between processor cores, when or more. This latency sensitivity coupled with low link uti- compared to packet-switched networks, since once circuits are set up, communication latency approaches pure intercon- lization motivates our exploration of circuit-switched fabrics nect delay. However, if circuits are not frequently reused, the for CMPs. long set up time and poorer interconnect utilization can hurt Our investigations show that traditional circuit-switched overall performance. To combat this problem, we propose a hybrid router design which intermingles packet-switched networks do not perform well, as circuits are not reused suf- flits with circuit-switched flits. Additionally, we co-design a ficiently to amortize circuit setup delay. This observation prediction-based coherence protocol that leverages the exis- motivates a network with a hybrid router design that sup- tence of circuits to optimize pair-wise sharing between cores. The protocol allows pair-wise sharers to communicate di- ports both circuit and packet switching with very fast circuit rectly with each other via circuits and drives up circuit reuse. reconfiguration (setup/teardown). Our preliminary results Circuit-switched coherence provides overall system perfor- show this leading to up to 8% improvement in overall system mance improvements of up to 17% with an average improve- performance over a packet-switched fabric. ment of 10% and reduces network latency by up to 30%. -
Manual for TCL 10L
Note: This is a user manual for TCL 10L. There may be certain differences between the user manual description and the phone’s operation, depending on the software release of your phone or specific operator services. Help Refer to the following resources to get more FAQ, software, and service information. Consulting FAQ Go to www.tcl.com/global/en/service-support-mobile/faq.html Finding your serial number or IMEI You can find your serial number or International Mobile Equipment Identity (IMEI) on the packaging materials. Alternatively, choose Settings > System > About phone > Status > IMEI information on the phone itself. Obtaining warranty service First follow the advice in this guide or go to www.tcl.com/global/en/ service-support-mobile.html. Then check hotlines and repair centre information through www.tcl.com/global/en/service-support-mobile/ hotline&service-center.html Viewing legal information On the phone, go to Settings > System > About phone > Legal information. 1 Table of Contents 1 Your mobile...............................................................................7 1.1 Keys and connectors .......................................................7 1.2 Getting started ...............................................................10 1.3 Home screen .................................................................13 2 Text input ................................................................................22 2.1 Using the Onscreen Keyboard ......................................22 2.2 Text editing .....................................................................23 -
Medium Access Control Layer
Telematics Chapter 5: Medium Access Control Sublayer User Server watching with video Beispielbildvideo clip clips Application Layer Application Layer Presentation Layer Presentation Layer Session Layer Session Layer Transport Layer Transport Layer Network Layer Network Layer Network Layer Univ.-Prof. Dr.-Ing. Jochen H. Schiller Data Link Layer Data Link Layer Data Link Layer Computer Systems and Telematics (CST) Physical Layer Physical Layer Physical Layer Institute of Computer Science Freie Universität Berlin http://cst.mi.fu-berlin.de Contents ● Design Issues ● Metropolitan Area Networks ● Network Topologies (MAN) ● The Channel Allocation Problem ● Wide Area Networks (WAN) ● Multiple Access Protocols ● Frame Relay (historical) ● Ethernet ● ATM ● IEEE 802.2 – Logical Link Control ● SDH ● Token Bus (historical) ● Network Infrastructure ● Token Ring (historical) ● Virtual LANs ● Fiber Distributed Data Interface ● Structured Cabling Univ.-Prof. Dr.-Ing. Jochen H. Schiller ▪ cst.mi.fu-berlin.de ▪ Telematics ▪ Chapter 5: Medium Access Control Sublayer 5.2 Design Issues Univ.-Prof. Dr.-Ing. Jochen H. Schiller ▪ cst.mi.fu-berlin.de ▪ Telematics ▪ Chapter 5: Medium Access Control Sublayer 5.3 Design Issues ● Two kinds of connections in networks ● Point-to-point connections OSI Reference Model ● Broadcast (Multi-access channel, Application Layer Random access channel) Presentation Layer ● In a network with broadcast Session Layer connections ● Who gets the channel? Transport Layer Network Layer ● Protocols used to determine who gets next access to the channel Data Link Layer ● Medium Access Control (MAC) sublayer Physical Layer Univ.-Prof. Dr.-Ing. Jochen H. Schiller ▪ cst.mi.fu-berlin.de ▪ Telematics ▪ Chapter 5: Medium Access Control Sublayer 5.4 Network Types for the Local Range ● LLC layer: uniform interface and same frame format to upper layers ● MAC layer: defines medium access .. -
F. Circuit Switching
CSE 3461: Introduction to Computer Networking and Internet Technologies Circuit Switching Presentation F Study: 10.1, 10.2, 8 .1, 8.2 (without SONET/SDH), 8.4 10-02-2012 A Closer Look At Network Structure: • network edge: applications and hosts • network core: —routers —network of networks • access networks, physical media: communication links d. xuan 2 1 The Network Core • mesh of interconnected routers • the fundamental question: how is data transferred through net? —circuit switching: dedicated circuit per call: telephone net —packet-switching: data sent thru net in discrete “chunks” d. xuan 3 Network Layer Functions • transport packet from sending to receiving hosts application transport • network layer protocols in network data link network physical every host, router network data link network data link physical data link three important functions: physical physical network data link • path determination: route physical network data link taken by packets from source physical to dest. Routing algorithms network network data link • switching: move packets from data link physical physical router’s input to appropriate network data link application router output physical transport network data link • call setup: some network physical architectures require router call setup along path before data flows d. xuan 4 2 Network Core: Circuit Switching End-end resources reserved for “call” • link bandwidth, switch capacity • dedicated resources: no sharing • circuit-like (guaranteed) performance • call setup required d. xuan 5 Circuit Switching • Dedicated communication path between two stations • Three phases — Establish (set up connection) — Data Transfer — Disconnect • Must have switching capacity and channel capacity to establish connection • Must have intelligence to work out routing • Inefficient — Channel capacity dedicated for duration of connection — If no data, capacity wasted • Set up (connection) takes time • Once connected, transfer is transparent • Developed for voice traffic (phone) g. -
V10.5.0 (2013-07)
ETSI TS 126 234 V10.5.0 (2013-07) Technical Specification Universal Mobile Telecommunications System (UMTS); LTE; Transparent end-to-end Packet-switched Streaming Service (PSS); Protocols and codecs (3GPP TS 26.234 version 10.5.0 Release 10) 3GPP TS 26.234 version 10.5.0 Release 10 1 ETSI TS 126 234 V10.5.0 (2013-07) Reference RTS/TSGS-0426234va50 Keywords LTE,UMTS ETSI 650 Route des Lucioles F-06921 Sophia Antipolis Cedex - FRANCE Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16 Siret N° 348 623 562 00017 - NAF 742 C Association à but non lucratif enregistrée à la Sous-Préfecture de Grasse (06) N° 7803/88 Important notice Individual copies of the present document can be downloaded from: http://www.etsi.org The present document may be made available in more than one electronic version or in print. In any case of existing or perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF). In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive within ETSI Secretariat. Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at http://portal.etsi.org/tb/status/status.asp If you find errors in the present document, please send your comment to one of the following services: http://portal.etsi.org/chaircor/ETSI_support.asp Copyright Notification No part may be reproduced except as authorized by written permission. -
Thesis Title
CITY UNIVERSITY OF HONG KONG 妆䉬㢢喽㦌ु Massive Random Access of Machine-to-Machine Communications in LTE Networks: Modeling, Throughput Maximization and Delay Minimization LTE䙝䖲撥㦌慫儜ᣓ勬军ᣓ勬埏怦䀛禿ᣓ䘚 呜⚵䗯儜⚧斁㦌䑺埳埩䣾䏚斁怂䑺ᘊ惲 Submitted to Department of Electrical Engineering 秵ᣓ䋳㢧ु奘 in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy 揳ु㟆喬ु墠 by ZHAN Wen 揉墩 September 2019 䄓䤢憘䛊兣䛊挛 Abstract Machine-to-Machine (M2M) communications is a key enabling tech- nology for the emerging Internet of Things paradigm, which offers pervasive wireless connectivity for autonomous devices with minimum human intervention. It has been identified by the Third-Generation Partnership Project (3GPP) as a new service type to be supported by the Long Term Evolution (LTE) networks. However, due to the ex- plosive growth of M2M markets, thousands of Machine-Type Devices (MTDs), e.g., sensors and actuators, will be deployed in each LTE cell. With many MTDs attempting to initiate connections with the network, the deluge of access requests will cause severe congestion with intoler- ably low access efficiency. How to efficiently accommodate the access of a massive number of MTDs has become a significant challenge for supporting M2M communications over LTE networks. A great deal of works have been done for modeling and evaluating the access performance of M2M communications in LTE networks. The existing models, however, either ignore the queueing behavior of each MTD or become unscalable in the massive access scenario, making it extremely difficult to further study how to optimize the access perfor- mance by properly tuning system parameters, e.g., backoff parameters. The crucial effect of data transmissions on the access performance of MTDs is also little understood. -
Michael Steer
Michael Steer eyond 3G is the official IEEE desig- classified as shown in Table 1. Few first generation (or nation for the next stage of wireless 1G) systems remain, except in the United States, where technology that some people call 4G AMPS (Advanced Mobile Phone System) remains a or fourth-generation radio. Over the background universal service. Most services are now years, every conceptual shift in wire- second generation (or 2G) dominated by Global System Bless technology has been characterized as a for Mobile Communications (GSM) but also with wide- generational change. With a good dose of spread development of code-division multiple access hindsight, the generations of radio and (CDMA). CDMA is a conceptual advance on the 2G major radio systems in each category are systems typified by GSM and so is commonly classified as 2.5G. Third generation (or 3G) offers a sig- nificant increase in capacity and is the opti- mum system for broadband data access. Third generation includes wideband mobile multimedia networks and broadband mixed wireless systems. The mobile systems support vari- able data rates depending on demand and the level of mobili- ty. Typically 144 kb/s is sup- ported for full vehicular mobil- ity and higher bandwidths for pedestrian levels of mobility. Switched packet radio tech- niques and wideband CDMA- like systems (as the physical channel is) rather than assigned physical channel schemes (referred to as circuit switched) are required to support this band- width-on-demand environment. There are two essential concepts beyond 3G. One of these is the provi- sion of data transmission at rates of 100 Mb/s while mobile and 1 Gb/s while station- ary.