chemosensors Review Illuminating Brain Activities with Fluorescent Protein-Based Biosensors Zhijie Chen 1 ID , Tan M. Truong 2 and Hui-wang Ai 2,3,4,* ID 1 California Institute for Quantitative Biosciences, QB3, University of California, Berkeley, CA 94720, USA;
[email protected] 2 Center for Membrane and Cell Physiology, and Biomedical Sciences (BIMS) Graduate Program, University of Virginia, Charlottesville, VA 22908, USA;
[email protected] 3 Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA 4 Department of Chemistry, University of Virginia, Charlottesville, VA 22908, USA * Correspondence:
[email protected] Received: 9 October 2017; Accepted: 22 November 2017; Published: 28 November 2017 Abstract: Fluorescent protein-based biosensors are indispensable molecular tools for life science research. The invention and development of high-fidelity biosensors for a particular molecule or molecular event often catalyze important scientific breakthroughs. Understanding the structural and functional organization of brain activities remain a subject for which optical sensors are in desperate need and of growing interest. Here, we review genetically encoded fluorescent sensors for imaging neuronal activities with a focus on the design principles and optimizations of various sensors. New bioluminescent sensors useful for deep-tissue imaging are also discussed. By highlighting the protein engineering efforts and experimental applications of these sensors, we can consequently analyze factors influencing their performance. Finally, we remark on how future developments can fill technological gaps and lead to new discoveries. Keywords: fluorescent proteins; biosensors; fluorescent probes/indicators; brain imaging; genetically encoded calcium indicators; genetically encoded voltage sensors; genetically encoded glutamate sensors; synaptic activity indicators; pH indicators; bioluminescent sensors 1.