Save and Grow in Practice: Maize, Rice, Wheat
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Races of Maize in Bolivia
RACES OF MAIZE IN BOLIVIA Ricardo Ramírez E. David H. Timothy Efraín DÍaz B. U. J. Grant in collaboration with G. Edward Nicholson Edgar Anderson William L. Brown NATIONAL ACADEMY OF SCIENCES- NATIONAL RESEARCH COUNCIL Publication 747 Funds were provided for publication by a contract between the National Academythis of Sciences -National Research Council and The Institute of Inter-American Affairs of the International Cooperation Administration. The grant was made the of the Committee on Preservation of Indigenousfor Strainswork of Maize, under the Agricultural Board, a part of the Division of Biology and Agriculture of the National Academy of Sciences - National Research Council. RACES OF MAIZE IN BOLIVIA Ricardo Ramírez E., David H. Timothy, Efraín Díaz B., and U. J. Grant in collaboration with G. Edward Nicholson Calle, Edgar Anderson, and William L. Brown Publication 747 NATIONAL ACADEMY OF SCIENCES- NATIONAL RESEARCH COUNCIL Washington, D. C. 1960 COMMITTEE ON PRESERVATION OF INDIGENOUS STRAINS OF MAIZE OF THE AGRICULTURAL BOARD DIVISIONOF BIOLOGYAND AGRICULTURE NATIONALACADEMY OF SCIENCES- NATIONALRESEARCH COUNCIL Ralph E. Cleland, Chairman J. Allen Clark, Executive Secretary Edgar Anderson Claud L. Horn Paul C. Mangelsdorf William L. Brown Merle T. Jenkins G. H. Stringfield C. O. Erlanson George F. Sprague Other publications in this series: RACES OF MAIZE IN CUBA William H. Hatheway NAS -NRC Publication 453 I957 Price $1.50 RACES OF MAIZE IN COLOMBIA M. Roberts, U. J. Grant, Ricardo Ramírez E., L. W. H. Hatheway, and D. L. Smith in collaboration with Paul C. Mangelsdorf NAS-NRC Publication 510 1957 Price $1.50 RACES OF MAIZE IN CENTRAL AMERICA E. -
GENETICALLY MODIFIED WHEAT 2018 © Her Majesty the Queen in Right of Canada (Canadian Food Inspection Agency), 2018
Incident Report GENETICALLY MODIFIED WHEAT 2018 © Her Majesty the Queen in Right of Canada (Canadian Food Inspection Agency), 2018. CFIA P0951-18 ISBN: 978-0-660-26780-7 Catalogue No.: A104-141/2018E-PDF Aussi disponible en français. Request other formats online or call 1-800-442-2342. If you use a teletypewriter (TTY), call 1-800-465-7735. Alternative format are available on demand. EXECUTIVE SUMMARY ࢝ The Canadian Food Inspection Agency (CFIA) was notified on January 31, 2018, about a few wheat plants found on an access road in southern Alberta that survived a spraying treatment for weeds. ࢝ The CFIA’s tests confirmed that the wheat found is genetically modified to be herbicide tolerant. Genetically modified (GM) wheat is not authorized to be grown commercially in any country. ࢝ Since being notified, the CFIA worked diligently with federal and provincial partners and other stakeholders to determine the origin and extent of the GM wheat plants to get as much complete, accurate, and credible information about this discovery as possible. Based on extensive scientific testing, there is no evidence that this GM wheat is present anywhere other than the isolated site where it was discovered. ࢝ There is also no evidence that this wheat has entered the food or animal feed system, nor is it present anywhere else in the environment. ࢝ Health Canada and the CFIA have performed risk assessments of this finding, and have concluded that it does not pose a food safety, animal feed, or environmental risk. ࢝ The wheat plants found in Alberta are not a match for any wheat authorized for sale or for commercial production in Canada. -
Khorasan (Kamut® Brand) Wheat
Khorasan (Kamut® Brand) Wheat Introduction Khorasan wheat (Triticum turgidum, ssp. turanicum) is an ancient wheat variety that originated in the Fertile Crescent in Western Asia. It is a relative of durum wheat and is believed to have come to North America from Egypt, following World War II. It was rediscovered in 1977 by a Montana farmer who spent the next few years propagating the small supply of original seed. In 1990, khorasan wheat was first sold under the trademark KAMUT® in the United States. The trademark was implemented to preserve minimum standards for the khorasan wheat variety and to ensure consistent quality and market supply. KAMUT® wheat is currently only grown as KAMUT® wheat has larger heads, awns and kernels than an organic certified grain and hard red spring wheat and durum. marketed to various countries Photo courtesy T. Blyth, Kamut International around the world. Plant Adaptation KAMUT® wheat production is well suited to growing conditions found in southern Alberta and southern Saskatchewan, similar to durum. Northern regions with cooler, wetter conditions are less favorable for KAMUT® wheat production as disease risk may be greater and the crop requires about 100 days to mature after seeding or approximately one week later than spring wheat. KAMUT® wheat will grow well in any soil that is suitable for other cereal grain production. KAMUT® wheat has a growth pattern similar to spring wheat varieties. Each sprouted kernel produces one or two stems per seed, and each stem produces a large head with long black awns. It has moderate straw strength and grows to approximately 127 cm (4.2 ft) tall. -
Spelt Wheat: an Alternative for Sustainable Plant Production at Low N-Levels
sustainability Article Spelt Wheat: An Alternative for Sustainable Plant Production at Low N-Levels Eszter Sugár, Nándor Fodor *, Renáta Sándor ,Péter Bónis, Gyula Vida and Tamás Árendás Agricultural Institute, Centre for Agricultural Research, Brunszvik u. 2, 2462 Martonvásár, Hungary; [email protected] (E.S.); [email protected] (R.S.); [email protected] (P.B.); [email protected] (G.V.); [email protected] (T.A.) * Correspondence: [email protected]; Tel.: +36-22-569-554 Received: 31 October 2019; Accepted: 21 November 2019; Published: 27 November 2019 Abstract: Sustainable agriculture strives for maintaining or even increasing productivity, quality and economic viability while leaving a minimal foot print on the environment. To promote sustainability and biodiversity conservation, there is a growing interest in some old wheat species that can achieve better grain yields than the new varieties in marginal soil and/or management conditions. Generally, common wheat is intensively studied but there is still a lack of knowledge of the competitiveness of alternative species such as spelt wheat. The aim is to provide detailed analysis of vegetative, generative and spectral properties of spelt and common wheat grown under different nitrogen fertiliser levels. Our results complement the previous findings and highlight the fact that despite the lodging risk increasing together with the N fertiliser level, spelt wheat is a real alternative to common wheat for low N input production both for low quality and fertile soils. Vitality indices such as flag leaf chlorophyll content and normalized difference vegetation index were found to be good precursors of the final yield and the proposed estimation equations may improve the yield forecasting applications. -
A Review on KAMUT Khorasan Wheat
International Journal of Food Sciences and Nutrition ISSN: 0963-7486 (Print) 1465-3478 (Online) Journal homepage: http://www.tandfonline.com/loi/iijf20 Ancient wheat and health: a legend or the reality? A review on KAMUT khorasan wheat Alessandra Bordoni, Francesca Danesi, Mattia Di Nunzio, Annalisa Taccari & Veronica Valli To cite this article: Alessandra Bordoni, Francesca Danesi, Mattia Di Nunzio, Annalisa Taccari & Veronica Valli (2017) Ancient wheat and health: a legend or the reality? A review on KAMUT khorasan wheat, International Journal of Food Sciences and Nutrition, 68:3, 278-286, DOI: 10.1080/09637486.2016.1247434 To link to this article: https://doi.org/10.1080/09637486.2016.1247434 © 2016 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group Published online: 28 Oct 2016. Submit your article to this journal Article views: 2866 View related articles View Crossmark data Citing articles: 4 View citing articles Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=iijf20 INTERNATIONAL JOURNAL OF FOOD SCIENCES AND NUTRITION, 2017 VOL. 68, NO. 3, 278–286 http://dx.doi.org/10.1080/09637486.2016.1247434 COMPREHENSIVE REVIEW Ancient wheat and health: a legend or the reality? A review on KAMUT khorasan wheat Alessandra Bordonia,b , Francesca Danesia , Mattia Di Nunziob , Annalisa Taccaria and Veronica Vallia aDepartment of Agri-Food Sciences and Technologies, University of Bologna, Cesena, Italy; bInterdepartmental Centre of Agri-Food Research, University of Bologna, Cesena, Italy ABSTRACT ARTICLE HISTORY After WWII, the industrialized agriculture selected modern varieties of Triticum turgidum spp. Received 28 July 2016 durum and spp. -
John Percival
THE LINNEAN Wheat Taxonomy: the legacy of John Percival THE LINNEAN SOCIETY OF LONDON BURLINGTON HOUSE, PICCADILLY, LONDON WlJ OBF SPECIAL ISSUE No 3 2001 ACADEMIC PRESS LIMITED 32 Jam.estown Road London NWl 7BY Printed on acid free paper © 2001 The Linnean Society of London All rights reserved. No part of this book may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage or retrieval system without permission in writing from the publisher. The designations of geographic entities in this book, and the presentation of the material, do not imply the expression of any opinion whatsoever on the part of the publishers, the Linnean Society, the editors or any other participating organisations concerning the legal status of any country, territory, or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. The views expressed in this publication do not necessarily reflect those of The Society, the editors, or other participating organisations. Printed in Great Britain. Wheat Taxonomy: the legacy of John Percival Conference Participants (most of whom are identified by number on the key to the group photograph above). I. M. Ambrose,; 2. J. Bingham, UK; 3. R. Blatter, Switzerland; 4. A. Bomer, Germany; 5. A. Brandolini Italy; 6. R. Brigden, UK; 7. A. H. Bunting, UK; 8. P. Caligari, UK; 9. E.M.L.P. Clauss, USA; 10. P.O. Clauss, USA; 11 . K. Clavel, France; 12. P. Davis, UK; 13. J. Dvohik, USA; 14. !. Faberova, Czech Republic; 15 . A. A. Filatenko, Russia; 16. -
Wheat and Oat Variety Performance Tests in Tennessee 2010
Research Report 11-01 Wheat and Oat Variety Performance Tests in Tennessee 2010 Fred L. Allen, Coordinator, Agronomic Crop Variety Testing & Demonstrations Richard D. Johnson, Research Associate, Agronomic Crop Variety Testing & Demonstrations Robert C. Williams Jr., Extension Area Specialist, Grain Crops Chris Main, Extension Specialist, Cotton & Small Grains Agronomic Crop Variety Testing and Demonstrations Department of Plant Sciences University of Tennessee Knoxville Telephone 865-974-8821 • Fax 865-974-1947 e-mail: [email protected] Variety test results are posted on UT’s website at http://varietytrials.tennessee.edu and www.UTcrops.com Acknowledgments This research was funded by the Tennessee Agricultural Experiment Station and UT Extension with partial funding from participating companies. We gratefully acknowledge the assistance of the following individuals in conducting these experiments: Dept. of Plant Sciences Dennis West, Professor and Grains Breeder David Kincer, Research Associate Kara Warwick, Graduate Research Associate Jennifer Lane, Graduate Research Associate Research and Education Centers: East Tennessee Research and Education Center, Knoxville Robert Simpson, Center Director Bobby McKee, Sr. Farm Crew Leader Plateau Research & Education Center, Crossville Walt Hitch, Center Director Greg Blaylock, Light Farm Equipment Operator Sam Simmons, Light Farm Equipment Operator Highland Rim Research and Education Center, Springfield Barry Sims, Center Director Brad S. Fisher, Research Associate Middle Tennessee Research and Education Center, Spring Hill Kevin Thompson, Center Director Frank Musgrave, Research Associate Research and Education Center at Milan, Milan Blake Brown, Center Director Jason Williams, Research Associate James McClure, Research Associate West Tennessee Research and Education Center, Jackson Robert Hayes, Center Director Randi Dunagan, Research Associate 2 County Standard Wheat Test: Coordinator: Robert C. -
Root-Hair Endophyte Stacking in Finger Millet Creates a Physicochemical Barrier to Trap the Fungal Pathogen Fusarium Graminearum
UC Davis UC Davis Previously Published Works Title Root-hair endophyte stacking in finger millet creates a physicochemical barrier to trap the fungal pathogen Fusarium graminearum. Permalink https://escholarship.org/uc/item/7b87c4z1 Journal Nature microbiology, 1(12) ISSN 2058-5276 Authors Mousa, Walaa K Shearer, Charles Limay-Rios, Victor et al. Publication Date 2016-09-26 DOI 10.1038/nmicrobiol.2016.167 Peer reviewed eScholarship.org Powered by the California Digital Library University of California ARTICLES PUBLISHED: 26 SEPTEMBER 2016 | ARTICLE NUMBER: 16167 | DOI: 10.1038/NMICROBIOL.2016.167 Root-hair endophyte stacking in finger millet creates a physicochemical barrier to trap the fungal pathogen Fusarium graminearum Walaa K. Mousa1,2, Charles Shearer1, Victor Limay-Rios3, Cassie L. Ettinger4,JonathanA.Eisen4 and Manish N. Raizada1* The ancient African crop, finger millet, has broad resistance to pathogens including the toxigenic fungus Fusarium graminearum. Here, we report the discovery of a novel plant defence mechanism resulting from an unusual symbiosis between finger millet and a root-inhabiting bacterial endophyte, M6 (Enterobacter sp.). Seed-coated M6 swarms towards root-invading Fusarium and is associated with the growth of root hairs, which then bend parallel to the root axis, subsequently forming biofilm-mediated microcolonies, resulting in a remarkable, multilayer root-hair endophyte stack (RHESt). The RHESt results in a physical barrier that prevents entry and/or traps F. graminearum, which is then killed. M6 thus creates its own specialized killing microhabitat. Tn5-mutagenesis shows that M6 killing requires c-di-GMP-dependent signalling, diverse fungicides and resistance to a Fusarium-derived antibiotic. Further molecular evidence suggests long-term host–endophyte– pathogen co-evolution. -
Adoption of Maize and Wheat Technologies in Eastern Africa: a Synthesis of the Findings of 22 Case Studies
ISSN: 0258-8587 E C O N O M I C S W O R K I N G P A P E R 0 3 - 0 1 Adoption of Maize and Wheat Technologies in Eastern Africa: A Synthesis of the Findings of 22 Case Studies CHERYL DOSS, WILFRED MWANGI, HUGO VERKUIJL, AND HUGO DE GROOTE Apartado Postal 6-641, 06600 México, D.F., México Worldwide Web site: www.cimmyt.org E C O N O M I C S Working Paper 03-01 Adoption of Maize and Wheat Technologies in Eastern Africa: A Synthesis of the Findings of 22 Case Studies Cheryl Doss, Wilfred Mwangi, Hugo Verkuijl, and Hugo de Groote* * International Maize and Wheat Improvement Center (CIMMYT), Apartado Postal 6-641, 06600 Mexico, D.F., Mexico. The views expressed in this paper are the authors’ and do not necessarily reflect the views of CIMMYT. 34 CIMMYT® (www.cimmyt.org) is an internationally funded, nonprofit, scientific research and training organization. Headquartered in Mexico, CIMMYT works with agricultural research institutions worldwide to improve the productivity, profitability, and sustainability of maize and wheat systems for poor farmers in developing countries. It is one of 16 food and environmental organizations known as the Future Harvest Centers. Located around the world, the Future Harvest Centers conduct research in partnership with farmers, scientists, and policymakers to help alleviate poverty and increase food security while protecting natural resources. The centers are supported by the Consultative Group on International Agricultural Research (CGIAR) (www.cgiar.org), whose members include nearly 60 countries, private foundations, and regional and international organizations. -
47 Section 3 Maize (Zea Mays Subsp. Mays)
SECTION 3 MAIZE (ZEA MAYS SUBSP. MAYS) 1. General Information Maize, or corn, is a member of the Maydeae tribe of the grass family, Poaceae. It is a robust monoecious annual plant, which requires the help of man to disperse its seeds for propagation and survival. Corn is the most efficient plant for capturing the energy of the sun and converting it into food, it has a great plasticity adapting to extreme and different conditions of humidity, sunlight, altitude, and temperature. It can only be crossed experimentally with the genus Tripsacum, however member species of its own genus (teosinte) easily hybridise with it under natural conditions. This document describes the particular condition of maize and its wild relatives, and the interactions between open-pollinated varieties and teosinte. It refers to the importance of preservation of native germplasm and it focuses on the singular conditions in its centre of origin and diversity. Several biological and socio-economic factors are considered important in the cultivation of maize and its diversity; therefore these are described as well. A. Use as a crop plant In industrialised countries maize is used for two purposes: 1) to feed animals, directly in the form of grain and forage or sold to the feed industry; and 2) as raw material for extractive industries. "In most industrialised countries, maize has little significance as human food" (Morris, 1998; Galinat, 1988; Shaw, 1988). In the European Union (EU) maize is used as feed as well as raw material for industrial products (Tsaftaris, 1995). Thus, maize breeders in the United States and the EU focus on agronomic traits for its use in the animal feed industry, and on a number of industrial traits such as: high fructose corn syrup, fuel alcohol, starch, glucose, and dextrose (Tsaftaris, 1995). -
Subpart M -- United States Standards for Wheat
United States Department of Agriculture Grain Inspection, Packers and Stockyards Administration Federal Grain Inspection Service U.S. Standards May 2014 Subpart M -- United States Standards for Wheat Contents Subpart M -- United States Standards for Wheat 1 Terms Defined 2 Principles Governing the Application of Standards 4 Grades and Grade Requirements 5 Special Grades and Special Grade Requirements 6 The U.S. Department of Agriculture (USDA) prohibits discrimination in its programs on the basis of race, color, national origin, sex, religion, age, disability, political beliefs, and marital or familial status. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternate means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA’s TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint, write to the USDA, Office of Civil Rights, Room 326-W, 1400 Independence Avenue, SW, Washington, DC 20250-9410, or call (202) 720-5964 (voice and TDD). USDA is an equal employment opportunity employer. Distribution: FGIS, OSP, Industry Originating Office: FMD PPMAB Terms Defined § 810.2201 Definition of wheat. Grain that, before the removal of dockage, consists of 50 percent or more common wheat (Triticum aestivum L.), club wheat (T. compactum Host.), and durum wheat (T. durum Desf.) and not more than 10 percent of other grains for which standards have been established under the United States Grain Standards Act and that, after the removal of the dockage, contains 50 percent or more of whole kernels of one or more of these wheats. § 810.2202 Definition of other terms. -
Source of the Soybean N Credit in Maize Production
Plant and Soil 236: 175–184, 2001. 175 © 2001 Kluwer Academic Publishers. Printed in the Netherlands. Source of the soybean N credit in maize production L.E. Gentry1,F.E.Below2,3,M.B.David1 &J.A.Bergerou2 1Department of Natural Resources and Environmental Sciences, University of Illinois, 1102 South Goodwin, Urbana, IL 6180, U.S.A. 2Department of Crop Sciences, University of Illinois, Urbana, IL 61801, U.S.A. 3Corresponding author∗ Received 16 January 2001. Accepted in revised form 9 July 2001 2001 Key words: corn, crop rotation, maize, mineralization, residual nitrogen, soybean nitrogen credit Abstract Nitrogen response trials throughout the United States Corn Belt show that economic optimum rates of N fertiliza- tion are usually less for maize (Zea mays L.) following soybean (Glycine max L.) than for maize following maize; however, the cause of this rotation effect is not fully understood. The objective of this study was to investigate the source of the apparent N contribution from soybean to maize (soybean N credit) by comparing soil N mineralization rates in field plots of unfertilized maize that had either nodulated soybean, non-nodulated soybean, or maize as the previous crop. Crop yields, plant N accumulation, soil inorganic N, and net soil mineralization were measured. Both grain yield (6.3 vs. 2.8 Mg ha−1) and above-ground N accumulation (97 vs. 71 kg ha−1) were greatly increased when maize followed nodulated soybean compared with maize following maize. A partial benefit to yield and N accumulation was also observed for maize following non-nodulated soybean. Cumulative net soil N mineralization following nodulated soybean, non-nodulated soybean, and maize was 112, 92 and 79 kg N ha−1, respectively.