Simulation in Metabolic Networks

Total Page:16

File Type:pdf, Size:1020Kb

Simulation in Metabolic Networks Die approbierte Originalversion dieser Dissertation ist in der Hauptbibliothek der Technischen Universität Wien aufgestellt und zugänglich. http://www.ub.tuwien.ac.at The approved original version of this thesis is available at the main library of the Vienna University of Technology. http://www.ub.tuwien.ac.at/eng Simulation in Metabolic Networks DISSERTATION zur Erlangung des akademischen Grades Doktor der technischen Wissenschaften eingereicht von Christian Siehs Matrikelnummer 9203648 an der Fakultät für Informatik der Technischen Universität Wien Betreuung: Ao. Univ.-Prof. Dr. Rudolf Freund Diese Dissertation haben begutachtet:: _______________________ ________________________ (Ao. Univ.-Prof. Dr. Rudolf Freund) (Univ.Doz. Dr. Bernd Mayer) _______________________ Wien, 28.09.2015 (Christian Siehs) Technische Universität Wien A-1040 ▪ Karlsplatz 13 ▪ Tel. +43-1-58801-01 ▪ www.tuwien.ac.at Simulation in Metabolic Networks DISSERTATION submitted in partial fulfillment of the requirements for the degree of Doktor der technischen Wissenschaften by Christian Siehs Registration Number 9203648 to the Faculty of Informatics at the Vienna University of Technology Advisor: Ao. Univ.-Prof. Dr. Rudolf Freund The dissertation has been reviewed by: _______________________ ________________________ (Ao. Univ.-Prof. Dr. Rudolf Freund) (Univ.Doz. Dr. Bernd Mayer) _______________________ Wien, 28.09.2015 (Christian Siehs) Technische Universität Wien A-1040 ▪ Karlsplatz 13 ▪ Tel. +43-1-58801-01 ▪ www.tuwien.ac.at Erklärung zur Verfassung der Arbeit Christian Siehs Keinergasse 20/1/12, 1030 Wien Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwendeten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit - einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken oder dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als Entlehnung kenntlich gemacht habe. __________________________ ___________________________ Wien, 28.09.2015 Christian Siehs i “The way to success has no short cuts“ Masahiko Tanaka ii Acknowledgements I would like to express my deep gratitude to Dr. Rudolf Freund and Dr. Bernd Mayer, my research supervisors, for their patient guidance, enthusiastic encouragement and useful critiques of this dissertation work. I would also like to thank all my scientific colleaques who have contributed to the parts of this work during the last years. Finally, I wish to thank my parents for their support and encouragement throughout my studies. iii Abstract Molecular networks pose a challenge to biomedical research due to the complex interaction patterns and the comparably slow progress in identifying and characterizing the biological entities involved. Advances in high-throughput technologies for identifying and quantifying biological entities relevant for describing clinical phenotypes have narrowed the data gap over the last years, resulting in a large amount of heterogeneous biological data. Analysis of this data landscape in a molecular mechanistic context, supported by data management and knowledge discovery technologies, has in the meantime provided network based approaches for discovery of novel diagnostics and therapeutics for addressing unmet clinical needs. This work presents and discusses extensively the advances in molecular network analysis specifically in the realm of Systems Medicine over the last years and gives an overview on network principles, data sources and representation standards and analytical methodologies. Scientific contributions presented in this thesis address specifically (i) modeling of protein- protein interaction networks, (ii) tackling the false negative discovery rate of explorative omics experiments by proposing concepts of predicting relevant biological entities based on graph expansion algorithms and (iii) the practical analysis of omics data utilizing network-based methodologies. The proposed prediction concepts for biological entities take into account our current knowledge of the topology of molecular networks, and are based on vertex neighborhood as well as minimum spanning trees. As a result, a novel algorithm was developed for efficiently calculating a connecting spanning tree over a subset of selected vertices of a graph with low but not necessarily minimal overall edge weight. These prediction concepts as well as other network based methodologies were then applied to the analysis of omics data characterizing ovarian cancer, mesothelial cells stress response, and angiogenesis in brain metastasis, providing additional insight regarding their underlying molecular mechanisms. The complexity of network analysis remains challenging, nurturing research in life sciences as well as computer science. While the analysis of omics data with network methodologies sheds light on molecular mechanisms, the insights gained on natural network topologies and mechanisms further the design and analysis of networks in general. Analysis concepts and algorithms presented in this work serve as general approaches for omics data integration and analysis in the biomedical research area. iv Kurzfassung Molekulare Netzwerke stellen seit jeher aufgrund ihrer komplexen Interaktionsmuster und des vergleichbar langsamen Fortschritts bei der Identifizierung und der Charakterisierung von biologischen Entitäten für die biomedizinische Forschung eine Herausforderung dar. Fortschritte im Bereich der Hochdurchsatzverfahren zur Identifizierung und Quantifizierung von biologischen Entitäten mit Relevanz für die Beschreibung von klinischen Phenotypen haben die Datenkluft über die letzten Jahre verkleinert. Daraus resultieren große Mengen an heterogenen biologischen Daten. Die Analyse dieser Datenlandschaft in einem molekularen mechanistischen Kontext, unterstützt durch Technologien des Datenmangements und der Wissensgewinnung, hat in der Zwischenzeit netzwerkbasierte Methoden für die Entdeckung von neuen Diagnostika und Therapeutika für den klinischen Bedarf hervorgebracht. In dieser Arbeit werden die Fortschritte der letzten Jahre im Bereich molekularer Netzwerke im Detail und speziell für die Systemmedizin präsentiert. Des weiteren gibt sie einen Überblick über Netzwerkprinzipien, Datenquellen sowie Datenstandards und analytische Methoden. Die in dieser Arbeit vorgestellten wissenschaftlichen Beiträge addressieren spezifisch (i) Modellierung von Protein-Protein Interaktionsnetzwerken, (ii) Strategien für die falsch- negative Entdeckungsrate von explorativen Omics-Experimenten unter Vorstellung von Konzepten zur Vorhersage weiterer relevanter biologischer Entitäten, basierend auf Graphenexpansionsalgorithmen und (iii) die angewandte Analyse von Omics-Daten mittels netzwerkbasierten Methoden. Die vorgestellten Konzepte zur Vorhersage von biologischen Entitäten berücksichtigen unser derzeitiges Wissen über die Topologie von molekularen Netzwerken und basieren auf Nachbarschaft von Knoten, sowie minimalen Spannbäumen. Daraus resultiert ein neuer Algorithmus zur effizienten Berechnung eines verbindenden Spannbaums über ein Subset von Knoten eines Graphen mit geringem, aber nicht notwendigerweise minimalem Kantengewicht. Diese Vorhersagekonzepte wurden gemeinsam mit weiteren netzwerkbasierten Methoden für die Analyse von Omics-Daten zur Charakterisierung von Ovarialkarzinom, Stressantwort in Mesothelzellen und Angiogenese in Hirnmetastasen angewandt, welche zusätzliche Erkenntnis zu deren zugrundeliegenden Mechanismen hervorbrachte. Die Komplexität von Netzwerkanalysen ist nach wie vor eine Herausforderung und bietet ausgiebige Forschungsmöglichkeiten sowohl für die Lebenswissenschaften als auch die v Computerwissenschaften. Während die Analyse von Omics-Daten mittels Netzwerkmethoden Licht auf die molekularen Mechanismen wirft, erweitern die Erkenntnisse über Topologien und Mechanismen natürlicher Netzwerke das Design und die Analyse von Netzwerken im Allgemeinen. Die hier angewandten Analysekonzepte und Algorithmen stellen eine allgemeine Basis für die Omics-Datenintegration und die Analyse in der biomedizinischen Forschung dar. vi Table of Contents Introduction ........................................................................................................................ 1 CHAPTER 1 On networks ................................................................................................. 3 Introduction .......................................................................................................................................... 3 Molecular biological network types ...................................................................................................... 6 Protein interaction networks ............................................................................................................. 7 Methods for detecting protein-protein interactions ....................................................................... 8 Metabolic networks ........................................................................................................................... 9 Genetic/Transcription regulatory networks ...................................................................................... 10 Methods for constructing genetic regulatory networks ................................................................ 10 miRNA regulatory networks ............................................................................................................. 10 Methods for constructing miRNA
Recommended publications
  • Practical Parallel Hypergraph Algorithms
    Practical Parallel Hypergraph Algorithms Julian Shun [email protected] MIT CSAIL Abstract v While there has been signicant work on parallel graph pro- 0 cessing, there has been very surprisingly little work on high- e0 performance hypergraph processing. This paper presents v0 v1 v1 a collection of ecient parallel algorithms for hypergraph processing, including algorithms for betweenness central- e1 ity, maximal independent set, k-core decomposition, hyper- v2 trees, hyperpaths, connected components, PageRank, and v2 v3 e single-source shortest paths. For these problems, we either 2 provide new parallel algorithms or more ecient implemen- v3 tations than prior work. Furthermore, our algorithms are theoretically-ecient in terms of work and depth. To imple- (a) Hypergraph (b) Bipartite representation ment our algorithms, we extend the Ligra graph processing Figure 1. An example hypergraph representing the groups framework to support hypergraphs, and our implementa- , , , , , , and , , and its bipartite repre- { 0 1 2} { 1 2 3} { 0 3} tions benet from graph optimizations including switching sentation. between sparse and dense traversals based on the frontier size, edge-aware parallelization, using buckets to prioritize processing of vertices, and compression. Our experiments represented as hyperedges, can contain an arbitrary number on a 72-core machine and show that our algorithms obtain of vertices. Hyperedges correspond to group relationships excellent parallel speedups, and are signicantly faster than among vertices (e.g., a community in a social network). An algorithms in existing hypergraph processing frameworks. example of a hypergraph is shown in Figure 1a. CCS Concepts • Computing methodologies → Paral- Hypergraphs have been shown to enable richer analy- lel algorithms; Shared memory algorithms.
    [Show full text]
  • Practical Parallel Hypergraph Algorithms
    Practical Parallel Hypergraph Algorithms Julian Shun [email protected] MIT CSAIL Abstract v0 While there has been significant work on parallel graph pro- e0 cessing, there has been very surprisingly little work on high- v0 v1 v1 performance hypergraph processing. This paper presents a e collection of efficient parallel algorithms for hypergraph pro- 1 v2 cessing, including algorithms for computing hypertrees, hy- v v 2 3 e perpaths, betweenness centrality, maximal independent sets, 2 v k-core decomposition, connected components, PageRank, 3 and single-source shortest paths. For these problems, we ei- (a) Hypergraph (b) Bipartite representation ther provide new parallel algorithms or more efficient imple- mentations than prior work. Furthermore, our algorithms are Figure 1. An example hypergraph representing the groups theoretically-efficient in terms of work and depth. To imple- fv0;v1;v2g, fv1;v2;v3g, and fv0;v3g, and its bipartite repre- ment our algorithms, we extend the Ligra graph processing sentation. framework to support hypergraphs, and our implementations benefit from graph optimizations including switching between improved compared to using a graph representation. Unfor- sparse and dense traversals based on the frontier size, edge- tunately, there is been little research on parallel hypergraph aware parallelization, using buckets to prioritize processing processing. of vertices, and compression. Our experiments on a 72-core The main contribution of this paper is a suite of efficient machine and show that our algorithms obtain excellent paral- parallel hypergraph algorithms, including algorithms for hy- lel speedups, and are significantly faster than algorithms in pertrees, hyperpaths, betweenness centrality, maximal inde- existing hypergraph processing frameworks.
    [Show full text]
  • Adjacency Matrix
    CSE 373 Graphs 3: Implementation reading: Weiss Ch. 9 slides created by Marty Stepp http://www.cs.washington.edu/373/ © University of Washington, all rights reserved. 1 Implementing a graph • If we wanted to program an actual data structure to represent a graph, what information would we need to store? for each vertex? for each edge? 1 2 3 • What kinds of questions would we want to be able to answer quickly: 4 5 6 about a vertex? about edges / neighbors? 7 about paths? about what edges exist in the graph? • We'll explore three common graph implementation strategies: edge list , adjacency list , adjacency matrix 2 Edge list • edge list : An unordered list of all edges in the graph. an array, array list, or linked list • advantages : 1 2 3 easy to loop/iterate over all edges 4 5 6 • disadvantages : hard to quickly tell if an edge 7 exists from vertex A to B hard to quickly find the degree of a vertex (how many edges touch it) 0 1 2 3 4 56 7 8 (1, 2) (1, 4) (1, 7) (2, 3) 2, 5) (3, 6)(4, 7) (5, 6) (6, 7) 3 Graph operations • Using an edge list, how would you find: all neighbors of a given vertex? the degree of a given vertex? whether there is an edge from A to B? 1 2 3 whether there are any loops (self-edges)? • What is the Big-Oh of each operation? 4 5 6 7 0 1 2 3 4 56 7 8 (1, 2) (1, 4) (1, 7) (2, 3) 2, 5) (3, 6)(4, 7) (5, 6) (6, 7) 4 Adjacency matrix • adjacency matrix : An N × N matrix where: the non-diagonal entry a[i,j] is the number of edges joining vertex i and vertex j (or the weight of the edge joining vertex i and vertex j).
    [Show full text]
  • Introduction to Graphs
    Multidimensional Arrays & Graphs CMSC 420: Lecture 3 Mini-Review • Abstract Data Types: • Implementations: • List • Linked Lists • Stack • Circularly linked lists • Queue • Doubly linked lists • Deque • XOR Doubly linked lists • Dictionary • Ring buffers • Set • Double stacks • Bit vectors Techniques: Sentinels, Zig-zag scan, link inversion, bit twiddling, self- organizing lists, constant-time initialization Constant-Time Initialization • Design problem: - Suppose you have a long array, most values are 0. - Want constant time access and update - Have as much space as you need. • Create a big array: - a = new int[LARGE_N]; - Too slow: for(i=0; i < LARGE_N; i++) a[i] = 0 • Want to somehow implicitly initialize all values to 0 in constant time... Constant-Time Initialization means unchanged 1 2 6 12 13 Data[] = • Access(i): if (0≤ When[i] < count and Where[When[i]] == i) return Where[] = 6 13 12 Count = 3 Count holds # of elements changed Where holds indices of the changed elements. When[] = 1 3 2 When maps from index i to the time step when item i was first changed. Access(i): if 0 ≤ When[i] < Count and Where[When[i]] == i: return Data[i] else: return DEFAULT Multidimensional Arrays • Often it’s more natural to index data items by keys that have several dimensions. E.g.: • (longitude, latitude) • (row, column) of a matrix • (x,y,z) point in 3d space • Aside: why is a plane “2-dimensional”? Row-major vs. Column-major order • 2-dimensional arrays can be mapped to linear memory in two ways: 1 2 3 4 5 1 2 3 4 5 1 1 2 3 4 5 1 1 5 9 13 17 2 6 7 8 9 10 2 2 6 10 14 18 3 11 12 13 14 15 3 3 7 11 15 19 4 16 17 18 19 20 4 4 8 12 16 20 Row-major order Column-major order Addr(i,j) = Base + 5(i-1) + (j-1) Addr(i,j) = Base + (i-1) + 4(j-1) Row-major vs.
    [Show full text]
  • 9 the Graph Data Model
    CHAPTER 9 ✦ ✦ ✦ ✦ The Graph Data Model A graph is, in a sense, nothing more than a binary relation. However, it has a powerful visualization as a set of points (called nodes) connected by lines (called edges) or by arrows (called arcs). In this regard, the graph is a generalization of the tree data model that we studied in Chapter 5. Like trees, graphs come in several forms: directed/undirected, and labeled/unlabeled. Also like trees, graphs are useful in a wide spectrum of problems such as com- puting distances, finding circularities in relationships, and determining connectiv- ities. We have already seen graphs used to represent the structure of programs in Chapter 2. Graphs were used in Chapter 7 to represent binary relations and to illustrate certain properties of relations, like commutativity. We shall see graphs used to represent automata in Chapter 10 and to represent electronic circuits in Chapter 13. Several other important applications of graphs are discussed in this chapter. ✦ ✦ ✦ ✦ 9.1 What This Chapter Is About The main topics of this chapter are ✦ The definitions concerning directed and undirected graphs (Sections 9.2 and 9.10). ✦ The two principal data structures for representing graphs: adjacency lists and adjacency matrices (Section 9.3). ✦ An algorithm and data structure for finding the connected components of an undirected graph (Section 9.4). ✦ A technique for finding minimal spanning trees (Section 9.5). ✦ A useful technique for exploring graphs, called “depth-first search” (Section 9.6). 451 452 THE GRAPH DATA MODEL ✦ Applications of depth-first search to test whether a directed graph has a cycle, to find a topological order for acyclic graphs, and to determine whether there is a path from one node to another (Section 9.7).
    [Show full text]
  • List Representation: Adjacency List – N Rows of the Adjacency Matrix Are
    List Representation: Adjacency List { n rows of the adjacency matrix are repre- sented as n linked lists { Declare an Array of size n e.g. A[1:::n] of Lists { A[i] is a pointer to the edges in E(G) starting at vertex i. Undirected graph: data in each list cell is a number indicating the adjacent vertex Weighted graph: data in each list cell is a pair (vertex, weight) 1 a b c e a [b,2] [c,6] [e,4] b a b [a,2] c a e d c [a,6] [e,3] [d,1] d c d [c,1] e a c e [a,4] [c,3] Properties: { the degree of any node is the number of elements in the list { O(e) to check for adjacency for e edges. { O(n + e) space for graph with n vertices and e edges. 2 Search and Traversal Techniques Trees and Graphs are models on which algo- rithmic solutions for many problems are con- structed. Traversal: All nodes of a tree/graph are exam- ined/evaluated, e.g. | Evaluate an expression | Locate all the neighbours of a vertex V in a graph Search: only a subset of vertices(nodes) are examined, e.g. | Find the first token of a certain value in an Abstract Syntax Tree. 3 Types of Traversals Binary Tree traversals: | Inorder, Postorder, Preorder General Tree traversals: | With many children at each node Graph Traversals: | With Trees as a special case of a graph 4 Binary Tree Traversal Recall a Binary tree | is a tree structure in which there can be at most two children for each parent | A single node is the root | The nodes without children are leaves | A parent can have a left child (subtree) and a right child (subtree) A node may be a record of information | A node is visited when it is considered in the traversal | Visiting a node may involve computation with one or more of the data fields at the node.
    [Show full text]
  • Package 'Igraph'
    Package ‘igraph’ February 28, 2013 Version 0.6.5-1 Date 2013-02-27 Title Network analysis and visualization Author See AUTHORS file. Maintainer Gabor Csardi <[email protected]> Description Routines for simple graphs and network analysis. igraph can handle large graphs very well and provides functions for generating random and regular graphs, graph visualization,centrality indices and much more. Depends stats Imports Matrix Suggests igraphdata, stats4, rgl, tcltk, graph, Matrix, ape, XML,jpeg, png License GPL (>= 2) URL http://igraph.sourceforge.net SystemRequirements gmp, libxml2 NeedsCompilation yes Repository CRAN Date/Publication 2013-02-28 07:57:40 R topics documented: igraph-package . .5 aging.prefatt.game . .8 alpha.centrality . 10 arpack . 11 articulation.points . 15 as.directed . 16 1 2 R topics documented: as.igraph . 18 assortativity . 19 attributes . 21 autocurve.edges . 23 barabasi.game . 24 betweenness . 26 biconnected.components . 28 bipartite.mapping . 29 bipartite.projection . 31 bonpow . 32 canonical.permutation . 34 centralization . 36 cliques . 39 closeness . 40 clusters . 42 cocitation . 43 cohesive.blocks . 44 Combining attributes . 48 communities . 51 community.to.membership . 55 compare.communities . 56 components . 57 constraint . 58 contract.vertices . 59 conversion . 60 conversion between igraph and graphNEL graphs . 62 convex.hull . 63 decompose.graph . 64 degree . 65 degree.sequence.game . 66 dendPlot . 67 dendPlot.communities . 68 dendPlot.igraphHRG . 70 diameter . 72 dominator.tree . 73 Drawing graphs . 74 dyad.census . 80 eccentricity . 81 edge.betweenness.community . 82 edge.connectivity . 84 erdos.renyi.game . 86 evcent . 87 fastgreedy.community . 89 forest.fire.game . 90 get.adjlist . 92 get.edge.ids . 93 get.incidence . 94 get.stochastic .
    [Show full text]
  • Review Article Empirical Comparison of Visualization Tools for Larger-Scale Network Analysis
    Hindawi Advances in Bioinformatics Volume 2017, Article ID 1278932, 8 pages https://doi.org/10.1155/2017/1278932 Review Article Empirical Comparison of Visualization Tools for Larger-Scale Network Analysis Georgios A. Pavlopoulos,1 David Paez-Espino,1 Nikos C. Kyrpides,1 and Ioannis Iliopoulos2 1 Department of Energy, Joint Genome Institute, Lawrence Berkeley Labs, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA 2Division of Basic Sciences, University of Crete Medical School, Andrea Kalokerinou Street, Heraklion, Greece Correspondence should be addressed to Georgios A. Pavlopoulos; [email protected] and Ioannis Iliopoulos; [email protected] Received 22 February 2017; Revised 14 May 2017; Accepted 4 June 2017; Published 18 July 2017 Academic Editor: Klaus Jung Copyright © 2017 Georgios A. Pavlopoulos et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Gene expression, signal transduction, protein/chemical interactions, biomedical literature cooccurrences, and other concepts are often captured in biological network representations where nodes represent a certain bioentity and edges the connections between them. While many tools to manipulate, visualize, and interactively explore such networks already exist, only few of them can scale up and follow today’s indisputable information growth. In this review, we shortly list a catalog of available network visualization tools and, from a user-experience point of view, we identify four candidate tools suitable for larger-scale network analysis, visualization, and exploration. We comment on their strengths and their weaknesses and empirically discuss their scalability, user friendliness, and postvisualization capabilities.
    [Show full text]
  • An XML-Based Description of Structured Networks
    Massimo Ancona, Walter Cazzola, Sara Drago, and Francesco Guido. An XML-Based Description of Structured Networks. In Proceedings of Interna- tional Conference Communications 2004, pages 401–406, Bucharest, Romania, June 2004. IEEE Press. An XML-Based Description of Structured Networks Massimo Ancona£ Walter Cazzola† Sara Drago£ Francesco Guido‡ £ DISI University of Genova, e-mail: fancona,[email protected] † DICo University of Milano, e-mail: [email protected] ‡ Marconi Selenia Communication, e-mail: [email protected] Abstract In this paper we present an XML-based formalism to describe hierarchically organized communication networks. After a short overview of existing graph description languages, we discuss the advantages and disadvantages of their application in network optimization. We conclude by extending one of these formalisms with features supporting the description of the relationship between the optimized logical layout of a network and its physical counterpart. Elements for describing traffic parameters are also given. 1 Introduction The problem of network design and optimization has a strategical importance especially for military networks. In this case, design for fault tolerance and security plays a role more and more crucial than the equivalent importance required for commercial and research networks. The reengineering of a large communication network is a complex problem, which consists of different aspects that can be strongly affected by the way of describing data. The plainest way to describe a communication network is to model the relationship among sites and links by means of a weighted undirected graph, but unless some more assumptions are taken, this approach can raise several problems. A first issue is encountered when an analysis and a visualization of the network has to be realized: practical networks include hundreds or often thousands of nodes and links, so that even a simple description and documentation of the network structure is hard to maintain and update.
    [Show full text]
  • Note: Nonlinear Data Structures Do Not Have Their Elements in a Sequence
    CS231 - Fall 2017 Graphs • Graph is a non-linear data structure (like a tree). Note: nonlinear data structures do not have their elements in a sequence. • But trees are somewhat orderly. Root is connected to its children. The children are connected to their children…all the way to the leaves. • Graph can be linked in any pattern. • A graph consists of vertices (nodes) and edges (arcs). o Name the vertices: {A,B,C,D,E} o Name the edges: {(A,B), (A,E), (A,D),…} • Applications: o roads between cities o communication networks o oil pipelines o personal relationships between people o interval graphs o rooms in caves with passages between them • Directed vs. Undirected o Graphs can be directed or undirected. o In undirected graphs, edges have no specific direction. Edges are always “two-way” o In directed graphs (also called digraphs), edges have a direction 1 o A self-edge a.k.a. a loop is an edge of the form (a,a) • Graph Connectivity o A graph is connected when there is a path between every pair of vertices. o In a connected graph, there are no unreachable vertices. o A graph that is not connected is disconnected. o A graph G is said to be disconnected if there exist two nodes in G such that no path in G has those nodes as endpoints. • Weighted graphs o In a weighed graph, each edge has a weight a.k.a. cost o Some graphs allow negative weights; some not • Paths and Cycles 2 o Path from one vertex to another is a sequence of vertices, each a neighbor of the previous one.
    [Show full text]
  • Chapter 12 Graphs and Their Representation
    Chapter 12 Graphs and their Representation 12.1 Graphs and Relations Graphs (sometimes referred to as networks) offer a way of expressing relationships between pairs of items, and are one of the most important abstractions in computer science. Question 12.1. What makes graphs so special? What makes graphs special is that they represent relationships. As you will (or might have) discover (discovered already) relationships between things from the most abstract to the most concrete, e.g., mathematical objects, things, events, people are what makes everything inter- esting. Considered in isolation, hardly anything is interesting. For example, considered in isolation, there would be nothing interesting about a person. It is only when you start consid- ering his or her relationships to the world around, the person becomes interesting. Challenge yourself to try to find something interesting about a person in isolation. You will have difficulty. Even at a biological level, what is interesting are the relationships between cells, molecules, and the biological mechanisms. Question 12.2. Trees captures relationships too, so why are graphs more interesting? Graphs are more interesting than other abstractions such as tree, which can also represent certain relationships, because graphs are more expressive. For example, in a tree, there cannot be cycles, and multiple paths between two nodes. Question 12.3. What do we mean by a “relationship”? Can you think of a mathematical way to represent relationships. 231 232 CHAPTER 12. GRAPHS AND THEIR REPRESENTATION Alice Bob Josefa Michel Figure 12.1: Friendship relation f(Alice, Bob), (Bob, Alice), (Bob, Michel), (Michel, Bob), (Josefa, Michel), (Michel, Josefa)g as a graph.
    [Show full text]
  • Data Structure for Representing a Graph: Combination of Linked List and Hash Table
    Data structure for representing a graph: combination of linked list and hash table Maxim A. Kolosovskiy Altai State Technical University, Russia [email protected] Abstract In this article we discuss a data structure, which combines advantages of two different ways for representing graphs: adjacency matrix and collection of adjacency lists. This data structure can fast add and search edges (advantages of adjacency matrix), use linear amount of memory, let to obtain adjacency list for certain vertex (advantages of collection of adjacency lists). Basic knowledge of linked lists and hash tables is required to understand this article. The article contains examples of implementation on Java. 1. Introduction There are two most common ways for representing a graph: Adjacency matrix Collection of adjacency lists Let’s look at comparison table of these ways: Adjacency Collection of matrix adjacency lists Memory complexity (optimal – O(|E|)) O(|V|2) O(|E|) Add new edge (optimal – O(1)) O(1) O(1) Remove edge (optimal – O(1)) O(1) O(|K|) Search edge (optimal – O(1)) O(1) O(|K|) Enumeration of the vertices adjacent to u O(|V|) O(|K|) (optimal – O(|K|)) Table 1. Comparison table of two ways for representing graphs. V – set of vertices, E – set of edges, K – set of vertices adjacent to vertex u. We assume that |V|<|E|. Bold font – optimal complexity. Operations with a graph represented by an adjacency matrix are faster. But if a graph is large we can’t use such big matrix to represent a graph, so we should use collection of adjacency lists, which is more compact.
    [Show full text]