Inactivates Neutrophil Proteins S100A8/A9 Bacterial Surface

Total Page:16

File Type:pdf, Size:1020Kb

Inactivates Neutrophil Proteins S100A8/A9 Bacterial Surface Bacterial Surface Protein L Binds and Inactivates Neutrophil Proteins S100A8/A9 Bo Åkerström and Lars Björck This information is current as J Immunol 2009; 183:4583-4592; Prepublished online 14 of September 28, 2021. September 2009; doi: 10.4049/jimmunol.0901487 http://www.jimmunol.org/content/183/7/4583 Downloaded from References This article cites 57 articles, 23 of which you can access for free at: http://www.jimmunol.org/content/183/7/4583.full#ref-list-1 Why The JI? Submit online. http://www.jimmunol.org/ • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average by guest on September 28, 2021 Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2009 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Bacterial Surface Protein L Binds and Inactivates Neutrophil Proteins S100A8/A91 Bo Åkerstro¨m2 and Lars Bjo¨rck2 Finegoldia magna is an anaerobic bacterial species that is part of the normal human flora on all nonsterile body surfaces, but it is also a significant opportunistic pathogen causing a wide range of infections. Some isolates of F. magna that are more frequently associated with clinical infection express protein L, a surface protein containing multiple homologous domains (B1-B5) that bind Igs through interactions with Ig L chains. The present study shows that the N-terminal A domain of protein L binds S100A8/A9, antibacterial proteins present in large amounts in the cytoplasm of neutrophils, but also extracellularly in tissues during inflammation. As a result, protein L-expressing F. magna are protected against killing by S100A8/A9. Igs and S100A8/A9 were found to interact independently with protein L, demonstrating that this bacterial surface protein is capable of manipulating both adaptive and innate immune defense mechanisms. The Journal of Immunology, 2009, 183: Downloaded from 4583–4592. any bacterial species express Ig-binding surface pro- in the release of proinflammatory mediators (14, 15). These teins, among which staphylococcal protein A (1) and different observations indicate that the presence of protein L at M streptococcal protein G (2, 3) are the most well the surface of F. magna enhances the potential pathogenicity of known. These proteins are widely used as biomedical tools to the bacteria. http://www.jimmunol.org/ detect and bind Abs, and they interact with the H chains of IgG. Members of the human S100 protein family are Ca2ϩ-binding Apart from protein L, an Ig L chain-binding molecule (4), all proteins containing helix-loop-helix motifs, so-called EF hands bacterial proteins to date described that bind Ig in a nonimmune (16). The expression of the S100 proteins is usually regulated fashion interact with Ig H chains. Protein L is expressed by by environmental and developmental factors, and is cell and ϳ10% of clinical isolates of Finegoldia magna (5), an anaer- tissue specific. Two members, S100A8 and S100A9, are major obic Gram-positive bacterium that is part of the normal flora in cytosolic constituents (ϳ40% of the total protein content) in the skin, the mouth, the upper respiratory tract, the gastrointes- neutrophils and monocytes. The apparent molecular masses on tinal tract, and the female genito-urinary tract. F. magna is the SDS-PAGE are 8 and 14 kDa, respectively, and they are also most significant opportunistic pathogen of the anaerobic normal called myeloid-related proteins 8 and 14, migration inhibitory by guest on September 28, 2021 bacterial flora, causing soft tissue abscesses, bone/joint infec- factor-related proteins 8 and 14, or calgranulin a/b (17, 18). tions, wound infections, and vaginosis (6, 7). Protein L-express- Their expression is up-regulated in tissue macrophages, kera- ing F. magna strains are frequently isolated from patients with tinocytes, and epithelial cells in inflammation and cancer (19, vaginosis (5), and when expressed at the surface of Streptococ- 20). S100A8 and S100A9 are secreted from activated phago- cus gordonii, protein L promotes the adhesion of these bacteria cytes by a novel tubulin-dependent mechanism (21), and they to the vaginal mucosa of mice (8). Protein L preferentially binds are found in extracellular fluid and plasma during inflammation Ig L chains of the ␬ type through interactions with the variable (20). The two proteins form heteromeric complexes in vivo, and domain, but without interfering with the Ag binding site (9– at millimolar Ca levels the heterotetramer, (S100A8/A9) ,is 12). The molecule contains multiple homologous Ig binding 2 predominating (22, 23). The tetramer was also named calpro- domains, called B repeats (13), and it activates human basophils tectin due to its ability to inhibit growth of various bacterial and and mast cells by cross-linking surface-associated IgE, resulting fungal species (24). This bacteriostatic property has been as- cribed to the Zn-binding capacity of the tetramer, and it has been suggested that the effect is a result of depletion of bacterial Department of Clinical Sciences, Division of Infection Medicine, Lund University, nutrient Zn ions (25) or altered structure of the protein complex Lund, Sweden (26). The observation that the S100A8/A9 complex adheres to Received for publication May 11, 2009. Accepted for publication July 21, 2009. amastigotes in skin lesions of Leishmania major-infected mice The costs of publication of this article were defrayed in part by the payment of page (27) indicates that S100A8/A9 could also have a function in the charges. This article must therefore be hereby marked advertisement in accordance defense against this parasite. with 18 U.S.C. Section 1734 solely to indicate this fact. The interaction between the B repeats of protein L and Ig L 1 This work was supported by the Swedish Research Council (Projects 7144 and 7480), Swedish Government Funds for Clinical Research (ALF), Swedish Society for chains is well documented, but the properties of the N-terminal A Medical Research, Royal Physiographic Society (Lund), Foundations of Greta and domain (Fig. 3A shows a schematic depiction of protein L) are ¨ Johan Kock, Torsten and Ragnar So¨derberg, Alfred Osterlund, the Blood and Defence unknown. The starting point for the present investigation was the Network, Lund University, the Crafoord Foundation, the Thelma Zoe´ga Foundation, and Hansa Medical AB. finding that a protein L construct containing the A domain bound 2 Address correspondence and reprint requests to Dr. Bo Åkerstro¨m or Dr. Lars S100A8/A9 with high affinity and specificity, whereas the Ig-bind- Bjo¨rck, Lund University, BMC, B14, Solvegatan 19, SE-22184, Lund, Sweden. ing B repeats did not. A characterization of the interaction between E-mail addresses: [email protected] and [email protected] protein L and S100A8/A9 and its consequences for F. magna bi- Copyright © 2009 by The American Association of Immunologists, Inc. 0022-1767/09/$2.00 ology is the theme of this work. www.jimmunol.org/cgi/doi/10.4049/jimmunol.0901487 4584 PROTEIN L BINDS AND INACTIVATES S100 A8/A9 Materials and Methods some cases, binding experiments were also performed in TH broth con- Bacteria taining 0.5% Tween 80 (pH 5.5). F. magna (strains 312, 505, 564, and 644) and group G streptococcal Bacterial growth assay strains (G42, G43, G46, and G148) are clinical isolates from the De- F. magna strains 312 and 505 were grown under strict anaerobic conditions partment of Clinical Microbiology, Lund University Hospital. Strepto- in TH broth (pH 7.5) containing 0.5% Tween 80, to A620 0.5–0.7. A total coccus pneumoniae strains D39 and PR218 are from G. Pozzi, Univer- of 4 ␮l of these bacterial suspensions was added to 200 ␮l of TH (pH 5.5 sity of Siena, and the Streptococcus pyogenes strains (AP1, AP4, AP6, or 7.5) containing 0.5% Tween 80, in UV-transparent cuvettes. At the same AP12, and AP49) are from Institute of Hygiene and Epidemiology (Prague, time, various amounts of S100A8/A9 in 1–2 ␮l of PBS, or 1–2 ␮lofPBS Czech Republic). The two Staphylococcus aureus strains Cowan I and alone as a control, were added to the cuvettes. These manipulations were Wood 46 are from T. Foster, Trinity College (Dublin, Ireland). All strains 3 done in an anaerobic workstation (Electrotek). A620 was determined after were grown in Todd-Hewitt (TH) broth (Difco) at 37°C. In the case of F. 24 h of incubation. In some experiments, the strains were grown at pH 5.5 magna strains, TH contained 0.5% Tween 80, and these isolates were to A620 0.3–0.5 in the UV-transparent cuvettes, followed by the addition of grown under strict anaerobic conditions. 5 ␮g of S100A8/A9. Growth curves were obtained by cultivating the bac- teria under strict anaerobic conditions and measuring A at different time Proteins, Abs, sequencing, and radiolabeling 620 points. Protein L (B1-B4) was expressed and purified, as described (13). Factor Xa (FXa) was purchased from ICN Pharmaceuticals. Human IgG was pur- Construction and cloning of a protein L (A-C2) vector chased from Sigma-Aldrich. Protein PAB was isolated from F. magna A DNA fragment coding for an N-terminal FXa-site (isoleucine-glutamic (strain ALB8) culture medium, as described (28).
Recommended publications
  • Datasheet: VMA00595 Product Details
    Datasheet: VMA00595 Description: MOUSE ANTI S100A8 Specificity: S100A8 Format: Purified Product Type: PrecisionAb™ Monoclonal Isotype: IgG2b Quantity: 100 µl Product Details Applications This product has been reported to work in the following applications. This information is derived from testing within our laboratories, peer-reviewed publications or personal communications from the originators. Please refer to references indicated for further information. For general protocol recommendations, please visit www.bio-rad-antibodies.com/protocols. Yes No Not Determined Suggested Dilution Western Blotting 1/1000 PrecisionAb antibodies have been extensively validated for the western blot application. The antibody has been validated at the suggested dilution. Where this product has not been tested for use in a particular technique this does not necessarily exclude its use in such procedures. Further optimization may be required dependant on sample type. Target Species Human Species Cross Reacts with: Mouse Reactivity N.B. Antibody reactivity and working conditions may vary between species. Product Form Purified IgG - liquid Preparation Mouse monoclonal antibody affinity purified on immunogen from tissue culture supernatant Buffer Solution Phosphate buffered saline Preservative 0.09% Sodium Azide (NaN3) Stabilisers 1% Bovine Serum Albumin Immunogen Full length recombinant human S100A8 External Database Links UniProt: P05109 Related reagents Entrez Gene: 6279 S100A8 Related reagents Synonyms CAGA, CFAG, MRP8 Page 1 of 2 Specificity Mouse anti Human S100A8 antibody recognizes S100A8, also known as MRP-8, S100 calcium- binding protein A8 (calgranulin A), calprotectin L1L subunit, leukocyte L1 complex light chain or migration inhibitory factor-related protein 8. The protein encoded by S100A8 is a member of the S100 family of proteins containing 2 EF-hand calcium-binding motifs.
    [Show full text]
  • A Novel Computational Algorithm for Predicting Immune Cell Types Using Single-Cell RNA Sequencing Data
    A novel computational algorithm for predicting immune cell types using single-cell RNA sequencing data By Shuo Jia A hesis submitted to the Faculty of Graduate Studies of The University of Manitoba n partial fulfillment of the requirements of the degree of MASTER OF SCIENCE Department of Biochemistry and Medical Genetics University of Manitoba Winnipeg, Manitoba, Canada Copyright © 2020 by Shuo Jia Abstract Background: Cells from our immune system detect and kill pathogens to protect our body against many diseases. However, current methods for determining cell types have some major limitations, such as being time-consuming and with low throughput rate, etc. These problems stack up and hinder the deep exploration of cellular heterogeneity. Immune cells that are associated with cancer tissues play a critical role in revealing the stages of tumor development. Identifying the immune composition within tumor microenvironments in a timely manner will be helpful to improve clinical prognosis and therapeutic management for cancer. Single-cell RNA sequencing (scRNA-seq), an RNA sequencing (RNA-seq) technique that focuses on a single cell level, has provided us with the ability to conduct cell type classification. Although unsupervised clustering approaches are the major methods for analyzing scRNA-seq datasets, their results vary among studies with different input parameters and sizes. However, in supervised machine learning methods, information loss and low prediction accuracy are the key limitations. Methods and Results: Genes in the human genome align to chromosomes in a particular order. Hence, we hypothesize incorporating this information into our model will potentially improve the cell type classification performance. In order to utilize gene positional information, we introduce chromosome-based neural network, namely ChrNet, a novel chromosome-specific re-trainable supervised learning method based on a one-dimensional 1 convolutional neural network (1D-CNN).
    [Show full text]
  • Pierce™ Chromatography Cartridges Protein L
    INSTRUCTIONS Pierce ™ Chromatography Cartridges Protein L 1971.1 89928 89929 Number Description 89928 Pierce Chromatography Cartridges Protein L, 2 × 1mL 89929 Pierce Chromatography Cartridges Protein L, 1 × 5mL Binding Capacity: 4-5mg human IgG/mL of resin bed Note: Protein L is immobilized on crosslinked 6% beaded agarose supplied in 0.05% sodium azide in water. Each product is supplied with an accessory pack (1 female Luer-Lok™ Adapter, 1 connector fitting, 1 column plug and 1 or 2 bottom caps). Storage: Upon receipt store at 4-8°C. Product is shipped at ambient temperature. Do not freeze. Introduction The Thermo Scientific™ Pierce™ Chromatography Cartridges Protein L are convenient, ready-to-use prepacked devices for isolation and purification of immunoglobulin classes IgG, IgM, IgA, IgE and IgD via their kappa light chains. Protein L binds to certain subtypes of antibody kappa light chains, predominant in humans and mice, without interfering with antigen binding sites. Typically, Protein L cartridges are used for purifying monoclonal antibodies from ascites or cell culture supernatants. Protein L does not bind bovine antibodies, eliminating contamination from bovine immunoglobins when purifying serum- supplemented cell culture supernatants. Protein L also binds single chain variable fragments (scFv) and Fab fragments, unlike Protein A, Protein G or Protein A/G. Pierce Chromatography Cartridges are compatible with the major automated liquid-chromatography systems or for manual syringe processing (see Table 1 for general properties of the cartridges). The cartridges attach directly to ÄKTA™ or FPLC Systems without additional connectors. An accessory pack, included with each product, readily adapts columns for use with Luer-Lok Syringe Fittings or 1/16” tubing.
    [Show full text]
  • Biofire Blood Culture Identification System (BCID) Fact Sheet
    BioFire Blood Culture Identification System (BCID) Fact Sheet What is BioFire BioFire BCID is a multiplex polymerase chain reaction (PCR) test designed to BCID? identify 24 different microorganism targets and three antibiotic resistance genes from positive blood culture bottles. What is the purpose The purpose of BCID is to rapidly identify common microorganisms and of BCID? antibiotic resistance genes from positive blood cultures so that antimicrobial therapy can be quickly optimized by the physician and the antibiotic stewardship pharmacist. It is anticipated that this will result in improved patient outcomes, decreased length of stay, improved antibiotic stewardship, and decreased costs. When will BCID be BCID is performed on all initially positive blood cultures after the gram stain is routinely performed and reported. performed? When will BCID not For blood cultures on the same patient that subsequently become positive with be routinely a microorganism showing the same morphology as the initial positive blood performed? culture, BCID will not be performed. BCID will not be performed on positive blood cultures with gram positive bacilli unless Listeria is suspected. BCID will not be performed on blood culture bottles > 8 hours after becoming positive. BCID will not be performed between 10PM-7AM on weekdays and 2PM-7AM on weekends. BCID will not be performed for clinics that have specifically opted out of testing. How soon will BCID After the blood culture becomes positive and the gram stain is performed and results be available? reported, the bottle will be sent to the core Microbiology lab by routine courier. BCID testing will then be performed. It is anticipated that total turnaround time will generally be 2-3 hours after the gram stain is reported.
    [Show full text]
  • Table 3. Distribution of Tetracycline Resistance Genes Among Gram-Positive Bacteria, Mycobacterium, Mycoplasma, Nocardia, Streptomyces and Ureaplasma Modified Sept
    Table 3. Distribution of tetracycline resistance genes among Gram-positive bacteria, Mycobacterium, Mycoplasma, Nocardia, Streptomyces and Ureaplasma Modified Sept. 27, 2021 [n=58 genera] Originally modified from MMBR 2001; 65:232-260 with permission from ASM Journals One Determinant Two Determinants Three or More Determinants n=27 n=7 n=22 k Abiotrophia tet(M) Arthrobacter tet(33)(M) Actinomyces tet(L)(M)(W) Afipia tet(M) Gardnerella tet(M)(Q) Aerococcus tet(M)(O)(58)(61) o Amycolatopsis tet(M) Gemella tet(M)(O) Bacillus tet(K)(L)(M)(O)ao(T)ao(W)(39)m(42)I (45)atotr(A)L Anaerococcus tet(M)g Granulicatella tet(M)(O) Bifidobacterium a, w tet(L)(M)(O)(W) Bacterionema tet(M) Lactococcus tet(M)(S) Bhargavaea tet(L)ac(M)(45)aa ar Brachybacterium tet(M)k Mobiluncusa tet(O)(Q) Clostridiuma,f tet(K)(L)(M)(O)(P)(Q)(W)(36)(40)j(44)p(X) Catenibacteriuma tet(M) Savagea tet(L)(M) Clostridioidesat tet(L)(P)(W)(40) Cellulosimicrobium tet(39)m Corynebacterium tet(M)(Z)(33)(W)q (39)ak Cottaibacterium tet(M) Enterococcus tet(K)(L)(M)(O)(S)(T)(U)(58)ad(61)aq Cutibacterium tet(W)aq Eubacteriuma tet(K)(M)(O)(Q)(32) Erysipelothrix tet(M) Lactobacillusf tet(K)(L)(M)(O)(Q)(S)(W)(Z)(36)am Finegoldia tet(M)g Listeria tet(K)(L)(M)(S)AB(46)ag Geobacillus tet(L) Microbacterium tet(M)(O)ae(42)I Helcococcus tet(M)ah Mycobacteriumc tet(K)(L)(M)(O)t(V)arotr(A)(B) Leifsonia tet(O)t Nocardia tet(K)(L)(M)ai (O) ai Lysinibacillus tet(39)m Paenibacillus tet(L)(M)(O)t(42)i Micrococcus tet(42) Peptostreptococcusa tet(K)(L)(M)(O)(Q) Mycoplasmab tet(M) Sporosarcina tet(K)(L)ac(M)n
    [Show full text]
  • Tumor-Infiltrating Monocytes/Macrophages Promote Tumor Invasion and Migration by Upregulating S100A8 and S100A9 Expression in Ca
    OPEN Oncogene (2016) 35, 5735–5745 © 2016 Macmillan Publishers Limited, part of Springer Nature. All rights reserved 0950-9232/16 www.nature.com/onc ORIGINAL ARTICLE Tumor-infiltrating monocytes/macrophages promote tumor invasion and migration by upregulating S100A8 and S100A9 expression in cancer cells SY Lim, AE Yuzhalin, AN Gordon-Weeks and RJ Muschel Myeloid cells promote the development of distant metastases, but little is known about the molecular mechanisms underlying this process. Here we have begun to uncover the effects of myeloid cells on cancer cells in a mouse model of liver metastasis. Monocytes/macrophages, but not granulocytes, isolated from experimental liver metastases stimulated migration and invasion of MC38 colon and Lewis lung carcinoma cells. In response to conditioned media from tumor-infiltrating monocytes/macrophages, cancer cells upregulated S100a8 and S100a9 messenger RNA expression through an extracellular signal-related kinase-dependent mechanism. Suppression of S100A8 and S100A9 in cancer cells using short hairpin RNA significantly diminished migration and invasion in culture. Downregulation of S100A8 and S100A9 had no effect on subcutaneous tumor growth. However, colony size was greatly reduced in liver metastases with decreased invasion into adjacent tissue. In tissue culture and in the liver colonies derived from cancer cells with knockdown of S100A8 and S100A9, MMP2 and MMP9 expression was decreased, consistent with the reduction in migration and invasion. Our findings demonstrate that monocytes/macrophages in the metastatic liver microenvironment induce S100A8 and S100A9 in cancer cells, and that these proteins are essential for tumor cell migration and invasion. S100A8 and S100A9, however, are not responsible for stimulation of proliferation.
    [Show full text]
  • Identification and Antimicrobial Susceptibility Testing of Anaerobic
    antibiotics Review Identification and Antimicrobial Susceptibility Testing of Anaerobic Bacteria: Rubik’s Cube of Clinical Microbiology? Márió Gajdács 1,*, Gabriella Spengler 1 and Edit Urbán 2 1 Department of Medical Microbiology and Immunobiology, Faculty of Medicine, University of Szeged, 6720 Szeged, Hungary; [email protected] 2 Institute of Clinical Microbiology, Faculty of Medicine, University of Szeged, 6725 Szeged, Hungary; [email protected] * Correspondence: [email protected]; Tel.: +36-62-342-843 Academic Editor: Leonard Amaral Received: 28 September 2017; Accepted: 3 November 2017; Published: 7 November 2017 Abstract: Anaerobic bacteria have pivotal roles in the microbiota of humans and they are significant infectious agents involved in many pathological processes, both in immunocompetent and immunocompromised individuals. Their isolation, cultivation and correct identification differs significantly from the workup of aerobic species, although the use of new technologies (e.g., matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, whole genome sequencing) changed anaerobic diagnostics dramatically. In the past, antimicrobial susceptibility of these microorganisms showed predictable patterns and empirical therapy could be safely administered but recently a steady and clear increase in the resistance for several important drugs (β-lactams, clindamycin) has been observed worldwide. For this reason, antimicrobial susceptibility testing of anaerobic isolates for surveillance
    [Show full text]
  • (BCID) Results Are “Not Detected”
    Interpretation of Positive Blood Cultures When PCR Blood Culture Identification (BCID) Results are “Not Detected” Nebraska Medicine currently uses a multi-plex PCR-based blood culture identification (BCID) system that is able to identify 19 potential pathogens growing in blood culture. BCID generally detects over 90% of the most common causative agents in bloodstream infections; however, when microbes not included on the panel are present in a blood culture, it returns a result of “Not Detected.” This document aims to provide guidance in these scenarios supported by data collected at Nebraska Medicine from January 2018 to August 2019. Table 1: Recommendations for treatment of patients with blood cultures growing organisms not detected on BCID Gram Stain/Preliminary Likely Organism (% total BCID negative)* Recommended Treatment Culture Result Gram-positive: Aerobe Micrococcus sp. (18.1%) (most can also grow in Coagulase-negative Staphylococcus (9.3%) None anaerobic bottles) Diphtheroids (7%) None Peptostreptococcus sp. (4.4%) If therapy is desired: Anaerobe bottle only Lactobacillus sp. (2.6%) Metronidazole 500 mg PO q8h Clostridium sp. (2.6%) OR Penicillin G 4 million units IV q4h Gram-negative: Aerobe Acinetobacter sp. (1.8%) (most can also grow in Stenotrophomonas maltophilia (1.6%) Levofloxacin 750 mg IV/PO q24h anaerobic bottles) Pseudomonas fluorescens-putida group (1%) Bacteroides fragilis group (9.3%) Anaerobe bottle only Metronidazole 500 mg IV/PO q8h Fusobacterium sp. (4.7%) *A full list of isolated organisms can be found below in Table 2 Orange text = Cocci, Blue text = Bacilli (rods) Gram-Positives When BCID results as “Not Detected” but there is microbial growth, the organism is most frequently gram-positive (71%).
    [Show full text]
  • Integrated DNA Methylation and Gene Expression Analysis Identi Ed
    Integrated DNA methylation and gene expression analysis identied S100A8 and S100A9 in the pathogenesis of obesity Ningyuan Chen ( [email protected] ) Guangxi Medical University https://orcid.org/0000-0001-5004-6603 Liu Miao Liu Zhou People's Hospital Wei Lin Jiangbin Hospital Dong-Hua Zhou Fifth Aliated Hospital of Guangxi Medical University Ling Huang Guangxi Medical University Jia Huang Guangxi Medical University Wan-Xin Shi Guangxi Medical University Li-Lin Li Guangxi Medical University Yu-Xing Luo Guangxi Medical University Hao Liang Guangxi Medical University Shang-Ling Pan Guangxi Medical University Jun-Hua Peng Guangxi Medical University Research article Keywords: Obesity, DNA methylation-mRNA expression-CAD interaction network, Function enrichment, Correlation analyses Posted Date: November 2nd, 2020 Page 1/21 DOI: https://doi.org/10.21203/rs.3.rs-68833/v2 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 2/21 Abstract Background: To explore the association of DNA methylation and gene expression in the pathology of obesity. Methods: (1) Genomic DNA methylation and mRNA expression prole of visceral adipose tissue (VAT) were performed in a comprehensive database of gene expression in obese and normal subjects; (2) functional enrichment analysis and construction of differential methylation gene regulatory network were performed; (3) Validation of the two different methylation sites and corresponding gene expression was done in a separate microarray data set; and (4) correlation analysis was performed on DNA methylation and mRNA expression data. Results: A total of 77 differentially expressed mRNA matched with differentially methylated genes. Analysis revealed two different methylation sites corresponding to two unique genes-s100a8- cg09174555 and s100a9-cg03165378.
    [Show full text]
  • Pierce Protein L Agarose
    INSTRUCTIONS ® Pierce Protein L Agarose 20510 20512 0778.5 Number Description 20510 Pierce Protein L Agarose, 2 ml settled resin 20512 Pierce Protein L Agarose, 10 ml settled resin Support: Crosslinked 6% beaded agarose supplied as 50% slurry (e.g., 2 ml of settled resin is equivalent to 4 ml of 50% slurry) containing 0.02% sodium azide Binding Capacity: ~5-10 mg human IgG/ml of resin Storage: Upon receipt store product at 4-8°C. Product is shipped at ambient temperature. Table of Contents Introduction .................................................................................................................................................................................1 Important Product Information ....................................................................................................................................................1 Gravity-flow Column Procedure for Antibody Purification ........................................................................................................2 A. Additional Materials Required ......................................................................................................................................2 B. Immunoglobulin Purification Procedure .......................................................................................................................2 Troubleshooting...........................................................................................................................................................................3 Additional Information
    [Show full text]
  • Extraintestinal Clostridioides Difficile Infections
    antibiotics Article Extraintestinal Clostridioides difficile Infections: Epidemiology in a University Hospital in Hungary and Review of the Literature Edit Urbán 1,*, Gabriella Terhes 2 and Márió Gajdács 3 1 Department of Public Health, Faculty of Medicine, University of Szeged, Dóm tér 10., 6720 Szeged, Hungary 2 Institute of Clinical Microbiology, Faculty of Medicine, University of Szeged, Semmelweis utca 6., 6725 Szeged, Hungary; [email protected] 3 Department of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, Eötvös utca 6., 6720 Szeged, Hungary; [email protected] * Correspondence: [email protected]; Tel.: +36-62-342-861 Received: 8 December 2019; Accepted: 31 December 2019; Published: 2 January 2020 Abstract: Extraintestinal manifestations of Clostridioides difficile infections (CDIs) are very uncommon, and according to the literature, poor outcomes and a high mortality have been observed among affected individuals. The objective of this study was to investigate the incidence rate of extraintestinal infections caused by C. difficile (ECD) in a tertiary-care university hospital in Hungary. During a 10-year study period, the microbiology laboratory isolated 4129 individual strains of C. difficile; among these, the majority were either from diarrheal fecal samples or from colonic material and only n = 24 (0.58%) were from extraintestinal sources. The 24 extraintestinal C. difficile isolates were recovered from 22 patients (female-to-male ratio: 1, average age: 55.4 years). The isolates in n = 8 patients were obtained from abdominal infections, e.g., appendicitis, rectal abscess or Crohn’s disease. These extraintestinal cases occurred without concomitant diarrhea. In all, but two cases C.
    [Show full text]
  • RNA Double-Stranded Monocytes
    IL-10-Dependent S100A8 Gene Induction in Monocytes/Macrophages by Double-Stranded RNA This information is current as Yasumi Endoh, Yuen Ming Chung, Ian A. Clark, Carolyn L. of September 27, 2021. Geczy and Kenneth Hsu J Immunol 2009; 182:2258-2268; ; doi: 10.4049/jimmunol.0802683 http://www.jimmunol.org/content/182/4/2258 Downloaded from References This article cites 73 articles, 26 of which you can access for free at: http://www.jimmunol.org/content/182/4/2258.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 27, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2009 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology IL-10-Dependent S100A8 Gene Induction in Monocytes/Macrophages by Double-Stranded RNA1 Yasumi Endoh,* Yuen Ming Chung,* Ian A. Clark,† Carolyn L. Geczy,* and Kenneth Hsu2* The S100 calcium-binding proteins S100A8 and S100A9 are elevated systemically in patients with viral infections.
    [Show full text]