The Facts About Protein Our Bodies and Those of Companion Animals Are Orchestrated by Cellular Machinery, Which Is Directed Acco

Total Page:16

File Type:pdf, Size:1020Kb

The Facts About Protein Our Bodies and Those of Companion Animals Are Orchestrated by Cellular Machinery, Which Is Directed Acco The Facts About Protein Our bodies and those of companion animals are orchestrated by cellular machinery, which is directed according to blueprints of DNA. To do so, DNA is transcribed into RNA and then further translated into functional proteins or enzymes. These proteins or enzymes are present in all living cells, are critical for growth and maintenance of the body, and are essential to the well being of both humans and animals. For example, vital body functions, such as blood clotting, fluid balance, visual processes, hormone balance, enzyme activity as well as energy production, all involve proteins or enzymes. Proteins are also important structural constituents of muscle, hair, bone and organs. Our survival relies on constant adjustments to the cellular machinery, which is accomplished by fine-tuning the conversion of DNA into functional proteins. The translation of functional proteins and their ability to perform optimally require a readily available supply of amino acids, which are the building blocks of protein. Although proteins are considered essential for healthy dogs and cats, it is not actually dietary proteins that are utilized by the body, but rather the constituent amino acids, which make up dietary protein. Proteins are made up of hundreds of amino acids. The body utilizes twenty (in dogs) or 21 (in cats) common amino acids in various combinations. While each of these amino acids are important for growth, maintenance and health of the body, some of are considered essential amino acids and others non- essential. Essential amino acids cannot be manufactured by the body from precursors and, therefore, must be provided by the diet. Only ten of the required 20 amino acids are considered essential in dogs, while eleven are essential in cats. Non-essential amino acids are synthesized in the body from precursors and, therefore, need not be present in the diet if adequate amounts of essential amino acids and energy are provided to the animal. Non-essential amino acids are just as vital to the makeup of proteins and crucial for metabolic reactions in the body as essential amino acids. Once dietary protein is consumed, its digestion begins in the stomach where enzymes break down proteins into individual or small groups of amino acids. The amino acids are then absorbed by the intestine and eventually enter the bloodstream to be distributed to the body’s cells and tissues. The fate of absorbed amino acids falls into three general categories: 1) synthesis of tissue protein, 2) manufacture of enzymes, albumin, hormones or other nitrogen-containing compounds and 3) manufacture of energy (or fuel) for the body. Additionally, body proteins are continuously being broken down and new ones manufactured. This process is referred to as protein turnover and is a key physiological process for humans, dogs and cats alike. Protein turnover helps us adapt to our ever-changing environment by maintaining a readily available supply of amino acids necessary to manufacture proteins or enzymes needed at any given time. An optimal level of dietary protein, or rather amino acids, is important in order to maximize the rate of protein turnover, maintain strength and function of skeletal muscle, and support a healthy immune system. Not only is an optimal level of dietary protein important, so is the quality of protein. That is, dietary protein must contain the right balance of amino acids required by the animal and must be highly digestible. Without adequate levels of high quality dietary protein the body compensates by slowing down the rate of protein turnover, thus, decreasing the body’s ability to respond quickly to changes in its environment. For example, to effectively protect and defend the body, the immune system must be able to respond rapidly to potential infections, pathogens and environmental stresses. Amino acids supplied by protein turnover are critical in the manufacture of cells and components of the immune system, such as T-cells and immunoglobulins, respectively. When protein turnover rates are reduced in animals because of low dietary protein intake, the animal is more sensitive to infections and other environmental stresses. Also, without an adequate level of dietary protein to meet the animal’s needs, a protein deficiency may occur. A severe protein deficiency can cause poor food intake, slow growth, weight loss, rough or dull hair coat, or hair loss, impaired immune function and decreased resistance to disease and infection. Chronic, marginal protein deficiency may result in decreased protein reserves, and those animals with inadequate protein reserves may appear healthy but are more susceptible to infectious and cancer causing agents [Allison et al., 1954, McCoy et al., 1956]. A more detailed description of the function of proteins follows. Making up more than 50% of the dry weight of animals, proteins are vital to the proper regulation, function and maintenance of the body. Amino acids absorbed from the gut are rebuilt into new proteins, such as for the: • manufacture of enzymes which are catalysts (e.g., speed up) of all metabolic functions, including energy production, neurological function, immune response and maintenance and health of entire body • manufacture of special blood proteins that serve as carriers for vitamins and minerals and are critical for the general health of animals • manufacture of hormones such as insulin which are necessary to regulate metabolic functions • manufacture of energy (or fuel) for intestinal cells and skeletal muscle. In fact, proteins yield the same amount of usable energy as do carbohydrates • manufacture of structural proteins such as collagen, elastic, keratin, actin and myosin 2 Purina’s Pioneering Research in the Nutritional Management of Canine Food Allergies Introduction It has been estimated that 15% of dogs suffer from allergic diseases [Baker, 1990]. The two most common types of canine allergies are flea allergy dermatitis (or hypersensitivity to fleabites that causes the skin to react via itching and/or the formation of papules) and atopy (allergic reaction against common environmental antigens such as pollen, molds, house dust, mites, etc). Food hypersensitivity (or allergy) ranks third. In fact, it is estimated that food hypersensitivity may be responsible for pruritus (or itching) in up to 62% of dogs presenting with non-seasonal allergic skin disease [Leib and August, 1989]. In addition to causing dermatologic problems in canines, food hypersensitivity may contribute to chronic gastrointestinal diseases [Halliwell and Gorman, 1989]. Specifically, food hypersensitivity appears to be involved in some types of inflammatory bowel disease, which is currently the most common cause of diarrhea and vomiting in dogs [Hall et al., 1989]. What are food allergens? Food consists of a variety of allergenic and nonallergenic components. Food allergens, however, are almost exclusively proteins. Because they are recognized as foreign by the body’s immune system, all dietary proteins have the potential to elicit an allergic response. In fact, most food allergens are very stable molecules that are resistant to food processing, cooking and the digestive process [Taylor, 1992]. Because of this, the specific amino acids sequences that make up the reactive sites (or epitopes) of the allergen are protected. In animals predisposed to food allergy, these reactive sites (or epitopes) are recognized by the immune system as foreign and stimulate the immune system to produce antibodies that target the specific protein. In order for a protein to be considered an allergen, it must be able to stimulate an immune response by the body. The ability to elicit such a response appears to be dependent on the size (also called the molecular weight) and structure of the protein. Most food allergens are reported to be proteins with a molecular weight between 18,000 – 36,000 daltons [Ackerman, 1990]. In soy, for example, the major allergens are reported to be between 20,000 and 78,000 daltons [Awazuhara et al., 1997]. Dietary proteins smaller or larger than 18,000-70,000 daltons size range are not as likely to cause a food allergy because of the physical reactions involved. Potential solutions to food hypersensitivity Companion animals suffering from food hypersensitivity may be managed through nutritional modifications. A major tenant in nutritional management of food hypersensitivity involves the identification and avoidance of the offending antigenic protein. A serious drawback is that the identification of the specific dietary protein responsible for the hypersensitivity requires a substantial commitment by both the 3 veterinarian and pet owner. This approach requires an extensive dietary history on the dog in order to identify all protein sources in the dog’s diet. Then, the dog is fed an elimination diet containing ingredients that have not been previously consumed by the dog. This can be a frustrating experience as it often requires the owner to prepare a homemade diet, often not nutritionally complete and balanced, that contains one protein source and one source of carbohydrate. For up to twelve weeks, this elimination diet must be fed to the dog in order to resolve or reduce the symptoms. If symptoms remain after this period of time, then food hypersensitivity can usually be ruled out. If symptoms are resolved, then food hypersensitivity may be the culprit. In order to confirm the specific offending protein(s), each protein source previously ingested by the dog, must be individually re-introduced into the dog’s diet for a pre-determined time period. If symptoms reappear then the dog likely has a hypersensitivity to that particular protein. After identification of the protein causing the hypersensitivity, the dog is maintained on a diet that is devoid of the offending protein. Until recently, veterinarians managed the food allergic dog by feeding “novel- protein” diets, which are formulated with proteins not normally found in pet foods, such as venison or rabbit meat. These “novel-protein” products should be carefully examined because many commercial diets based on “novel-proteins” may contain other ingredients that contribute significant amounts of non-novel proteins.
Recommended publications
  • Elemental and Semi-Elemental Formulas: Are They Superior to Polymeric Formulas?
    NUTRITION ISSUES IN GASTROENTEROLOGY, SERIES #34 Carol Rees Parrish, R.D., M.S., Series Editor Elemental and Semi-Elemental Formulas: Are They Superior to Polymeric Formulas? Diklar Makola Nutritional support, utilizing enteral nutrition formulas, is an integral part of the pri- mary and/or adjunctive management of gastrointestinal and other disorders with nutritional consequences. Four major types of enteral nutrition formulas exist includ- ing: elemental and semi-elemental, standard or polymeric, disease-specific and immune-enhancing. Although they are much more expensive, elemental and semi- elemental formulas are purported to be superior to polymeric or standard formulas in certain patient populations. The aim of this article is to evaluate whether this claim is supported by the literature and to ultimately show that except for a very few indica- tions, polymeric formulas are just as effective as elemental formulas in the majority of patients with gastrointestinal disorders. INTRODUCTION ease, facilitate “pancreatic rest” in pancreatitis and pre- he provision of nutritional support is an essential vent nutritional depletion that accompanies many GI part of the primary and adjunctive management of tract diseases. The factors leading to nutritional deple- T tion include: 1) impaired absorption of nutrients; many gastrointestinal (GI) disorders such as Crohn’s disease, cystic fibrosis, pancreatitis, head and 2) inadequate intake due to anorexia; 3) dietary restric- neck cancer, cerebrovascular accidents, etc. Nutritional tions; 4) increased intestinal losses; and 5) an increase in support can be used to induce remission in Crohn’s dis- nutritional demand that accompanies many catabolic states. Nutritional support can be provided by using Diklar Makola, M.D., M.P.H., Ph.D., Gastroenterology either total parenteral nutrition (PN) or total enteral Fellow, University of Virginia Health System, Digestive nutrition (EN), however EN when compared to PN has Health Center of Excellence, Charlottesville, VA.
    [Show full text]
  • Animal Worker Health & Safety
    Animal Worker Health & Safety Baylor University EHS Updated July 2017 CONTENTS Section 1: Introduction ........................................................................................................................................................................... 1 Purpose .................................................................................................................................................................................................. 1 Compliance Standards ....................................................................................................................................................................... 1 Participants ........................................................................................................................................................................................... 2 Program Support ................................................................................................................................................................................. 3 Section 2: Program Requirements......................................................................................................................................................... 5 Section 3: Potential Hazards and Exposures When Working With Animals .............................................................................. 6 Physical Hazards ................................................................................................................................................................................
    [Show full text]
  • A Hypoallergenic Infant Formula Comprising Extensively Hydrolyzed
    Central Journal of Human Nutrition & Food Science Bringing Excellence in Open Access Research Article *Corresponding author Esther Matencio, Department of Research and Development, Hero Spain S.A., Avda. Murcia 1, 30820 Alcantarilla, Murcia, Spain, Tel: 34-968-898- A Hypoallergenic Infant Formula 900; Fax: 34-968-800-727; Email: Submitted: 27 June 2016 Comprising Extensively Hydrolyzed Accepted: 20 July 2016 Published: 22 July 2016 Protein for the Nutritional ISSN: 2333-6706 Copyright Treatment of Infants with Cow’s © 2016 Matencio et al. OPEN ACCESS Milk Allergy: Safety, Tolerance and Keywords • Cow’s milk protein allergy • Extensively hydrolyzed infant formula • Immunity Efficacy • Infant formula Esther Matencio1*, José Maldonado2,7, Josune Olza3-5, M Dolores Mesa3,5,7, • Long chain polyunsaturated fatty acids Fernando Romero1, Gaspar Ros6, Pedro Abellán1 and Ángel Gil3-5 1Research and Development Department, Hero Spain S.A., Avda. Murcia 1, 30820, Alcantarilla, Murcia, Spain 2Hospital Virgen de las Nieves, Avda. de las Fuerzas Armadas, 2, 18014 Granada, Spain 3Institute of Nutrition and Food Technology “José Mataix”, Department of Biochemistry, and Molecular Biology II, University of Granada, Biomedical Research Center, Avenida del Conocimiento s/n, 18100 Armilla, Granada, Spain 4CIBER Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Madrid, Spain 5Instituto de Investigación Biosanitaria ibs.GRANADA, Spain 6Department of Food Science and Nutrition, Faculty of Veterinary Sciences, University of Murcia, Campus de Espinardo, 30071 Espinardo, Murcia, Spain 7Retics funded by the PN I+D+I 2008-2011 (SPAIN), ISCIII- Sub-directoratee General for Research Assessment and Promotion and the European Regional Development Fund (ERDF), Ref. RD 12/0026 Abstract Background: There is strong evidence about the role of extensively hydrolyzed formula (eHF) in the treatment of cow’s milk protein allergy (CMPA).
    [Show full text]
  • Properties of Peanut (KAC431) Protein Hydrolysates and Their Impact on the Quality of Gluten-Free Rice Bread
    foods Article Properties of Peanut (KAC431) Protein Hydrolysates and Their Impact on the Quality of Gluten-Free Rice Bread Suphat Phongthai 1,2,*, Nuttapon Singsaeng 1, Rossarin Nhoo-ied 1, Thipubol Suwannatrai 1, Regine Schönlechner 3, Kridsada Unban 1, Warinporn Klunklin 1 , Thunnop Laokuldilok 1,2, Yuthana Phimolsiripol 1,2 and Saroat Rawdkuen 4 1 School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; [email protected] (N.S.); [email protected] (R.N.-i.); [email protected] (T.S.); [email protected] (K.U.); [email protected] (W.K.); [email protected] (T.L.); [email protected] (Y.P.) 2 Cluster of High Value Product from Thai Rice for Health, Chiang Mai University, Chiang Mai 50100, Thailand 3 Institute of Food Technology, Department of Food Science and Technology, BOKU-University of Natural Resources and Life Sciences, 18, 1190 Vienna, Austria; [email protected] 4 Unit of Innovative Food Packaging and Biomaterials, School of Agro-Industry, Mae Fah Luang University, Chiang Rai 57100, Thailand; [email protected] * Correspondence: [email protected] Received: 18 June 2020; Accepted: 15 July 2020; Published: 16 July 2020 Abstract: Protein hydrolysates (PH) with a degree of hydrolysis (DH) of 5%, 10%, and 13% from two varieties of peanut were prepared using two commercial enzymes, Alcalase and Flavourzyme. The content of essential amino acids (30,290 mg/100 g) and hydrophobic amino acids (34,067 mg/100 g) of the peanut variety Kalasin 2 (KAC431) protein was higher than that of a common variety, Kalasin 1 (KAC1) (p < 0.05).
    [Show full text]
  • Safety Assessment of Bovine Milk Proteins and Protein Derivatives As Used in Cosmetics
    Safety Assessment of Bovine Milk Proteins and Protein Derivatives as Used in Cosmetics Status: Tentative Report for Public Comment Release Date: April 28, 2017 Panel Meeting Date: September 11-12, 2017 All interested persons are provided 60 days from the above date to comment on this safety assessment and to identify additional published data that should be included or provide unpublished data which can be made public and included. Information may be submitted without identifying the source or the trade name of the cosmetic product containing the ingredient. All unpublished data submitted to CIR will be discussed in open meetings, will be available at the CIR office for review by any interested party and may be cited in a peer-reviewed scientific journal. Please submit data, comments, or requests to the CIR Director, Dr. Lillian J. Gill. The 2017 Cosmetic Ingredient Review Expert Panel members are: Chairman, Wilma F. Bergfeld, M.D., F.A.C.P.; Donald V. Belsito, M.D.; Ronald A. Hill, Ph.D.; Curtis D. Klaassen, Ph.D.; Daniel C. Liebler, Ph.D.; James G. Marks, Jr., M.D.; Ronald C. Shank, Ph.D.; Thomas J. Slaga, Ph.D.; and Paul W. Snyder, D.V.M., Ph.D. The CIR Director is Lillian J. Gill, DPA. This safety assessment was prepared by Christina L. Burnett, Scientific Analyst/Writer and Bart Heldreth, Ph.D., Chemist CIR. © Cosmetic Ingredient Review 1620 L St NW, Suite 1200◊ Washington, DC 20036-4702 ◊ ph 202.331.0651 ◊fax 202.331.0088 ◊ [email protected] ABTRACT The Cosmetic Ingredient Review (CIR) Expert Panel (the Panel) reviewed the safety of 16 bovine milk proteins and protein-derived ingredients, which function mainly as skin and hair conditioning agents in personal care products.
    [Show full text]
  • Umami and Kokomi? Umami Flavor (Translated to Pleasant Taste) Is the Flavor That Glutamic Acid Imparts, and Is Recognized As Its Own Taste
    What Yeast Products are we talking about? • Nutritional Yeast- Much of this comes from recycled brewers yeast. After the yeast is inoculated, it can be fortified with additional vitamins, and then dried into either flake or powder form. • Inactive Yeast- After the inoculation of the yeast, the yeast is dried in its direct whole cell state. • Autolyzed Yeast- The yeast proteins are simplified, but the insoluble material is still present. • Yeast Extract- The insoluble cell well is separated from the extract, the soluble portion is then used. This ingredient can be labeled as: Autolyzed Yeast Extract Bakers Yeast Extract (That is right, bakers yeast) Isn't this MSG? All foods that contain protein contain a variety of amino • Organic Yeast Extract- Yes, these ingredients are acids, one of these being glutamic. High levels of Glutamic available in organic certified forms as well. Acid are found naturally in many foods such as mushrooms, tomatoes, parmesan cheese, human breast milk, and seaweed. Yeast extract in part utilizes the amino acid of glutamic acid to enhance flavor, along with many other essential and non-essential amino acids that carry nutritional benefits. What is MSG? Monosodium Glutamate (MSG) is the isolated sodium salt of glutamic acid. The misconception has been in relating MSG to other ingredients which contain protein, and believing that yeast extract will impart similar concentration levels and isolated forms of this compound which is does not. Yeast Extract can be thought of as another food that contains naturally occurring glutamic acid. It does not contain the isolated form of MSG. According to the FDA code of federal regulations How is this really made? Title 21 MSG and Yeast Extract must be labeled separately because they are two different ingredients.
    [Show full text]
  • United States Patent (19) 11 Patent Number: 6,013,250 Cannell Et Al
    US00601.3250A United States Patent (19) 11 Patent Number: 6,013,250 Cannell et al. (45) Date of Patent: Jan. 11, 2000 54) COMPOSITION FOR TREATING HAIR 5,286,406 2/1994 Scholz et al. ...................... 252/174.17 AGAINST CHEMICAL AND PHOTO DAMAGE FOREIGN PATENT DOCUMENTS 0052943 6/1982 European Pat. Off. ......... A61K 7/11 75 Inventors: David Cannell, New York, N.Y.; Nghi 0057837 8/1982 European Pat. Off. ......... A61K 7/06 Nguyen, Middlesex, N.J. 0099780 2/1984 European Pat. Off. .......... CO8H 1AO6 73 Assignee: L'Oreal S.A., Paris, France OTHER PUBLICATIONS Zviak, Charles, The Science of Hair Care, pp. 116-125 21 Appl. No.: 08/857,530 (1987). Flick, Ernest W., Cosmetic and Toiletry Formulations, vol. 22 Filed: May 16, 1997 2, 2" Ed., pp. 456-457 (1992). O O Database “Chemical Abstracts” (Host:Stn.) Abs. 124; 269 Related U.S. Application Data 956, Colmbus, OH, USA; JP 08 020518 A (Shiseido Co., 63 Continuation-in-part of application No. 08/496,138, Jun. 28, Ltd) Jan. 23, 1996 XP-002056951. 1995, Pat. No. 5,681,554. Database “Chemical Abstracts” (Host: Stn.) Abs. 124: 211 7 493, Colombus, OH, USA; JP 07330560 A (Shiseido Co., 51 Int. C. - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - A61 K 7/06 Ltd) Dec. 19, 1995 XP-OO2O56950. 52 U.S. Cl. .................. 424/70.51; 424/70.1; 424/70.14; 424/70.15; 424/70.24; 424/70.27; 424/7028 Primary Examiner Thurman K. Page 58 Field of Search .................................. 424/70. 1-70.51 Assistant Examiner Alysia Berman Attorney, Agent, or Firm-Baker & Botts, LLP 56) References Cited 57 ABSTRACT U.S.
    [Show full text]
  • Standard for Infant Formula and Formulas for Special Medical Purposes Intended for Infants
    STANDARD FOR INFANT FORMULA AND FORMULAS FOR SPECIAL MEDICAL PURPOSES INTENDED FOR INFANTS CODEX STAN 72 – 1981 Adopted as a worldwide Standard in 1981. Amendment: 1983, 1985, 1987, 2011 and 2015. Revision: 2007. Formerly CAC/RS 72-1972. CODEX STAN 72 – 1981 2 SECTION A: REVISED STANDARD FOR INFANT FORMULA PREAMBLE This standard is divided into two sections. Section A refers to Infant Formula, and Section B deals with Formulas for Special Medical Purposes Intended for Infants. 1. SCOPE 1.1 This section of the Standard applies to infant formula in liquid or powdered form intended for use, where necessary, as a substitute for human milk in meeting the normal nutritional requirements of infants. 1.2 This section of the Standard contains compositional, quality and safety requirements for Infant Formula. 1.3 Only products that comply with the criteria laid down in the provisions of this section of this Standard would be accepted for marketing as infant formula. No product other than infant formula may be marketed or otherwise represented as suitable for satisfying by itself the nutritional requirements of normal healthy infants during the first months of life. 1.4 The application of this section of the Standard should take into account the recommendations made in the International Code of Marketing of Breast-milk Substitutes (1981), the Global Strategy for Infant and Young Child Feeding and World Health Assembly resolution WHA54.2 (2001). 2. DESCRIPTION 2.1 Product Definition 2.1.1 Infant formula means a breast-milk substitute specially manufactured to satisfy, by itself, the nutritional requirements of infants during the first months of life up to the introduction of appropriate complementary feeding.
    [Show full text]
  • Storage Stability of Food Protein Hydrolysates—A Review
    Critical Reviews in Food Science and Nutrition ISSN: 1040-8398 (Print) 1549-7852 (Online) Journal homepage: http://www.tandfonline.com/loi/bfsn20 Storage Stability of Food Protein Hydrolysates—A Review Qinchun Rao, Andre Klaassen Kamdar & Theodore P. Labuza To cite this article: Qinchun Rao, Andre Klaassen Kamdar & Theodore P. Labuza (2016) Storage Stability of Food Protein Hydrolysates—A Review, Critical Reviews in Food Science and Nutrition, 56:7, 1169-1192, DOI: 10.1080/10408398.2012.758085 To link to this article: https://doi.org/10.1080/10408398.2012.758085 Accepted author version posted online: 12 Aug 2013. Published online: 12 Aug 2013. Submit your article to this journal Article views: 915 View related articles View Crossmark data Citing articles: 6 View citing articles Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=bfsn20 Download by: [Texas A&M University Libraries] Date: 09 January 2018, At: 10:56 Critical Reviews in Food Science and Nutrition, 56:1169–1192 (2016) CopyrightO c Taylor and Francis Group, LLC ISSN: 1040-8398 / 1549-7852 online DOI: 10.1080/10408398.2012.758085 Storage Stability of Food Protein Hydrolysates–AReview QINCHUN RAO1, ANDRE KLAASSEN KAMDAR2, and THEODORE P. LABUZA2 1Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, Florida, USA 2Department of Food Science and Nutrition, University of Minnesota, St. Paul, Minnesota, USA In recent years, mainly due to the specific health benefits associated with (1) the discovery of bioactive peptides in protein hydrolysates, (2) the reduction of protein allergenicity by protein hydrolysis, and (3) the improved protein digestibility and absorption of protein hydrolysates, the utilization of protein hydrolysates in functional foods and beverages has significantly increased.
    [Show full text]
  • Hydrolyzed Formula with Reduced Protein Content Supports Adequate Growth: a Randomized Controlled Noninferiority Trial
    CLINICAL TRIALS:NUTRITION Hydrolyzed Formula With Reduced Protein Content Supports Adequate Growth: A Randomized Controlled Noninferiority Trial ÃBirgit Ahrens, ôChristian Hellmuth, yNadja Haiden, zDirk Olbertz, §Eckard Hamelmann, jjMilica Vusurovic, ôManja Fleddermann, #Robert Roehle, ÃÃAnette Knoll, ôBerthold Koletzko, ÃUlrich Wahn, and ÃKirsten Beyer ABSTRACT Objective: A high protein content of nonhydrolyzed infant formula What Is Known exceeding metabolic requirements can induce rapid weight gain and obesity. Hydrolyzed formula with too low protein (LP) content may The protein content of infant formula has been posi- result in inadequate growth. The aim of this study was to investigate tively associated with rapid weight gain and obesity. noninferiority of partial and extensively hydrolyzed formulas (pHF, eHF) Hydrolyzed formulas are used for allergy prevention. with lower hydrolyzed protein content than conventionally, regularly Data on the effect of hydrolyzed formulas with used formulas, with or without synbiotics for normal growth of healthy reduced hydrolyzed protein content are rare. term infants. Methods: In an European multi-center, parallel, prospective, controlled, What Is New double-blind trial, 402 formula-fed infants were randomly assigned to four groups: LP-formulas (1.9 g protein/100 kcal) as pHF with or without Hydrolyzed formulas with reduced protein content synbiotics, LP-eHF formula with synbiotics, or regular protein eHF (2.3 g are suited to ensure normal growth during the first protein/100 kcal). One hundred and one breast-fed infants served as 4 months of life. observational reference group. As primary endpoint, noninferiority of Length z scores, weight and head circumference z daily weight gain during the first 4 months of life was investigated scores were similar to World Health Organization comparing the LP-group to a regular protein eHF group.
    [Show full text]
  • Effects of Different Denaturants on Properties and Performance of Soy Protein-Based Adhesive
    polymers Article Effects of Different Denaturants on Properties and Performance of Soy Protein-Based Adhesive Li Yue 1,2, Zhang Meng 1,2, Zhang Yi 1,2, Qiang Gao 1,2,*, An Mao 3,* and Jianzhang Li 1,2 1 Key Laboratory of Wood Material Science and Utilization, Beijing Forestry University, Beijing 100083, China 2 Ministry of Education, Beijing Key Laboratory of Wood Science and Engineering, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, China 3 Key Laboratory of State Forestry Administration for Silviculture of the lower Yellow River, College of Forestry, Shandong Agricultural University, Taian 271018, China * Correspondence: [email protected] (Q.G.); [email protected] (A.M.); Tel.: +86-010-62336912 (Q.G.) Received: 24 May 2019; Accepted: 24 July 2019; Published: 30 July 2019 Abstract: Chemical modification of soy protein, via crosslinking, is the preferred method for creating non-toxic, renewable, environmentally friendly wood adhesives. The denaturing process of protein is important for the adhesive performance improvement. In order to investigate the effect of different denaturing agents on the performance of soy protein-based adhesives before and after crosslinking modification. In this study, three different denaturing agents—urea (U), sodium dodecyl sulfate (SDS), and sodium hydrogen sulfite (SHS) and an epoxide crosslinking agent—Triglycidylamine (CA) were used to prepare soy protein-based adhesives. The results showed: (1) The denaturing agent unfolded protein molecules and exposed more hydrophobic groups to prevent water intrusion, which was mainly a contribution for the water resistance and performance improvement of soy protein-based adhesives. The wet shear strength was improved up to 91.3% (denaturing by urea).
    [Show full text]
  • Safety Assessment of Maillard Reaction Products of Chicken Bone Hydrolysate Using Sprague-Dawley Rats
    food & nutrition æ research ORIGINAL ARTICLE Safety assessment of Maillard reaction products of chicken bone hydrolysate using Sprague-Dawley rats Jin-Zhi Wang$, Hong-Mei Sun$, Chun-Hui Zhang*, Li Hu, Xia Li and Xiao-Wei Wu Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China Abstract Background: The Maillard reaction products of chicken bone hydrolysate (MRPB) containing 38% protein, which is a derived product from chicken bone, is usually used as a flavor enhancer or food ingredient. In the face of a paucity of reported data regarding the safety profile of controversial Maillard reaction products, the potential health effects of MRPB were evaluated in a subchronic rodent feeding study. Methods: SpragueÁDawley rats (SD, 5/sex/group) were administered diets containing 9, 3, 1, or 0% of MRPB derived from chicken bone for 13 weeks. Results: During the 13-week treatment period, no mortality occurred, and no remarkable changes in general condition and behavior were observed. The consumption of MRPB did not have any effect on body weight or feed and water consumption. At the same time, there was no significant increase in the weights of the heart, liver, lung, kidney, spleen, small intestine, and thymus in groups for both sexes. Serological examination showed serum alanine aminotransferase in both sexes was decreased significantly, indicating liver cell protection. No treatment-related histopathological differences were observed between the control and test groups. Conclusion: Based on the results of this study, the addition of 9% MRPB in the diet had no adverse effect on both male and female SD rats during the 90-day observation.
    [Show full text]