Math 731: Topics in Algebraic Geometry I – Abelian Varieties

Total Page:16

File Type:pdf, Size:1020Kb

Math 731: Topics in Algebraic Geometry I – Abelian Varieties MATH 731: TOPICS IN ALGEBRAIC GEOMETRY I { ABELIAN VARIETIES BHARGAV BHATT∗ Course Description. The goal of the first half of this class is to introduce and study the basic structure theory of abelian varieties, as covered in (say) Mumford's book. In the second half of the course, we shall discuss derived categories and the Fourier{Mukai transform, and give some geometric applications. Contents 1. September 5th..................................................................................... 3 1.1. Group Schemes................................................................................ 3 1.2. Abelian Schemes............................................................................... 5 2. September 7th..................................................................................... 6 2.1. Rigidity Results................................................................................ 6 2.2. Differential Properties.......................................................................... 10 3. September 12th.................................................................................... 10 3.1. Differential Properties (Continued)............................................................. 10 4. September 14th.................................................................................... 14 4.1. Cohomology and Base Change................................................................. 14 5. September 19th.................................................................................... 18 5.1. Cohomology and Base Change (Continued)..................................................... 18 6. September 21st.................................................................................... 21 6.1. The Seesaw Theorem.......................................................................... 21 6.2. The Theorem of the Cube...................................................................... 23 6.3. Applications to Abelian Varieties............................................................... 24 7. September 26th (Lecture by Zili Zhang)............................................................ 24 7.1. Introduction to Derived Categories............................................................. 25 7.2. The Derived Category of Coherent Sheaves..................................................... 26 7.3. Triangulated Categories........................................................................ 27 7.4. Derived Functors............................................................................... 28 8. September 28th (Lecture by Zili Zhang)............................................................ 29 8.1. Derived Functors (Continued).................................................................. 29 8.2. Duality........................................................................................ 31 9. October 3rd........................................................................................ 33 9.1. The Theorem of the Cube (Continued)......................................................... 33 9.2. The Mumford Bundle.......................................................................... 34 10. October 5th...................................................................................... 36 10.1. The Mumford Bundle (Continued)............................................................ 36 10.2. Projectivity of Abelian Varieties.............................................................. 36 ∗Notes were taken by Matt Stevenson, who is responsible for any and all errors. Special thanks to Devlin Mallory for taking notes on October 12th and November 7-16. Thanks also to Attilio Castano, Raymond Cheng, Carl Lian, Devlin Mallory, Shubhodip Mondal, & Emanuel Reinecke for sending corrections. Please email [email protected] with any corrections. 1 2 BHARGAV BHATT 11. October 10th..................................................................................... 39 11.1. Projectivity of Abelian Varieties (Continued).................................................. 39 11.2. Torsion subgroups............................................................................ 41 12. October 12th..................................................................................... 43 12.1. Torsion Subgroups (Continued)............................................................... 43 12.2. The Dual Abelian Variety..................................................................... 44 13. October 19th..................................................................................... 47 13.1. The Dual Abelian Variety (Continued)........................................................ 47 13.2. Group Schemes Are Smooth In Characteristic Zero............................................ 48 13.3. Quotients by Finite Group Schemes........................................................... 49 14. October 24th..................................................................................... 51 14.1. Construction of the Dual Abelian Variety..................................................... 51 15. October 26th..................................................................................... 53 15.1. Construction of the Dual Abelian Variety (Continued)........................................ 54 15.2. Duality....................................................................................... 56 16. October 31st...................................................................................... 57 16.1. Duality (Continued).......................................................................... 57 16.2. Fourier{Mukai Transforms.................................................................... 58 17. November 2nd.................................................................................... 59 17.1. Fourier{Mukai Transforms (Continued)....................................................... 60 17.2. The Fourier{Mukai Equivalence............................................................... 60 17.3. Properties of the Fourier{Mukai Equivalence.................................................. 62 18. November 7th.................................................................................... 63 18.1. Properties of the Fourier{Mukai Equivalence (Continued)..................................... 63 18.2. Homogeneous Vector Bundles................................................................. 64 18.3. Unipotent Vector Bundles..................................................................... 65 19. November 9th.................................................................................... 66 19.1. Cohomology of Ample Line Bundles........................................................... 66 20. November 14th................................................................................... 69 20.1. Cohomology of Ample Line Bundles (Continued).............................................. 69 20.2. Stable Vector Bundles on Curves.............................................................. 70 21. November 16th................................................................................... 71 21.1. Stable Vector Bundles on Curves (Continued)................................................. 71 21.2. Atiyah's Theorem on Vector Bundles on Elliptic Curves....................................... 73 22. November 21st.................................................................................... 74 22.1. Generic Vanishing Theorems.................................................................. 74 22.2. Picard & Albanese Schemes................................................................... 75 22.3. Hacon's Theorem............................................................................. 76 23. November 28th................................................................................... 78 23.1. Hacon Complexes & Hacon Sheaves........................................................... 78 24. November 30th................................................................................... 81 24.1. Hacon Complexes & Hacon Sheaves (Continued).............................................. 81 24.2. Proof of a Generic Vanishing Theorem........................................................ 82 24.3. Jacobians..................................................................................... 83 24.4. Symmetric Powers & Jacobians............................................................... 83 25. December 5th..................................................................................... 84 25.1. Symmetric Powers & Jacobians (Continued).................................................. 84 25.2. Jacobian & the Albanese...................................................................... 86 MATH 731: TOPICS IN ALGEBRAIC GEOMETRY I { ABELIAN VARIETIES 3 25.3. Determinants................................................................................. 88 26. December 7th..................................................................................... 88 26.1. Towards the Torelli Theorem.................................................................. 89 26.2. The Torelli Theorem.......................................................................... 92 References............................................................................................. 92 1. September 5th The main reference for the first part of the course is Mumford's Abelian varieties [Mum08]. For more modern treatments, see also [Con15, Mil08, EVdGM]. For some background material, see [BLR90,
Recommended publications
  • Canonical Heights on Varieties with Morphisms Compositio Mathematica, Tome 89, No 2 (1993), P
    COMPOSITIO MATHEMATICA GREGORY S. CALL JOSEPH H. SILVERMAN Canonical heights on varieties with morphisms Compositio Mathematica, tome 89, no 2 (1993), p. 163-205 <http://www.numdam.org/item?id=CM_1993__89_2_163_0> © Foundation Compositio Mathematica, 1993, tous droits réservés. L’accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l’accord avec les conditions gé- nérales d’utilisation (http://www.numdam.org/conditions). Toute utilisa- tion commerciale ou impression systématique est constitutive d’une in- fraction pénale. Toute copie ou impression de ce fichier doit conte- nir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Compositio Mathematica 89: 163-205,163 1993. © 1993 Kluwer Academic Publishers. Printed in the Netherlands. Canonical heights on varieties with morphisms GREGORY S. CALL* Mathematics Department, Amherst College, Amherst, MA 01002, USA and JOSEPH H. SILVERMAN** Mathematics Department, Brown University, Providence, RI 02912, USA Received 13 May 1992; accepted in final form 16 October 1992 Let A be an abelian variety defined over a number field K and let D be a symmetric divisor on A. Néron and Tate have proven the existence of a canonical height hA,D on A(k) characterized by the properties that hA,D is a Weil height for the divisor D and satisfies A,D([m]P) = m2hA,D(P) for all P ~ A(K). Similarly, Silverman [19] proved that on certain K3 surfaces S with a non-trivial automorphism ~: S ~ S there are two canonical height functions hs characterized by the properties that they are Weil heights for certain divisors E ± and satisfy ±S(~P) = (7 + 43)±1±S(P) for all P E S(K) .
    [Show full text]
  • Rigid Analytic Curves and Their Jacobians
    Rigid analytic curves and their Jacobians Dissertation zur Erlangung des Doktorgrades Dr. rer. nat. der Fakult¨at f¨urMathematik und Wirtschaftswissenschaften der Universit¨atUlm vorgelegt von Sophie Schmieg aus Ebersberg Ulm 2013 Erstgutachter: Prof. Dr. Werner Lutkebohmert¨ Zweitgutachter: Prof. Dr. Stefan Wewers Amtierender Dekan: Prof. Dr. Dieter Rautenbach Tag der Promotion: 19. Juni 2013 Contents Glossary of Notations vii Introduction ix 1. The Jacobian of a curve in the complex case . ix 2. Mumford curves and general rigid analytic curves . ix 3. Outline of the chapters and the results of this work . x 4. Acknowledgements . xi 1. Some background on rigid geometry 1 1.1. Non-Archimedean analysis . 1 1.2. Affinoid varieties . 2 1.3. Admissible coverings and rigid analytic varieties . 3 1.4. The reduction of a rigid analytic variety . 4 1.5. Adic topology and complete rings . 5 1.6. Formal schemes . 9 1.7. Analytification of an algebraic variety . 11 1.8. Proper morphisms . 12 1.9. Etale´ morphisms . 13 1.10. Meromorphic functions . 14 1.11. Examples . 15 2. The structure of a formal analytic curve 17 2.1. Basic definitions . 17 2.2. The formal fiber of a point . 17 2.3. The formal fiber of regular points and double points . 22 2.4. The formal fiber of a general singular point . 23 2.5. Formal blow-ups . 27 2.6. The stable reduction theorem . 29 2.7. Examples . 31 3. Group objects and Jacobians 33 3.1. Some definitions from category theory . 33 3.2. Group objects . 35 3.3. Central extensions of group objects .
    [Show full text]
  • Lecture 3. Resolutions and Derived Functors (GL)
    Lecture 3. Resolutions and derived functors (GL) This lecture is intended to be a whirlwind introduction to, or review of, reso- lutions and derived functors { with tunnel vision. That is, we'll give unabashed preference to topics relevant to local cohomology, and do our best to draw a straight line between the topics we cover and our ¯nal goals. At a few points along the way, we'll be able to point generally in the direction of other topics of interest, but other than that we will do our best to be single-minded. Appendix A contains some preparatory material on injective modules and Matlis theory. In this lecture, we will cover roughly the same ground on the projective/flat side of the fence, followed by basics on projective and injective resolutions, and de¯nitions and basic properties of derived functors. Throughout this lecture, let us work over an unspeci¯ed commutative ring R with identity. Nearly everything said will apply equally well to noncommutative rings (and some statements need even less!). In terms of module theory, ¯elds are the simple objects in commutative algebra, for all their modules are free. The point of resolving a module is to measure its complexity against this standard. De¯nition 3.1. A module F over a ring R is free if it has a basis, that is, a subset B ⊆ F such that B generates F as an R-module and is linearly independent over R. It is easy to prove that a module is free if and only if it is isomorphic to a direct sum of copies of the ring.
    [Show full text]
  • Abelian Varieties and Theta Functions Associated to Compact Riemannian Manifolds; Constructions Inspired by Superstring Theory
    ABELIAN VARIETIES AND THETA FUNCTIONS ASSOCIATED TO COMPACT RIEMANNIAN MANIFOLDS; CONSTRUCTIONS INSPIRED BY SUPERSTRING THEORY. S. MULLER-STACH,¨ C. PETERS AND V. SRINIVAS MATH. INST., JOHANNES GUTENBERG UNIVERSITAT¨ MAINZ, INSTITUT FOURIER, UNIVERSITE´ GRENOBLE I ST.-MARTIN D'HERES,` FRANCE AND TIFR, MUMBAI, INDIA Resum´ e.´ On d´etailleune construction d^ue Witten et Moore-Witten (qui date d'environ 2000) d'une vari´et´eab´elienneprincipalement pola- ris´eeassoci´ee`aune vari´et´ede spin. Le th´eor`emed'indice pour l'op´erateur de Dirac (associ´e`ala structure de spin) implique qu'un accouplement naturel sur le K-groupe topologique prend des valeurs enti`eres.Cet ac- couplement sert commme polarization principale sur le t^oreassoci´e. On place la construction dans un c^adreg´en´eralce qui la relie `ala ja- cobienne de Weil mais qui sugg`ereaussi la construction d'une jacobienne associ´ee`an'importe quelle structure de Hodge polaris´eeet de poids pair. Cette derni`ereconstruction est ensuite expliqu´eeen termes de groupes alg´ebriques,utile pour le point de vue des cat´egoriesTannakiennes. Notre construction depend de param`etres,beaucoup comme dans la th´eoriede Teichm¨uller,mais en g´en´erall'application de p´eriodes n'est que de nature analytique r´eelle. Abstract. We first investigate a construction of principally polarized abelian varieties attached to certain spin manifolds, due to Witten and Moore-Witten around 2000. The index theorem for the Dirac operator associated to the spin structure implies integrality of a natural skew pairing on the topological K-group. The latter serves as a principal polarization.
    [Show full text]
  • Arithmetic Duality Theorems
    Arithmetic Duality Theorems Second Edition J.S. Milne Copyright c 2004, 2006 J.S. Milne. The electronic version of this work is licensed under a Creative Commons Li- cense: http://creativecommons.org/licenses/by-nc-nd/2.5/ Briefly, you are free to copy the electronic version of the work for noncommercial purposes under certain conditions (see the link for a precise statement). Single paper copies for noncommercial personal use may be made without ex- plicit permission from the copyright holder. All other rights reserved. First edition published by Academic Press 1986. A paperback version of this work is available from booksellers worldwide and from the publisher: BookSurge, LLC, www.booksurge.com, 1-866-308-6235, [email protected] BibTeX information @book{milne2006, author={J.S. Milne}, title={Arithmetic Duality Theorems}, year={2006}, publisher={BookSurge, LLC}, edition={Second}, pages={viii+339}, isbn={1-4196-4274-X} } QA247 .M554 Contents Contents iii I Galois Cohomology 1 0 Preliminaries............................ 2 1 Duality relative to a class formation . ............. 17 2 Localfields............................. 26 3 Abelianvarietiesoverlocalfields.................. 40 4 Globalfields............................. 48 5 Global Euler-Poincar´echaracteristics................ 66 6 Abelianvarietiesoverglobalfields................. 72 7 An application to the conjecture of Birch and Swinnerton-Dyer . 93 8 Abelianclassfieldtheory......................101 9 Otherapplications..........................116 AppendixA:Classfieldtheoryforfunctionfields............126
    [Show full text]
  • Mirror Symmetry of Abelian Variety and Multi Theta Functions
    1 Mirror symmetry of Abelian variety and Multi Theta functions by Kenji FUKAYA (深谷賢治) Department of Mathematics, Faculty of Science, Kyoto University, Kitashirakawa, Sakyo-ku, Kyoto Japan Table of contents § 0 Introduction. § 1 Moduli spaces of Lagrangian submanifolds and construction of a mirror torus. § 2 Construction of a sheaf from an affine Lagrangian submanifold. § 3 Sheaf cohomology and Floer cohomology 1 (Construction of a homomorphism). § 4 Isogeny. § 5 Sheaf cohomology and Floer cohomology 2 (Proof of isomorphism). § 6 Extension and Floer cohomology 1 (0 th cohomology). § 7 Moduli space of holomorphic vector bundles on a mirror torus. § 8 Nontransversal or disconnected Lagrangian submanifolds. ∞ § 9 Multi Theta series 1 (Definition and A formulae.) § 10 Multi Theta series 2 (Calculation of the coefficients.) § 11 Extension and Floer cohomology 2 (Higher cohomology). § 12 Resolution and Lagrangian surgery. 2 § 0 Introduction In this paper, we study mirror symmetry of complex and symplectic tori as an example of homological mirror symmetry conjecture of Kontsevich [24], [25] between symplectic and complex manifolds. We discussed mirror symmetry of tori in [12] emphasizing its “noncom- mutative” generalization. In this paper, we concentrate on the case of a commutative (usual) torus. Our result is a generalization of one by Polishchuk and Zaslow [42], [41], who studied the case of elliptic curve. The main results of this paper establish a dictionary of mirror symmetry between symplectic geometry and complex geometry in the case of tori of arbitrary dimension. We wrote this dictionary in the introduction of [12]. We present the argument in a way so that it suggests a possibility of its generalization.
    [Show full text]
  • Brauer Groups of Abelian Schemes
    ANNALES SCIENTIFIQUES DE L’É.N.S. RAYMOND T. HOOBLER Brauer groups of abelian schemes Annales scientifiques de l’É.N.S. 4e série, tome 5, no 1 (1972), p. 45-70 <http://www.numdam.org/item?id=ASENS_1972_4_5_1_45_0> © Gauthier-Villars (Éditions scientifiques et médicales Elsevier), 1972, tous droits réservés. L’accès aux archives de la revue « Annales scientifiques de l’É.N.S. » (http://www. elsevier.com/locate/ansens) implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systé- matique est constitutive d’une infraction pénale. Toute copie ou impression de ce fi- chier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Ann. scienL EC. Norm. Sup., 4® serie, t. 5, 1972, p. 45 ^ 70. BRAUER GROUPS OF ABELIAN SCHEMES BY RAYMOND T. HOOBLER 0 Let A be an abelian variety over a field /c. Mumford has given a very beautiful construction of the dual abelian variety in the spirit of Grothen- dieck style algebraic geometry by using the theorem of the square, its corollaries, and cohomology theory. Since the /c-points of Pic^n is H1 (A, G^), it is natural to ask how much of this work carries over to higher cohomology groups where the computations must be made in the etale topology to render them non-trivial. Since H2 (A, Gm) is essentially a torsion group, the representability of the corresponding functor does not have as much geometric interest as for H1 (A, G^).
    [Show full text]
  • A Algebraic Varieties
    A Algebraic Varieties A.1 Basic definitions Let k[X1,X2,...,Xn] be a polynomial algebra over an algebraically closed field k with n indeterminates X1,...,Xn. We sometimes abbreviate it as k[X]= k[X1,X2,...,Xn]. Let us associate to each polynomial f(X)∈ k[X] its zero set n V(f):= {x = (x1,x2,...,xn) ∈ k | f(x)= f(x1,x2,...,xn) = 0} n 2in the n-fold product set k of k. For any subset S ⊂ k[X] we also set V(S) = f ∈S V(f). Then we have the following properties: n (i) 2V(1) =∅,V(0) =k . = (ii) i∈I V(Si) V( i∈I Si). (iii) V(S1) ∪ V(S2) = V(S1S2), where S1S2 := {fg | f ∈ S1,g∈ S2}. The inclusion ⊂ of (iii) is clear. We will prove only the inclusion ⊃. For x ∈ V(S1S2) \ V(S2) there is an element g ∈ S2 such that g(x) = 0. On the other hand, it ∀ ∀ follows from x ∈ V(S1S2) that f(x)g(x) = 0( f ∈ S1). Hence f(x)= 0( f ∈ S1) and x ∈ V(S1). So the part ⊃ was also proved. By (i), (ii), (iii) the set kn is endowed with the structure of a topological space by taking {V(S) | S ⊂ k[X]} to be its closed subsets. We call this topology of kn the Zariski topology. The closed subsets V(S) of kn with respect to it are called algebraic sets in kn. Note that V(S)= V(S), where S denotes the ideal of k[X] generated by S.
    [Show full text]
  • Abelian Varieties
    Abelian Varieties J.S. Milne Version 2.0 March 16, 2008 These notes are an introduction to the theory of abelian varieties, including the arithmetic of abelian varieties and Faltings’s proof of certain finiteness theorems. The orginal version of the notes was distributed during the teaching of an advanced graduate course. Alas, the notes are still in very rough form. BibTeX information @misc{milneAV, author={Milne, James S.}, title={Abelian Varieties (v2.00)}, year={2008}, note={Available at www.jmilne.org/math/}, pages={166+vi} } v1.10 (July 27, 1998). First version on the web, 110 pages. v2.00 (March 17, 2008). Corrected, revised, and expanded; 172 pages. Available at www.jmilne.org/math/ Please send comments and corrections to me at the address on my web page. The photograph shows the Tasman Glacier, New Zealand. Copyright c 1998, 2008 J.S. Milne. Single paper copies for noncommercial personal use may be made without explicit permis- sion from the copyright holder. Contents Introduction 1 I Abelian Varieties: Geometry 7 1 Definitions; Basic Properties. 7 2 Abelian Varieties over the Complex Numbers. 10 3 Rational Maps Into Abelian Varieties . 15 4 Review of cohomology . 20 5 The Theorem of the Cube. 21 6 Abelian Varieties are Projective . 27 7 Isogenies . 32 8 The Dual Abelian Variety. 34 9 The Dual Exact Sequence. 41 10 Endomorphisms . 42 11 Polarizations and Invertible Sheaves . 53 12 The Etale Cohomology of an Abelian Variety . 54 13 Weil Pairings . 57 14 The Rosati Involution . 61 15 Geometric Finiteness Theorems . 63 16 Families of Abelian Varieties .
    [Show full text]
  • Torsion Subgroups of Abelian Varieties
    Torsion Subgroups of Abelian Varieties Raoul Wols April 19, 2016 In this talk I will explain what abelian varieties are and introduce torsion subgroups on abelian varieties. k is always a field, and Vark always denotes the category of varieties over k. That is to say, geometrically integral sepa- rated schemes of finite type with a morphism to k. Recall that the product of two A; B 2 Vark is just the fibre product over k: A ×k B. Definition 1. Let C be a category with finite products and a terminal object 1 2 C. An object G 2 C is called a group object if G comes equipped with three morphism; namely a \unit" map e : 1 ! G; a \multiplication" map m : G × G ! G and an \inverse" map i : G ! G such that id ×m G × G × G G G × G m×idG m G × G m G commutes, which tells us that m is associative, and such that (e;id ) G G G × G idG (idG;e) m G × G m G commutes, which tells us that e is indeed the neutral \element", and such that (id ;i)◦∆ G G G × G (i;idG)◦∆ m e0 G × G m G 1 commutes, which tells us that i is indeed the map that sends \elements" to inverses. Here we use ∆ : G ! G × G to denote the diagonal map coming from the universal property of the product G × G. The map e0 is the composition G ! 1 −!e G. id Now specialize to C = Vark. The terminal object is then 1 = (Spec(k) −! Spec(k)), and giving a unit map e : 1 ! G for some scheme G over k is equivalent to giving an element e 2 G(k).
    [Show full text]
  • Arxiv:2008.10677V3 [Math.CT] 9 Jul 2021 Space Ha Hoyepiil Ea Ihtewr Fj Ea N194 in Leray J
    On sheaf cohomology and natural expansions ∗ Ana Luiza Tenório, IME-USP, [email protected] Hugo Luiz Mariano, IME-USP, [email protected] July 12, 2021 Abstract In this survey paper, we present Čech and sheaf cohomologies – themes that were presented by Koszul in University of São Paulo ([42]) during his visit in the late 1950s – we present expansions for categories of generalized sheaves (i.e, Grothendieck toposes), with examples of applications in other cohomology theories and other areas of mathematics, besides providing motivations and historical notes. We conclude explaining the difficulties in establishing a cohomology theory for elementary toposes, presenting alternative approaches by considering constructions over quantales, that provide structures similar to sheaves, and indicating researches related to logic: constructive (intuitionistic and linear) logic for toposes, sheaves over quantales, and homological algebra. 1 Introduction Sheaf Theory explicitly began with the work of J. Leray in 1945 [46]. The nomenclature “sheaf” over a space X, in terms of closed subsets of a topological space X, first appeared in 1946, also in one of Leray’s works, according to [21]. He was interested in solving partial differential equations and build up a strong tool to pass local properties to global ones. Currently, the definition of a sheaf over X is given by a “coherent family” of structures indexed on the lattice of open subsets of X or as étale maps (= local homeomorphisms) into X. Both arXiv:2008.10677v3 [math.CT] 9 Jul 2021 formulations emerged in the late 1940s and early 1950s in Cartan’s seminars and, in modern terms, they are intimately related by an equivalence of categories.
    [Show full text]
  • More on Gauge Theory and Geometric Langlands
    More On Gauge Theory And Geometric Langlands Edward Witten School of Natural Sciences, Institute for Advanced Study, 1 Einstein Drive, Princeton, NJ 08540 USA Abstract: The geometric Langlands correspondence was described some years ago in terms of S-duality of = 4 super Yang-Mills theory. Some additional matters relevant N to this story are described here. The main goal is to explain directly why an A-brane of a certain simple kind can be an eigenbrane for the action of ’t Hooft operators. To set the stage, we review some facts about Higgs bundles and the Hitchin fibration. We consider only the simplest examples, in which many technical questions can be avoided. arXiv:1506.04293v3 [hep-th] 28 Jul 2017 Contents 1 Introduction 1 2 Compactification And Hitchin’s Moduli Space 2 2.1 Preliminaries 2 2.2 Hitchin’s Equations 4 2.3 MH and the Cotangent Bundle 7 2.4 The Hitchin Fibration 7 2.5 Complete Integrability 8 2.6 The Spectral Curve 10 2.6.1 Basics 10 2.6.2 Abelianization 13 2.6.3 Which Line Bundles Appear? 14 2.6.4 Relation To K-Theory 16 2.6.5 The Unitary Group 17 2.6.6 The Group P SU(N) 18 2.6.7 Spectral Covers For Other Gauge Groups 20 2.7 The Distinguished Section 20 2.7.1 The Case Of SU(N) 20 2.7.2 Section Of The Hitchin Fibration For Any G 22 3 Dual Tori And Hitchin Fibrations 22 3.1 Examples 23 3.2 The Case Of Unitary Groups 25 3.3 Topological Viewpoint 27 3.3.1 Characterization of FSU(N) 29 3.4 The Symplectic Form 30 3.4.1 Comparison To Gauge Theory 33 4 ’t Hooft Operators And Hecke Modifications 34 4.1 Eigenbranes 34 4.2 The Electric
    [Show full text]