Bob Behn's Public Management Report

Total Page:16

File Type:pdf, Size:1020Kb

Bob Behn's Public Management Report Bob Behn’s Public Management Report An occasional (and maybe insightful) examination of the issues, dilemmas, challenges, and opportunities in leadership, governance, management, and performance in public agencies. Vol. 6, No. 10, June 2009 Copyright © 2009 by Robert D. Behn On why public executives need to recognize The Hint Behind “That’s Funny” Do you know how we humans for the planet. Galle did so that very recognizing novelty. discovered Neptune? It all started evening. There it was. Eureka! But how can we do that? How can because Uranus was behaving badly. But as Isaac Asimov is often quot- we recognize novelty? By stopping, In 1781, the British astronomer ed as saying: “The most exciting whenever we find ourselves saying William Herschel discovered Uranus— phrase to hear in science, the one “that’s funny” and instantly asking: the seventh planet in the solar sys- that heralds the new discoveries, is “Why?” “Why did I say that?” “What tem. This was nearly a century after not 'Eureka!' but 'That's funny.'” was funny?” “Why was it funny?” Isaac Newton had published his three Astronomers eventually discovered For whenever you say to yourself laws of motion, so astronomers could Neptune because they kept observing “that’s funny,” you are telling yourself easily use Newton’s equations plus that Uranus was doing something that you have seen or heard some- the positions of the sun and the other funny. Something very funny. Some- thing unusual, something that you planets to calculate Uranus’s orbit. thing so funny that, eventually, sev- didn’t expect to see, something novel. Oops. Uranus failed to follow its eral scientists decided that this funni- And that novelty is a hint. It sug- predicted orbit. As Tom Standage ness required some serious thought. gests that you have something to explains in his book, The Neptune Scientists, however, are not the discover—that, if you pay attention to File, Uranus was a “notoriously badly only ones who stumble across things the hint, you are about to learn some- behaved planet.” All the other planets that are “funny.” All of us do so all of thing new. Maybe you are about to comported themselves properly—that the time. Unfortunately, we are so learn that your subordinates are not is, according to Newton’s laws. But busy that, whenever we find ourselves following your sage advice. Maybe you not Uranus. Astronomers collected commenting, “that’s funny,” we ignore are about to learn that your organiza- more data on Uranus’s orbit, and our own, very astute (and perhaps tion is not following critical safe- mathematicians recalculated its fu- prescient) observation, and continue guards. Maybe you are about to learn ture orbit. But Uranus refused to on with the moment’s urgent task. that your organization’s brilliant pol- cooperate. John Pringle Nicol, a Scot- icy isn’t producing the desired re- tish astronomer, called Uranus “the sults. Maybe you are about to learn puzzle of our science.” How can we—harried humans that your organization faces an emer- To solve this puzzle, scientists all—recognize novelty? By stop- gency crisis. The novelty revealed by offered a variety of theories. Maybe ping whenever we hear ourselves your own observation, “that’s funny,” Uranus had been hit by a comet. saying, “that’s funny,” and ask- is a hint that there is a puzzle to be Maybe space contained some kind of ing: “Why?” “Why did I say that?” solved—maybe a puzzle that needs to resistive medium that slowed Uranus “What was funny?” “Why was it be solved immediately. down. Maybe Uranus was orbited by funny?” For the funniness sug- Public executives lead complicated some undetectable moon. Maybe the gests there is something to learn. lives. They are subjected to constant mathematical calculations were pressures. They confront numerous wrong. Maybe, for some reason, New- emergencies—usually very routine ton’s laws didn’t apply to Uranus. This is a mistake. Hours, days, emergencies that can be resolved Scientists never like this kind of ex- weeks or months later, we will realize using existing organizational routines. planation. Indeed, none of these ex- why. Something will happen—some- Public executives never have time planations were satisfactory. thing that we could have anticipated, to think. Yet, whenever they say to There remained one more possibil- something that we might have influ- themselves, “that’s funny,” they ought ity. Numerous astronomers concluded enced had we paid attention to our to recognize this as a signal that they that there must exist another planet own observation. For then, we recall, need to stop and think. beyond Uranus that was also influ- “Oh yes. Now I understand. That’s Who knows? Maybe the next time encing its orbit. Two mathematicians, why I said ‘that’s funny.’” you say to yourself, “that’s funny,” John Adams of the University of Cam- My Kennedy School colleagues, you will discover a new planet. d bridge and Urbain Le Verrier of the Arnold Howitt and Herman Leonard Paris Observatory, calculated where —both in their book Managing Crises, Robert D. Behn is a lecturer at Har- this unseen planet should be. Adams and in their executive-education pro- vard University's John F. Kennedy was unable to convince the head of gram, Leadership in Crises—distin- School of Government where he the Royal Observatory in Greenwich guish between common, routine crises chairs the executive-education pro- to look for the planet. Meanwhile, Le and emergency crises, which are gram “Driving Government Perfor- Verrier published his calculations and novel. An emergency crisis is one that mance: Leadership Strategies that sent a copy to Johann Galle at the we have never experienced before. Produce Results.” His latest publica- Berlin Observatory asking him to look Thus, they continue, the challenge of tion is: What All Mayors Would Like to Know About Baltimore’s CitiStat Per- To subscribe go to http://www.ksg.harvard.edu/TheBehnReport. It’s free! formance Strategy..
Recommended publications
  • The Icha Newsletter Newsletter of the Inter-Union Commission For
    International Astronomical Union International Union of the History and Philosophy of Science DHS/IUHPS ______________________________________________________________________________________________________________________ THE ICHA NEWSLETTER NEWSLETTER OF THE INTER-UNION COMMISSION FOR HISTORY OF ASTRONOMY* ____________________________________________________________ __________________________________________________________ No. 11 – January 2011 SUMMARY A. Archaeoastronomy and Ethnoastronomy: Building Bridges between Cultures – IAU Symposium S278 Report by C. Ruggles ..................................................... 1 B. Historical Observatory building to be restored by A. Simpson …..…..…...… 5 C. History of Astronomy in India by B. S. Shylaja ……………………………….. 6 D. Journals and Publications: - Acta Historica Astronomiae by Hilmar W. Duerbeck ................................ 8 Books 2008/2011 ............................................................................................. 9 Some research papers by C41/ICHA members - 2009/2010 ........................... 9 E. News - Exhibitions on the Antikythera Mechanism by E. Nicolaidis ……………. 10 - XII Universeum Meeting by M. Lourenço, S. Talas, R. Wittje ………….. 10 - XXX Scientific Instrument Symposium by K.Gaulke ..………………… 12 F. ICHA Member News by B. Corbin ………………………………………… 13 * The ICHA includes IAU Commission 41 (History of Astronomy), all of whose members are, ipso facto, members of the ICHA. ________________________________________________________________________________________________________________________
    [Show full text]
  • The First Measurement of the Deflection of the Vertical in Longitude
    Eur. Phys. J. H. DOI: 10.1140/epjh/e2014-40055-2 The first measurement of the deflection of the vertical in longitude The figure of the earth in the early 19th century Andreas Schrimpfa Philipps-Universit¨atMarburg, Fachbereich Physik, Renthof 5, D-35032 Marburg, Germany Abstract. During the summer of 1837 Christian Ludwig Gerling, a for- mer student of Carl Friedrich Gauß’s, organized the world wide first de- termination of the deflection of the vertical in longitude. From a mobile observatory at the Frauenberg near Marburg (Hesse) he measured the astronomical longitude difference between C.F. Gauß’s observatory at G¨ottingenand F.G.B. Nicolai's observatory at Mannheim within an er- ror of 000: 4. To achieve this precision he first used a series of light signals for synchronizing the observatory clocks and, second, he very carefully corrected for the varying reaction time of the observers. By comparing these astronomical results with the geodetic{determined longitude dif- ferences he had recently measured for the triangulation of Kurhessen, he was able to extract a combined value of the deflection of the vertical in longitude of G¨ottingenand Mannheim. His results closely agree with modern vertical deflection data. 1 Introduction The discussion about the figure of the earth and its determination was an open ques- tion for almost two thousand years, the sciences involved were geodesy, geography and astronomy. Without precise instruments the everyday experience suggested a flat, plane world, although ideas of a spherically shaped earth were known and ac- cepted even in the ancient world. Assuming that the easily observable daily motion of the stars is due to the rotation of the earth, the rotational axis can be used to define a celestial sphere; a coordinate system, where the stars' position is given by two angles.
    [Show full text]
  • The Other Blue Planet Tapping, Ken
    NRC Publications Archive Archives des publications du CNRC The other blue planet Tapping, Ken This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. / La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version acceptée du manuscrit ou la version de l’éditeur. For the publisher’s version, please access the DOI link below./ Pour consulter la version de l’éditeur, utilisez le lien DOI ci-dessous. Publisher’s version / Version de l'éditeur: https://doi.org/10.4224/23002752 Skygazing: Astronomy through the seasons, 2018-01-30 NRC Publications Record / Notice d'Archives des publications de CNRC: https://nrc-publications.canada.ca/eng/view/object/?id=e8d4ccca-5079-4df5-9083-db0517aff329 https://publications-cnrc.canada.ca/fra/voir/objet/?id=e8d4ccca-5079-4df5-9083-db0517aff329 Access and use of this website and the material on it are subject to the Terms and Conditions set forth at https://nrc-publications.canada.ca/eng/copyright READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE. L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site https://publications-cnrc.canada.ca/fra/droits LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB. Questions? Contact the NRC Publications Archive team at [email protected]. If you wish to email the authors directly, please see the first page of the publication for their contact information. Vous avez des questions? Nous pouvons vous aider.
    [Show full text]
  • Staircase of Vienna Observatory (Institut Für Astronomie Der Universität Wien)
    Figure 15.1: Staircase of Vienna Observatory (Institut für Astronomie der Universität Wien) 142 15. The University Observatory Vienna Anneliese Schnell (Vienna, Austria) 15.1 Introduction should prefer non-German instrument makers (E. Weiss 1873). In spring of 2008 the new Vienna Observatory was th commemorating its 125 anniversary, it was officially During a couple of years Vienna Observatory was edit- opened by Emperor Franz Joseph in 1883. Regular ob- ing an astronomical calendar. In the 1874 edition K. L. servations had started in 1880. Viennese astronomers Littrow wrote a contribution about the new observatory had planned that observatory for a long time. Already th in which he defined the instrumental needs: Karl von Littrow’s father had plans early in the 19 “für Topographie des Himmels ein mächtiges parallakti- century (at that time according to a letter from Joseph sches Fernrohr, ein dioptrisches Instrument von 25 Zoll Johann Littrow to Gauß from December 1, 1823 the Öffnung. Da sich aber ein Werkzeug von solcher Grö- observatory of Turku was taken as model) (Reich 2008), ße für laufende Beobachtungen (Ortsbestimmung neu- but it lasted until 1867 when it was decided to build a er Planeten und Kometen, fortgesetzte Doppelsternmes- new main building of the university of Vienna and also sungen, etc.) nicht eignet, ein zweites, kleineres, daher a new observatory. Viennese astronomers at that time leichter zu handhabendes, aber zur Beobachtung licht- had an excellent training in mathematics, they mostly schwacher Objekte immer noch hinreichendes Teleskop worked on positional astronomy and celestial mechanics. von etwa 10 Zoll Öffnung, und ein Meridiankreis er- They believed in F.
    [Show full text]
  • Ice& Stone 2020
    Ice & Stone 2020 WEEK 33: AUGUST 9-15 Presented by The Earthrise Institute # 33 Authored by Alan Hale About Ice And Stone 2020 It is my pleasure to welcome all educators, students, topics include: main-belt asteroids, near-Earth asteroids, and anybody else who might be interested, to Ice and “Great Comets,” spacecraft visits (both past and Stone 2020. This is an educational package I have put future), meteorites, and “small bodies” in popular together to cover the so-called “small bodies” of the literature and music. solar system, which in general means asteroids and comets, although this also includes the small moons of Throughout 2020 there will be various comets that are the various planets as well as meteors, meteorites, and visible in our skies and various asteroids passing by Earth interplanetary dust. Although these objects may be -- some of which are already known, some of which “small” compared to the planets of our solar system, will be discovered “in the act” -- and there will also be they are nevertheless of high interest and importance various asteroids of the main asteroid belt that are visible for several reasons, including: as well as “occultations” of stars by various asteroids visible from certain locations on Earth’s surface. Ice a) they are believed to be the “leftovers” from the and Stone 2020 will make note of these occasions and formation of the solar system, so studying them provides appearances as they take place. The “Comet Resource valuable insights into our origins, including Earth and of Center” at the Earthrise web site contains information life on Earth, including ourselves; about the brighter comets that are visible in the sky at any given time and, for those who are interested, I will b) we have learned that this process isn’t over yet, and also occasionally share information about the goings-on that there are still objects out there that can impact in my life as I observe these comets.
    [Show full text]
  • 1 Portraits Leonhard Euler Daniel Bernoulli Johann-Heinrich Lambert
    Portraits Leonhard Euler Daniel Bernoulli Johann-Heinrich Lambert Compiled and translated by Oscar Sheynin Berlin, 2010 Copyright Sheynin 2010 www.sheynin.de ISBN 3-938417-01-3 1 Contents Foreword I. Nicolaus Fuss, Eulogy on Leonhard Euler, 1786. Translated from German II. M. J. A. N. Condorcet, Eulogy on Euler, 1786. Translated from French III. Daniel Bernoulli, Autobiography. Translated from Russian; Latin original received in Petersburg in 1776 IV. M. J. A. N. Condorcet, Eulogy on [Daniel] Bernoulli, 1785. In French. Translated by Daniel II Bernoulli in German, 1787. This translation considers both versions V. R. Wolf, Daniel Bernoulli from Basel, 1700 – 1782, 1860. Translated from German VI. Gleb K. Michajlov, The Life and Work of Daniel Bernoullli, 2005. Translated from German VII. Daniel Bernoulli, List of Contributions, 2002 VIII. J. H. S. Formey, Eulogy on Lambert, 1780. Translated from French IX. R. Wolf, Joh. Heinrich Lambert from Mühlhausen, 1728 – 1777, 1860. Translated from German X. J.-H. Lambert, List of Publications, 1970 XI. Oscar Sheynin, Supplement: Daniel Bernoulli’s Instructions for Meteorological Stations 2 Foreword Along with the main eulogies and biographies [i, ii, iv, v, viii, ix], I have included a recent biography of Daniel Bernoulli [vi], his autobiography [iii], for the first time translated from the Russian translation of the Latin original but regrettably incomplete, and lists of published works by Daniel Bernoulli [vii] and Lambert [x]. The first of these lists is readily available, but there are so many references to the works of these scientists in the main texts, that I had no other reasonable alternative.
    [Show full text]
  • Neptune Closest to Earth for 2020 - a September 2020 Sky Event from the Astronomy Club of Asheville
    Neptune Closest to Earth for 2020 - a September 2020 Sky Event from the Astronomy Club of Asheville Earth reaches “opposition” with the solar Not to Scale system’s most distant planet on September 11th. At opposition, speedier Earth, moving counterclockwise on its inside lane, laps the outer planet, positioning the Sun directly opposite the Earth from Neptune. This puts Neptune closest to Earth for the year and in great observing position for those using a telescope. Rising at dusk and setting at dawn, the planet Neptune is visible all night during the month of September. Located in the constellation Aquarius, Neptune is positioned some 2.7 billion miles (or 4 light-hours) away from Earth at “opposition” this month. _________________________________ At magnitude 7.8, Neptune will appear as a small blue disk in most amateur telescopes. You will find Neptune along the ecliptic in the constellation Aquarius this year. In September, it will be located about 2° southeast of the 4.2 magnitude star Phi (φ) Aquarii. Like Uranus, Neptune has an upper atmosphere with significant methane gas (CH4). Methane strongly absorbs red light; thus, the blue end of the light spectrum, from the reflected sunlight, is what primarily passes through to our eyes, when observing this distant planet. Neptune’s Discovery Neptune was the 2nd solar system planet to be discovered! Uranus’ discovery preceded it, when William Herschel observed its blue disk, quite by accident, in 1781. But Uranus’ orbit had an unexplained problem – a deviation that astronomers called a “perturbation”. Johannes Kepler’s laws of planetary motion and Isaac Newton’s laws of motion and gravity could not adequately explain this perturbation in Uranus’ orbit.
    [Show full text]
  • Friedrich Zöllner's Correspondence with Wilhelm Foerster
    See discussions, stats, and author profiles for this publication at: http://www.researchgate.net/publication/241504525 Friedrich Zöllner's correspondence with Wilhelm Foerster CHAPTER · JANUARY 2000 CITATION READS 1 8 2 AUTHORS, INCLUDING: Wolfgang R. Dick Federal Agency for Cartography and Geodesy 283 PUBLICATIONS 192 CITATIONS SEE PROFILE Available from: Wolfgang R. Dick Retrieved on: 14 October 2015 11 Friedrich Z¨ollner’s correspondence with Wilhelm Foerster Wolfgang R. Dick Otterkiez 14 D-14478 Potsdam Federal Republic of Germany Gisela M¨unzel Fockestrasse 43 D-04275 Leipzig Federal Republic of Germany Abstract Thirty one letters by Karl Friedrich Z¨ollner to Wilhelm Foerster have sur- vived, being probably nearly all that have been written by Z¨ollner. Most of Foerster’s letters have been lost, with the exception of one preserved in original and some published (at least in parts) in 1899. An overview of the relations of Z¨ollner and Foerster and of their correspondence is given, and some quotes from Z¨ollner’s letters are presented. These give new insights into Z¨ollner’s scientific and private life. 11.1 Z¨ollner’s friend and correspondent Wilhelm Foerster Wilhelm Foerster was born on December 16, 1832 in the Silesian town of Gr¨unberg, so that he was almost two years older than Z¨ollner. His way into 121 122 ZOLLNER’S¨ CORRESPONDENCE WITH FOERSTER astronomy was more rapid and straight in comparison to Z¨ollner’s. Foerster studied first at Berlin, but after three semesters he left for Bonn, where — under the direction of Argelander — he graduated with a dissertation on the geographical latitude of Bonn Observatory.
    [Show full text]
  • The Mystery and Majesty
    The mystery and majesty Nearly 40 years after THE SPACE AGE BLASTED off when the Soviet Union launched the Voyager 2 visited Uranus world’s first artificial satellite in 1957. Since then, humanity has explored our cosmic and Neptune, scientists are backyard with vigor — and yet two planets have fallen to the planetary probe wayside. eager for new expeditions. In the 63 years since Sputnik, humanity has only visited Neptune and Uranus once BY JOEL DAVIS — when Voyager 2 flew past Uranus in January 1986 and Neptune in August 1989 40 ASTRONOMY • DECEMBER 2020 of the ICE GIANTS — and even that wasn’t entirely pre- interstellar mission, more than a dozen pro- In 1781, Uranus became the first planet planned. The unmitigated success of posals have been offered for return missions ever discovered using a telescope. Nearly 200 years later, Voyager 2 Voyager 1 and 2 on their original mission to one or both ice giants. So far, none have became the first spacecraft to visit to explore Jupiter and Saturn earned the made it past the proposal stage due to lack Uranus and Neptune, in 1986 and 1989 respectively. NASA/JPL twin spacecrafts further missions in our of substantial scientific interest. Effectively, solar system and beyond, with Neptune and the planetary research community has been Uranus acting as the last stops on a Grand giving the ice giants the cold shoulder. Tour of the outer solar system. But recently, exoplanet data began In the 31 years since Voyager 2 left the revealing the abundance of icy exoplanets Neptune system in 1989 and began its in our galaxy “and new questions about WWW.ASTRONOMY.COM 41 With a rotation axis tilted more than 90 degrees compared to its orbital plane, Neptune likewise has a highly tilted rotation axis and tilted magnetic axis.
    [Show full text]
  • ATTENTION: Epreuve Non Définitive!!!
    Verrier, Urbain-Jean-Joseph Le V 1 Verrier, Urbain-Jean-Joseph Le Born Saint-Lô, Manche, France, 11 March 1811 Died Paris, France, 23 September 1877 Urbain-Jean-Joseph le Verrier explained the unruly behavior of Uranus by positing the existence of an unknown planet, which was subsequently discovered and named Neptune. His father, Louis-Baptiste le Verrier, a civil servant, and mother, Pauline de Baudre, came from the lower Norman aristocracy. Th eir only son received his lycée education in Cherbourg, and failed the entrance examination to the École Polytechnique on his fi rst try but was admitted in 1831. In 1837, he married Lucille Marie Clothilde Choquet, the daughter of his former teacher. Th ey had three children: Léon, Lucille, and Urbain. In 1837, le Verrier was off ered a position in geodesy and machines as an assistant to Félix Savary at the École Polytechnique. Aft er Savary’s death a few years later, le Verrier succeeded him to the chair in astronomy. He devoted his attention to celestial mechanics to reclaim the heritage of Pierre de Laplace . His fi rst memoir presented to the Paris Academy of Sciences addressed Laplace’s solution to the stability of the Solar System. Later, le Verrier laid the groundwork for a new theory of Mercury’s orbit and successfully tackled the theory of several recently discovered periodic comets, on the basis of which he was successful in his bid for a seat at the academy on 19 January 1846. Two months earlier, le Verrier had published his fi rst memoir on Uranus’s orbital irregularities, a work he had undertaken with encouragement by François Arago .
    [Show full text]
  • Februar 2021
    Februar 2021 Vor 235 Jahren geboren FRANÇOIS ARAGO (26.02.1786 – 02.10.1853) DOMINIQUE FRANÇOIS JEAN ARAGO wächst zusammen mit acht Geschwistern im Städtchen Estagel (Roussillon) auf, wo sein Vater als Bürgermeister und Friedensrichter tätig ist. Auf dem Collège im 18 km entfernten Perpignan ent- deckt er seine Liebe zur Mathematik. Mit 17 Jahren legt er erfolgreich die Aufnahmeprüfung für die École Poly- technique in Paris ab. Sein Prüfer ist LOUIS MONGE, Bruder von GASPARD MONGE, dem damaligen Leiter der Pariser Eliteschule. In Paris kann FRANÇOIS bei einem Freund des Vaters wohnen, dort lernt er auch den fünf Jahre älteren SIMÉON DENIS POISSON kennen – Beginn einer lebenslangen Freundschaft zwischen ARAGO und dem jungen Dozenten der École Polytechnique. 1805 macht POISSON seinem Freund ein Angebot: ARAGO soll ein auf- wendiges Vermessungsprojekt endlich zum Abschluss bringen – es geht um nichts Geringeres als die Vermessung des durch Paris verlaufenden Meridians. In den Jahren 1792 bis 1798 hatten JEAN-BAPTISTE DELAMBRE und PIERRE MÉCHAIN vom Bureau des Longitudes den Auftrag erhalten, die Länge des Meridians zwischen Dün- kirchen und Barcelona zu vermessen – Grundlage für die Festlegung der Länge des Urmeters (= zehn-millionster Teil eines Viertels des Erdumfangs). MÉCHAINs Ver- messungsarbeiten im Süden waren – insbesondere wegen der Wirren der Französischen Revolution und der Folgen des Kriegs mit Spanien – mit großen Schwierigkeiten verbunden, und MÉCHAIN plagten erhebliche Zweifel, ob die zuletzt ermittelten Daten tatsächlich korrekt waren. Von 1803 an durfte er seine Vermessungen südlich von Barcelona wieder aufnehmen. Nach Arbeiten auf Ibiza und Mallorca starb MÉCHAIN jedoch unerwartet, und PIERRE-SIMON LAPLACE bat POISSON um Unterstützung, einen Nachfolger für MÉCHAIN zu finden.
    [Show full text]
  • John Couch Adams: Mathematical Astronomer, College Friend Of
    John Couch Adams: mathematical astronomer, rsta.royalsocietypublishing.org college friend of George Gabriel Stokes and promotor Research of women in astronomy Davor Krajnovic´1 Article submitted to journal 1Leibniz-Institut für Astrophysik Potsdam (AIP), An der Sternwarte 16, D-14482 Potsdam, Germany Subject Areas: xxxxx, xxxxx, xxxx John Couch Adams predicted the location of Neptune in the sky, calculated the expectation of the change in Keywords: the mean motion of the Moon due to the Earth’s pull, xxxx, xxxx, xxxx and determined the origin and the orbit of the Leonids meteor shower which had puzzled astronomers for almost a thousand years. With his achievements Author for correspondence: Adams can be compared with his good friend George Davor Krajnovic´ Stokes. Not only were they born in the same year, e-mail: [email protected] but were also both senior wranglers, received the Smith’s Prizes and Copley medals, lived, thought and researched at Pembroke College, and shared an appreciation of Newton. On the other hand, Adams’ prediction of Neptune’s location had absolutely no influence on its discovery in Berlin. His lunar theory did not offer a physical explanation for the Moon’s motion. The origin of the Leonids was explained by others before him. Adams refused a knighthood and an appointment as Astronomer Royal. He was reluctant and slow to publish, but loved to derive the values of logarithms to 263 decimal places. The maths and calculations at which he so excelled mark one of the high points of celestial mechanics, but are rarely taught nowadays in undergraduate courses.
    [Show full text]