1. Lecture 1: Knot Polynomials

Total Page:16

File Type:pdf, Size:1020Kb

1. Lecture 1: Knot Polynomials NEW ZEALAND JOURNAL OF MATHEMATICS Volume 21 (1992), 1-16 KNOTS, BRAIDS, STATISTICAL MECHANICS AND VON NEUMANN ALGEBRAS V a u g h a n J o n e s (Received June 1991) Abstract. In the first lecture I will define several invariants of knots including the classical Alexander polynomial. I will show how they are related to statistical me­ chanics and quantum field theory. In the second lecture I will trace the origin of the new knot invariants through braids and von Neumann algebras and show how totally new methods in knot theory seem to be necessary for understanding and manipulating these invariants. 1. Lecture 1: Knot Polynomials 1.1 Definitions A knot will be a smooth curve in the three sphere S 3 (or R 3) which is the image of an embedding of S'1. A link will be a disjoint union of knots. Links may or may not be oriented, they will be considered up to diffeomorphisms of S3 which are generally required to preserve the orientation of S3 (this is the same as isotopy in S3). Links may always be projected onto some plane so that the only singularities are double points. If one records which part of the knot is closest to the plane of projection one obtains “link diagrams”. Here are some examples. The double points of the projection are called crossings for obvious reasons. the unknot v V / the figure eight knot the right trefoil Conway’s knot QO the left trefoil Knots have been tabulated up to 13 crossings [Thl]. Forgetting obvious symme­ tries and composite knots (e.g. Q>! is a composite knot made up of two trefoils), there are about 12^ thousand in the tables. The number of different knots grows exponentially with crossing number. 9 VAUGHAN JONES The relation of equality of links is translated into the equivalence relation on link diagrams generated by (planar diffeomorphisms and) the Reidemeister moves of types I, II and III shown below Type I These moves are applied locally, affecting only that part of the link seen in the drawings above. An invariant is a quantity associated to a knot or link which depends only on the knot in three dimensions. If this invariant is calculated from diagrams, this just means that the answer is invariant under the Reidemeister moves. A very elementary but important example of an invariant is the linking number between two oriented curves. We will call ^ ( a positive crossing and a negative one. Given two nonintersecting smooth curvesC\ and C 2, lk(C \,C 2 ) is defined to be the signed sum of the crossings between C\ and C2 in some generic projection. It is simple to verify invariance under the type II and III moves, the only ones that can involve more than one component. In mathematics, knots and links have been most important in the study of three- manifolds via a process called surgery. Given a link L in a 3-manifold M, one removes a tubular neighbourhood ofL (a solid torus per component ofL ) then one glues it back with some new identification on the boundary. A good exercise is to see that S l x S 2 may be obtained by surgery on the unknot in S 3 by a diffeomorphism of the boundary which reverses the meridian and longitude of the torus. A basic theorem of Lickorish and Wallace shows that any closed oriented 3-manifold may be obtained from S 3 by surgery on a link (see [Ro]). 1.2 Five polynomial invariants in order of appearance 1.2.1 The Alexander polynomial Given an oriented link L in S3, one may realise elements of (S'1 — L) as smooth oriented curves. Taking the sum of the linking numbers with the components ofL gives a homomorphism from 7Ti (S3 —L) —► 7Z . This in turn defines an infinite KNOTS, BRAIDS. VON NEUMANN ALGEBRAS 3 cyclic covering space S 3~L whose first homology becomes aZZ[t,t x] module, t acting by the generator of the deck transformations. Using van Kampen’s theorem one sees that H i(S 3-L ) has a square presentation matrix as a 2 Z [t,t~ l] module. The principal ideal generated by this polynomial is then an invariant of the link L. It is called the Alexander polynomial A i{t) of L. As defined above A i s ambiguous up to multiplication by ± a power of t. It can be shown (see [Co]) that Al(£) may be normalized in such a way that it has the following (skein) properties: 1. A K{t) = 1 if K is the unknot. 2. If L +, L - and L q admit diagrams identical except near one crossing where they are as below, then then AL+(t) - AL_(t) = \^ /t- It is easy to see that the skein relation provides an algorithm for the calculation of Az,(t). Examples of Alexander polynomials are: • The trefoils have A^(£) =t~ l — 1 + 1. • The figure 8 has A Lit) = 3 — t — t -1 . • Conway’s knot has A^(i) = 1. In general a split link (one with two or more non empty components separated by a 2-sphere) has Alexander polynomial zero. The Alexander polynomial first appeared in 1928 in [A] and has been a powerful tool in knot theory. It may be calculated in polynomial time with respect to the number of crossings. Since Ai(f) is defined in terms of S 3-L, it may be calculated from any construc­ tion of this manifold. One way to do this is to glue together infinitely many copies of S 3 - L. indexed by 7 Z . each one joined to the next by identifying along an oriented surface in S 3 whose oriented boundary is L. By considering surfaces of the type shown below, it is possible to gain complete control over (t).A For instance using a companion matrix one may easily show that, if p{t) is any given polynomial with • P(t)=p(t~1), • P{ 1) = 1 then there is a knot K with A x{t) = p(t). This is due to Seifert in [Se]. 4 VAUGHAN JONES 1.2.2 The polynomial Vi,{t) It was shown in [J 1] that there is another polynomialV l (£) of oriented links defined by the skein relation \ v L+(t) - tVL_(t) = fr f- ± ) VLo(t) (and Kinknot = 1)> where L +, L _ and L q are as for the Alexander polynomial. Examples are: • The Right trefoil has Vl (t) —t + t3 — t4. • The figure 8 has Vi,{t) = t ~2 — t~ 1 + 1 — t + t2. • Conway’s knot has Vl(£) = —t~ 4 + 2t~3 — 2t~2 + 2t_1 + t2 — 2t3+ 2t4 — 2t5 + t6 Mirror image symmetry is reflected in the polynomial by t —> \ so that the left trefoil has Vl(£) =t ^ 1 -f t~ 3 — t~ 4. Note that the Alexander polynomial of a knot is insensitive to this operation. The ^-polynomial of a distant union of two links is the product of theirV- polynomials multiplied by the factor — ^s/t + Thus split links have non-zero F-polynomial and in fact no link can have F-polynomial equal to zero. It is not known at this stage whether there is a non-trivial knot whoseV- polynomial is that of the unknot, nor is there any idea of how to characterize polynomials of the formV (t). It is unlikely that V can be calculated in polynomial time. In marked contrast to A(£), V{t) is essentially insensitive to the orientation of a link (it changes by a power of t under orientation changes). There is no known interpretation of Vl(£) in terms of the algebraic topology of S^-L. 1.2.3 The skein (or HOMFLY or FLYPTHOM) polynomialP l (1,tti) The similarity between the skein relations of A and V prompted many people ([F+], [PT]) to prove that the coefficients in the skein relation can be chosen arbitrarily. A standard choice is to define Pi,(l,m ) by l~1PL+(l,m ) + lPL_(l,m ) + m PLo(l,m ) = 0 and .Punknot = 1- Examples are • Pright trefoil = I 2 / + I Ul . • P figure 8 = {~l~2 ~ 1 ~ I2) + m2. • PConway1~2 += 7 (2+ 6l2 + 214) + (-31~2 - 11 - ll/2 -l4)m2 3 + ( r 2 + 6 + 612 + l4)m4 + (— 1 —l2)m6. The polynomial P (l,m ) is known to contain more information than just the combination ofV and A (see [LM]). KNOTS, BRAIDS, VON NEUMANN ALGEBRAS 5 1.2.4 The absolute polynomial of Ql (x ) [BLM], [Ho] Considering unoriented links led to the discovery of a polynomial invariant Q l {x ) obeying the following generalized skein relation. If L +, L_, L q and Loo are unoriented links admitting diagrams identical except near one crossing where they are as below, then Q l + + Ql _ = x (Ql 0 + Ql J Examples are: • Qtrefoil = ~ 3 +2x + 2x2. • Qfigure 8 = - 3 - 2X + 4x2 + 2x3. • QConway = 17 - 24x - 52x2 + 54x3 + 76a:4 - 28x5 - 48x6 - 4x7 + 8 x 8 + 2x9. This polynomial is understood no better than V ^ t). 1.2.5 The Kauffman polynomial F i,(a , x ) ([K al]) Regular isotopy is defined to be the relation on link diagrams generated by Rei­ demeister moves of type II and III. It is very little different from isotopy. Kauffman first defines an invariant F(a, x) of regular isotopy of unoriented link diagrams by F l + + Fl _ = x (Fl 0 + Fl ^ ) as in section 1.2.4 (.Funknot = 1) and Fl ±i = cl± xFl if L ±l differs from L by a type I Reidemeister move.
Recommended publications
  • Oriented Pair (S 3,S1); Two Knots Are Regarded As
    S-EQUIVALENCE OF KNOTS C. KEARTON Abstract. S-equivalence of classical knots is investigated, as well as its rela- tionship with mutation and the unknotting number. Furthermore, we identify the kernel of Bredon’s double suspension map, and give a geometric relation between slice and algebraically slice knots. Finally, we show that every knot is S-equivalent to a prime knot. 1. Introduction An oriented knot k is a smooth (or PL) oriented pair S3,S1; two knots are regarded as the same if there is an orientation preserving diffeomorphism sending one onto the other. An unoriented knot k is defined in the same way, but without regard to the orientation of S1. Every oriented knot is spanned by an oriented surface, a Seifert surface, and this gives rise to a matrix of linking numbers called a Seifert matrix. Any two Seifert matrices of the same knot are S-equivalent: the definition of S-equivalence is given in, for example, [14, 21, 11]. It is the equivalence relation generated by ambient surgery on a Seifert surface of the knot. In [19], two oriented knots are defined to be S-equivalent if their Seifert matrices are S- equivalent, and the following result is proved. Theorem 1. Two oriented knots are S-equivalent if and only if they are related by a sequence of doubled-delta moves shown in Figure 1. .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .. .... .... .... .... .... .... .... .... .... ...
    [Show full text]
  • Mutant Knots and Intersection Graphs 1 Introduction
    Mutant knots and intersection graphs S. V. CHMUTOV S. K. LANDO We prove that if a finite order knot invariant does not distinguish mutant knots, then the corresponding weight system depends on the intersection graph of a chord diagram rather than on the diagram itself. Conversely, if we have a weight system depending only on the intersection graphs of chord diagrams, then the composition of such a weight system with the Kontsevich invariant determines a knot invariant that does not distinguish mutant knots. Thus, an equivalence between finite order invariants not distinguishing mutants and weight systems depending on intersections graphs only is established. We discuss relationship between our results and certain Lie algebra weight systems. 57M15; 57M25 1 Introduction Below, we use standard notions of the theory of finite order, or Vassiliev, invariants of knots in 3-space; their definitions can be found, for example, in [6] or [14], and we recall them briefly in Section 2. All knots are assumed to be oriented. Two knots are said to be mutant if they differ by a rotation of a tangle with four endpoints about either a vertical axis, or a horizontal axis, or an axis perpendicular to the paper. If necessary, the orientation inside the tangle may be replaced by the opposite one. Here is a famous example of mutant knots, the Conway (11n34) knot C of genus 3, and Kinoshita–Terasaka (11n42) knot KT of genus 2 (see [1]). C = KT = Note that the change of the orientation of a knot can be achieved by a mutation in the complement to a trivial tangle.
    [Show full text]
  • Forked Temperley–Lieb Algebras and Intermediate Subfactors
    Journal of Functional Analysis 247 (2007) 477–491 www.elsevier.com/locate/jfa Forked Temperley–Lieb algebras and intermediate subfactors Pinhas Grossman Department of Mathematics, Vanderbilt University, USA Received 23 October 2006; accepted 16 March 2007 Available online 26 April 2007 Communicated by D. Voiculescu Abstract We consider noncommuting pairs P , Q of intermediate subfactors of an irreducible, finite-index inclusion N ⊂ M of II1 factors such that P and Q are supertransitive with Jones index less than 4 over N.Weshow that up to isomorphism of the standard invariant, there is a unique such pair corresponding to each even [ : ]= 2 π [ : ]= 2 π value P N 4cos 2n but none for the odd values P N 4cos 2n+1 . We also classify the angle values which occur between pairs of intermediate subfactors with small index over their intersection: if [ : ] [ : ] −1 1 P N , Q N < 4, then the unique nontrivial angle value is always cos [P : N]−1 . © 2007 Elsevier Inc. All rights reserved. Keywords: Von Neumann algebras; Subfactors; Planar algebras; Intermediate subfactors 1. Introduction A fundamental example of a subfactor is the fixed-point algebra of an outer action of a finite group on a von Neumann algebra with trivial center. In this case the structure of the subfactor is determined by the structure of the group. One then thinks of a general subfactor as a “quantum” version of a finite group, and subfactor theory as a “non-commutative Galois theory.” In this spirit it is natural to consider an intermediate subfactor N ⊂ P ⊂ M as an analogue of a subgroup, and indeed, the intermediate subfactors of the fixed-point subfactor of an action of a finite group are precisely the fixed-point subfactors of its subgroups.
    [Show full text]
  • MUTATIONS of LINKS in GENUS 2 HANDLEBODIES 1. Introduction
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 127, Number 1, January 1999, Pages 309{314 S 0002-9939(99)04871-6 MUTATIONS OF LINKS IN GENUS 2 HANDLEBODIES D. COOPER AND W. B. R. LICKORISH (Communicated by Ronald A. Fintushel) Abstract. A short proof is given to show that a link in the 3-sphere and any link related to it by genus 2 mutation have the same Alexander polynomial. This verifies a deduction from the solution to the Melvin-Morton conjecture. The proof here extends to show that the link signatures are likewise the same and that these results extend to links in a homology 3-sphere. 1. Introduction Suppose L is an oriented link in a genus 2 handlebody H that is contained, in some arbitrary (complicated) way, in S3.Letρbe the involution of H depicted abstractly in Figure 1 as a π-rotation about the axis shown. The pair of links L and ρL is said to be related by a genus 2 mutation. The first purpose of this note is to prove, by means of long established techniques of classical knot theory, that L and ρL always have the same Alexander polynomial. As described briefly below, this actual result for knots can also be deduced from the recent solution to a conjecture, of P. M. Melvin and H. R. Morton, that posed a problem in the realm of Vassiliev invariants. It is impressive that this simple result, readily expressible in the language of the classical knot theory that predates the Jones polynomial, should have emerged from the technicalities of Vassiliev invariants.
    [Show full text]
  • The Conway Knot Is Not Slice
    THE CONWAY KNOT IS NOT SLICE LISA PICCIRILLO Abstract. A knot is said to be slice if it bounds a smooth properly embedded disk in B4. We demonstrate that the Conway knot, 11n34 in the Rolfsen tables, is not slice. This com- pletes the classification of slice knots under 13 crossings, and gives the first example of a non-slice knot which is both topologically slice and a positive mutant of a slice knot. 1. Introduction The classical study of knots in S3 is 3-dimensional; a knot is defined to be trivial if it bounds an embedded disk in S3. Concordance, first defined by Fox in [Fox62], is a 4-dimensional extension; a knot in S3 is trivial in concordance if it bounds an embedded disk in B4. In four dimensions one has to take care about what sort of disks are permitted. A knot is slice if it bounds a smoothly embedded disk in B4, and topologically slice if it bounds a locally flat disk in B4. There are many slice knots which are not the unknot, and many topologically slice knots which are not slice. It is natural to ask how characteristics of 3-dimensional knotting interact with concordance and questions of this sort are prevalent in the literature. Modifying a knot by positive mutation is particularly difficult to detect in concordance; we define positive mutation now. A Conway sphere for an oriented knot K is an embedded S2 in S3 that meets the knot 3 transversely in four points. The Conway sphere splits S into two 3-balls, B1 and B2, and ∗ K into two tangles KB1 and KB2 .
    [Show full text]
  • Knot Genus Recall That Oriented Surfaces Are Classified by the Either Euler Characteristic and the Number of Boundary Components (Assume the Surface Is Connected)
    Knots and how to detect knottiness. Figure-8 knot Trefoil knot The “unknot” (a mathematician’s “joke”) There are lots and lots of knots … Peter Guthrie Tait Tait’s dates: 1831-1901 Lord Kelvin (William Thomson) ? Knots don’t explain the periodic table but…. They do appear to be important in nature. Here is some knotted DNA Science 229, 171 (1985); copyright AAAS A 16-crossing knot one of 1,388,705 The knot with archive number 16n-63441 Image generated at http: //knotilus.math.uwo.ca/ A 23-crossing knot one of more than 100 billion The knot with archive number 23x-1-25182457376 Image generated at http: //knotilus.math.uwo.ca/ Spot the knot Video: Robert Scharein knotplot.com Some other hard unknots Measuring Topological Complexity ● We need certificates of topological complexity. ● Things we can compute from a particular instance of (in this case) a knot, but that does change under deformations. ● You already should know one example of this. ○ The linking number from E&M. What kind of tools do we need? 1. Methods for encoding knots (and links) as well as rules for understanding when two different codings are give equivalent knots. 2. Methods for measuring topological complexity. Things we can compute from a particular encoding of the knot but that don’t agree for different encodings of the same knot. Knot Projections A typical way of encoding a knot is via a projection. We imagine the knot K sitting in 3-space with coordinates (x,y,z) and project to the xy-plane. We remember the image of the projection together with the over and under crossing information as in some of the pictures we just saw.
    [Show full text]
  • Braids: a Survey
    BRAIDS: A SURVEY Joan S. Birman ∗ Tara E. Brendle † e-mail [email protected] e-mail [email protected] December 2, 2004 Abstract This article is about Artin’s braid group Bn and its role in knot theory. We set our- selves two goals: (i) to provide enough of the essential background so that our review would be accessible to graduate students, and (ii) to focus on those parts of the subject in which major progress was made, or interesting new proofs of known results were discovered, during the past 20 years. A central theme that we try to develop is to show ways in which structure first discovered in the braid groups generalizes to structure in Garside groups, Artin groups and surface mapping class groups. However, the liter- ature is extensive, and for reasons of space our coverage necessarily omits many very interesting developments. Open problems are noted and so-labelled, as we encounter them. A guide to computer software is given together with a 10 page bibliography. Contents 1 Introduction 3 1.1 Bn and Pn viaconfigurationspaces . .. .. .. .. .. .. 3 1.2 Bn and Pn viageneratorsandrelations . 4 1.3 Bn and Pn asmappingclassgroups ...................... 5 1.4 Some examples where braiding appears in mathematics, unexpectedly . 7 1.4.1 Algebraicgeometry............................ 7 1.4.2 Operatoralgebras ............................ 8 1.4.3 Homotopygroupsofspheres. 9 1.4.4 Robotics.................................. 10 1.4.5 Publickeycryptography. 10 2 From knots to braids 12 2.1 Closedbraids ................................... 12 2.2 Alexander’sTheorem.. .. .. .. .. .. .. .. .. 13 2.3 Markov’sTheorem ................................ 17 ∗The first author acknowledges partial support from the U.S.National Science Foundation under grant number 0405586.
    [Show full text]
  • The Ways I Know How to Define the Alexander Polynomial
    ALL THE WAYS I KNOW HOW TO DEFINE THE ALEXANDER POLYNOMIAL KYLE A. MILLER Abstract. These began as notes for a talk given at the Student 3-manifold seminar, Spring 2019. There seems to be many ways to define the Alexander polynomial, all of which are somehow interrelated, but sometimes there is not an obvious path between any two given definitions. As the title suggests, this is an exploration of all the ways I know how to define this knot invariant. While we will touch on a number of facts and properties, these notes are not meant to be a complete survey of the Alexander polynomial. Contents 1. Introduction2 2. Alexander’s definition2 2.1. The Dehn presentation2 2.2. Abelianization4 2.3. The associated matrix4 3. The Alexander modules6 3.1. Orders7 3.2. Elementary ideals8 3.3. The Fox calculus 10 3.4. Torus knots 13 3.5. The Wirtinger presentation 13 3.6. Generalization to links 15 3.7. Fibered knots 15 3.8. Seifert presentation 16 3.9. Duality 18 4. The Conway potential 18 4.1. Alexander’s three-term relation 20 5. The HOMFLY-PT polynomial 24 6. Kauffman state sum 26 6.1. Another state sum 29 7. The Burau representation 29 8. Vassiliev invariants 29 9. The Alexander quandle 29 9.1. Projective Alexander quandles 33 10. Reidemeister torsion 33 11. Knot Floer homology 33 References 33 Date: May 3, 2019. 1 DRAFT 2020/11/14 18:57:28 2 KYLE A. MILLER 1. Introduction Recall that a link is an embedded closed 1-manifold in S3, and a knot is a 1-component link.
    [Show full text]
  • 1 the Definition of a Planar Algebra
    1 The definition of a planar algebra. By “smooth disc” we will mean the image of the closed unit ball under a C1 diffeo- 2 morphism of R . By “smooth curve” we will mean the image of the unit circle or a 1 2 closed interval under a C diffeomorphism of R . 1.1 Planar tangles Definition 1.1.1. A planar tangle T consists of the following data: T 2 i) A smooth disc D ⊂ R T ii) A certain finite set DT of disjoint smooth discs in the interior of D iii) A finite number of disjoint smooth curves in DT (called the strings S(T ) of T )which do not meet the interiors of the D in DT . The boundary points of a string T of T (if it has any) lie in the boundaries of either D or the discs in DT . The strings meet the boundaries of the discs transversally if they meet them at all. 2 T The subset of R obtained by taking away from D the strings of T and the discs in DT is called the set subjacent to T and the connected components of the set subjacent to T are called the regions of T . The points at which a string meets a disc will be called the boundary points of that disc. To each disc D of a planar tangle let nD be the number of boundary points of D. The boundary of a disc D of T consists of disjoint open curve segments together with the boundary points of D.
    [Show full text]
  • Subfactors-Jones.Pdf
    Subfactors in Memory of Vaughan Jones Zhengwei Liu Tsinghua University Math-Science Literature Lecture Series November 23, 2020, Harvard CMSA and Tsinghua YMSC 1 / 32 Sir Vaughan Frederick Randal Jones, a great New Zealand mathematician, suddenly passed away at Nashville, Tennessee, in the US on September 6, 2020, due to an ear infection and complications. This talk is dedicated to my advisor Vaughan Jones. Jones initiated the modern theory of subfactors in early 1980s and investigated this area for his whole academic life. Subfactor theory has both deep and broad connections with various areas in mathematics and physics. I will review some highlights in the developments of subfactors, based on insightful examples{Jones style. I am sorry for not mentioning many experts who have made substantial contributions in this area. 2 / 32 2020 ! 1952 (Time Machine in the Japanese Cartoon \Doraemon") 3 / 32 Childhood ! B.S. & M.S. I Jones was born in Gisborne, New Zealand on December 31, 1952 to parents Jim Jones and Joan Jones (ne Collins). I He developed his lifelong interest in math and science at St. Peters School and Auckland Grammar School. I After graduating from the University of Auckland with a B.Sc. in 1972 and an M.Sc. with First Class Honours in 1973, he was awarded a Swiss Government Scholarship. 4 / 32 Marriage While pursuing his PhD at University of Geneva in Switzerland, Jones met his future wife, Martha, whom he forever called Wendy. They married in Wendy's hometown of Westfield, New Jersey in 1979. 5 / 32 Jones' PhD Thesis Jones got his Docteur`esSciences in Mathematics from the University of Geneva in 1979, under the supervision of Andr´e Haefliger and Alain Connes.
    [Show full text]
  • Mutation and the Colored Jones Polynomial
    Journal of G¨okova Geometry Topology Volume 3 (2009) 44 – 78 Mutation and the colored Jones polynomial Alexander Stoimenow and Toshifumi Tanaka with appendices by Daniel Matei and the first author Abstract. It is known that the colored Jones polynomials, various 2-cable link polynomials, the hyperbolic volume, and the fundamental group of the double branched cover coincide on mutant knots. We construct examples showing that these criteria, even in various combinations, are not sufficient to determine the mutation class of a knot, and that they are independent in several ways. In particular, we answer nega- tively the question of whether the colored Jones polynomial determines a simple knot up to mutation. 1. Introduction Mutation, introduced by Conway [Co], is a procedure of turning a knot into another, often a different but a “similar” one. This similarity alludes to the circumstance, that most of the common (efficiently computable) invariants coincide on mutants, and so mutants are difficult to distinguish. A basic exercise in skein theory shows that mutants have the same Alexander polynomial ∆, and this argument extends to the later discovered Jones V , HOMFLY(-PT or skein) P , BLMH Q and Kauffman F polynomials [J, F&, LM, BLM, Ho, Ka]. The cabling formula for the Alexander polynomial (see for example [Li, theorem 6.15]) shows also that Alexander polynomials of all satellite knots of mutants coincide, and the same was proved by Lickorish and Lipson [LL] also for the HOMFLY and Kauffman polynomials of 2-satellites of mutants. The HOMFLY polynomial applied on a 3-cable can generally distinguish mutants (for example the K-T and Conway knot; see 3.2), but with a calculation effort that is too large to be considered widely practicable.
    [Show full text]
  • Aspects of the Jones Polynomial
    California State University, San Bernardino CSUSB ScholarWorks Theses Digitization Project John M. Pfau Library 2006 Aspects of the Jones polynomial Alvin Mendoza Sacdalan Follow this and additional works at: https://scholarworks.lib.csusb.edu/etd-project Part of the Mathematics Commons Recommended Citation Sacdalan, Alvin Mendoza, "Aspects of the Jones polynomial" (2006). Theses Digitization Project. 2872. https://scholarworks.lib.csusb.edu/etd-project/2872 This Project is brought to you for free and open access by the John M. Pfau Library at CSUSB ScholarWorks. It has been accepted for inclusion in Theses Digitization Project by an authorized administrator of CSUSB ScholarWorks. For more information, please contact [email protected]. ASPECTS OF THE JONES POLYNOMIAL A Project Presented to the Faculty of California State University, San Bernardino In Partial Fulfillment of the Requirements for the Degree Masters of Arts in Mathematics by Alvin Mendoza Sacdalan June 2006 ASPECTS OF THE JONES POLYNOMIAL A Project Presented to the Faculty of California State University, San Bernardino by Alvin Mendoza Sacdalan June 2006 Approved by: Rolland Trapp, Committee Chair Date /Joseph Chavez/, Committee Member Wenxiang Wang, Committee Member Peter Williams, Chair Department Joan Terry Hallett, of Mathematics Graduate Coordinator Department of Mathematics ABSTRACT A knot invariant called the Jones polynomial is the focus of this paper. The Jones polynomial will be defined into two ways, as the Kauffman Bracket polynomial and the Tutte polynomial. Three properties of the Jones polynomial are discussed. Given a reduced alternating knot with n crossings, the span of its Jones polynomial is equal to n. The Jones polynomial of the mirror image L* of a link diagram L is V(L*) (t) = V(L) (t) .
    [Show full text]