Atlas V for Commercial Passenger Transportation 2006-7268

Total Page:16

File Type:pdf, Size:1020Kb

Atlas V for Commercial Passenger Transportation 2006-7268 Atlas V for Commercial Passenger Transportation Jeff A. Patton1 and Joshua B. Hopkins2 Lockheed Martin Space Systems Company, P.O. Box 179, Denver Colorado 80433 The Atlas and Centaur Programs have enjoyed a rich history as a trusted vehicle for a large number of critical space exploration missions as well as the Mercury manned spaceflight program. The Atlas expendable launch vehicle has matured well beyond the early days of manned spaceflight and is uniquely poised to provide a near-term transportation solution for the emerging space tourism market. This paper addresses the attributes of the Atlas expendable launch vehicle that make it distinctively qualified to be a highly reliable, robust earth-to-orbit transportation solution for commercial passengers. The paper will detail the Atlas expendable launch vehicle system compliance to Human Rating requirements defined by the Federal Aviation Administration (FAA) and NASA Standard 8705.2A “Human-Rating Requirements for Space Systems” as well as the anticipated safety expectations of passengers and insurers. In addition, the paper will compare and contrast various approaches to achieving safety, some of which may drive highly complex, unreliable, and costly design solutions. Atlas has the unique capability to demonstrate the implementation of Human Rating requirements by validating designs on numerous unmanned launches. The Atlas high flight rate of unmanned missions quickly builds sufficient history to rely on flight demonstrated reliability, rather than analytically predicted reliability. Demonstrating these systems has the benefit of increasing reliability through commonality with commercial and government launches, in addition to continuing vehicle characterization due to the experience gained from higher flight and production rates. The Atlas expendable launch vehicle family is a mature system with demonstrated design robustness and processes discipline that provides a highly reliable, robust solution for commercial passenger transportation needs. I. Introduction HE key to the success of commercial space travel is a safe, reliable and affordable transportation system. This T is especially true for orbital missions, where a failure would devastate this fragile emerging industry for years to come. The Atlas V launch vehicle has demonstrated that it would be the Earth-To-Orbit launch vehicle of choice due to its unsurpassed record of mission success. The Atlas V Program was successful on its maiden launch attempt, and has realized a 100% success record on all 8 Atlas V launches. The overall Atlas Program has demonstrated 79 consecutive successes since 1993, including 100% mission success record for all Atlas II, III, and V flights. The Atlas Program approach to human rating is simple. Human rating should utilize a common-sense approach to ensuring 100% mission success and passenger abort survival. This includes maximizing the synergy between the passenger capsule and the launch vehicle, such that neither system levies unattainable requirements on the other. Finally, human rating requires maximizing reliability, applying redundancy where practical, providing system health monitoring and an emergency detection system, and ensuring all mission phases provide survivable abort modes. Many believe that existing expendable launch vehicles can not be human rated due to inherent limitations to their design and operations because they were not initially designed to be human rated. The results of on-going analysis dispel this belief. Atlas is the only existing launch vehicle that can meet or exceed the identified requirements for providing commercial passenger transportation. Atlas has the added benefit of incorporating and demonstrating system upgrades prior to flying the first passengers. This is crucial, as leveraging the synergy with on-going 1 Manager, Business Development and Advanced Programs, Lockheed Martin Space Systems Company, P.O. Box 179, MS T9115, Denver Colorado 80433, AIAA Member. 2 Senior Systems Engineer, Advanced Design and Technology Integration, Lockheed Martin Space Systems Company, P.O. Box 179, MS L3005, Denver Colorado 80433, AIAA Senior Member. 1 American Institute of Aeronautics and Astronautics commercial and government satellite launch missions significantly increases our understanding and characterization of system performance, and ultimately enhances our demonstrated reliability. We believe that analytically predicted reliability estimates will not be sufficient to convince prospective passengers of their personal safety, and that a demonstrated track record over a substantial number of flights will be required for a commercially viable service. II. Baseline Passenger Vehicle Definition The Atlas V Program has been involved in human transportation studies beginning with the Orbital Space Plane (OSP) Program, and continuing during early Crew Exploration Vehicle (CEV) studies. The Lessons Learned from those experiences has formed the basis for changes to the Atlas launch vehicle to provide passenger transportation to Earth orbit. Over the past two years, Lockheed Martin has been refining concepts for a capsule-based commercial transportation system. The study established a baseline capsule-shaped vehicle, which is less complex and less expensive than a winged vehicle, and easier to integrate onto a launch vehicle. The capsule shape draws on Lockheed Martin’s experience building reentry vehicles for Genesis, Stardust, and several Mars missions. The passenger transfer vehicle has a gross mass of approximately 20,000 lbs and is capable of carrying several passengers to a low Earth circular orbit of 265 nmi at a 41 deg inclination. The capsule includes an Abort/Orbital Maneuvering System mounted below the heat shield to provide the required delta V and impulse for either launch aborts or the final orbital maneuvering system function. The Atlas V 401 launch vehicle was selected for its low cost and high intrinsic reliability. However, an Atlas V 402 (with two Centaur engines) could also be used for higher performance. An expanded view of the entire launch stack is depicted in Figure 1. Figure 1. With Minor Modifications, the Atlas V/401 Launch Vehicle Can Support Passenger Transportation to Space. Performance for this configuration was determined using TRAJEX simulations which are anchored to actual flight data. All simulations indicate that the flight environments are well within our current experience. Figure 2 and Figure 3 depict the maximum dynamic pressure and acceleration curves, respectively. A unique benefit of the Atlas BOOSTER ENGINE CUTOFF (242.06 secs) CENTAUR MAIN ENGINE CUTOFF 2 (4393.39 secs) CENTAUR MAIN ENGINE START 2 (4360.49 secs) CENTAUR MAIN ENGINE CUTOFF 1 (1093.21 secs) CENTAUR MAIN ENGINE START 1 (258.06 secs) Figure 2. This Atlas V/401 Passenger Transfer Vehicle Acceleration Profile Demonstrates That the System Can Meet Passenger Requirements. 2 American Institute of Aeronautics and Astronautics is that the peak acceleration, shown in figure 3, can be tailored using the throttle capability of the RD-180 engine. An Atlas 401 vehicle is well suited for this mission as it utilizes only two engines (one RD-180 on the Common Core BoosterTM and one RL10 on the Centaur Upper Stage). This flight proven configuration is the simplest, most reliable system currently available to safely fly a commercial passenger vehicle to low Earth orbit (LEO). MAX Q (94.58 secs) BEGIN CLOSED LOOP GUIDANCE (143.88 secs) START ZERO ALPHA FLIGHT (40.36 secs) ATLAS/CENTAUR SEPARATION (248.06 secs) BOOSTER ENGINE START PITCHOVER CUTOFF (242.06 secs) (18.64 secs) Figure 3. The Atlas V/401 Launch Vehicle Provides a Benign Maximum Dynamic Pressure Environment While Minimizing Ascent Loads and Enhancing Abort Conditions. III. Atlas/Mercury Manrating History The Atlas ICBM was selected to launch the first American into orbit during the Mercury Program. The early days of launch vehicle development were fraught with challenges as engineers struggled to design a vehicle that could perform reliably, and have the necessary systems on-board to ensure the safety of the astronaut. The first two unmanned Atlas/Mercury vehicles resulted in failure (Vehicle 10D on 9/9/59 and Vehicle 50D on 7/29/60). It wasn’t until February 21, 1961 that the program realized its first success (Vehicle 67D). Prior to the first manned mission, the Program suffered 3 failures in 6 launch attempts. “Manrating” for Mercury followed a simple, common sense approach that concentrated in two areas: hardware and people. Hardware changes to the baseline Atlas ICBM focused on improving vehicle redundancy, propellant utilization and control, and structural factors of safety. These changes were based on flight data and on one single critical factor: time: time to sense a system problem, time to evaluate the impact of that problem, and ultimately, time to execute an abort. The involvement of design, test, production and operations people, working hand in hand with the astronauts, was the single most important activity to ensure a successful mission. Hardware for manned missions was uniquely identified, and required meticulous data keeping on each component. There were exhaustive data reviews of the components, subsystems and systems. Everyone realized that the results had real life or death ramifications. Finally, an “Abort Sensing and Implementation System (“ASIS”) was developed to sense the development of any possible catastrophic failure of the booster, accomplishing what is currently commonly referred to
Recommended publications
  • Human Issues Related to Spacecraft Vibration During Ascent
    Human Issues related to Spacecraft Vibration during Ascent Consultant Report to the Constellation Program Standing Review Board Jonathan B. Clark M.D., M.P.H. Suite NA 425 One Baylor Plaza Baylor College of Medicine Houston TX 77030-3498 1731 Sunset Blvd Houston TX 77005 713 859 1381 281 989 8721 [email protected] [email protected] Opinions expressed herein are those of the author and do not reflect the views of the National Space Biomedical Research Institute (NSBRI), Baylor College of Medicine (BCM), the University of Texas Medical Branch (UTMB), or the National Aeronautics and Space Administration (NASA). Human Issues related to Spacecraft Vibration during Ascent Consultant Report to the Constellation Program Standing Review Board Jonathan B. Clark M.D., M.P.H. Opinions expressed herein are those of the author and do not reflect the views of the National Space Biomedical Research Institute (NSBRI), Baylor College of Medicine (BCM), the University of Texas Medical Branch (UTMB), or the National Aeronautics and Space Administration (NASA). Pogo in Liquid Fueled Rocket Motors The pogo phenomenon, or fuel pump inlet pressure fluctuation/ cavitation due to tuning feed line resonant frequencies was a major concern in the early space program. Pump tests showed that as inlet pressures were reduced toward cavitation, the pump started acting as an amplifier, causing large oscillations in the thrust chamber pressure. As the rocket engine thrust develops, liquid propellant is cyclically forced into the turbopump. This fluctuating fluid pressure is converted into an unintended and variable increase in engine thrust, with the net effect being longitudinal axis vibration that could result in spacecraft structural failure.
    [Show full text]
  • L AUNCH SYSTEMS Databk7 Collected.Book Page 18 Monday, September 14, 2009 2:53 PM Databk7 Collected.Book Page 19 Monday, September 14, 2009 2:53 PM
    databk7_collected.book Page 17 Monday, September 14, 2009 2:53 PM CHAPTER TWO L AUNCH SYSTEMS databk7_collected.book Page 18 Monday, September 14, 2009 2:53 PM databk7_collected.book Page 19 Monday, September 14, 2009 2:53 PM CHAPTER TWO L AUNCH SYSTEMS Introduction Launch systems provide access to space, necessary for the majority of NASA’s activities. During the decade from 1989–1998, NASA used two types of launch systems, one consisting of several families of expendable launch vehicles (ELV) and the second consisting of the world’s only partially reusable launch system—the Space Shuttle. A significant challenge NASA faced during the decade was the development of technologies needed to design and implement a new reusable launch system that would prove less expensive than the Shuttle. Although some attempts seemed promising, none succeeded. This chapter addresses most subjects relating to access to space and space transportation. It discusses and describes ELVs, the Space Shuttle in its launch vehicle function, and NASA’s attempts to develop new launch systems. Tables relating to each launch vehicle’s characteristics are included. The other functions of the Space Shuttle—as a scientific laboratory, staging area for repair missions, and a prime element of the Space Station program—are discussed in the next chapter, Human Spaceflight. This chapter also provides a brief review of launch systems in the past decade, an overview of policy relating to launch systems, a summary of the management of NASA’s launch systems programs, and tables of funding data. The Last Decade Reviewed (1979–1988) From 1979 through 1988, NASA used families of ELVs that had seen service during the previous decade.
    [Show full text]
  • 액체로켓 메탄엔진 개발동향 및 시사점 Development Trends of Liquid
    Journal of the Korean Society of Propulsion Engineers Vol. 25, No. 2, pp. 119-143, 2021 119 Technical Paper DOI: https://doi.org/10.6108/KSPE.2021.25.2.119 액체로켓 메탄엔진 개발동향 및 시사점 임병직 a, * ㆍ 김철웅 a⋅ 이금오 a ㆍ 이기주 a ㆍ 박재성 a ㆍ 안규복 b ㆍ 남궁혁준 c ㆍ 윤영빈 d Development Trends of Liquid Methane Rocket Engine and Implications Byoungjik Lim a, * ㆍ Cheulwoong Kim a⋅ Keum-Oh Lee a ㆍ Keejoo Lee a ㆍ Jaesung Park a ㆍ Kyubok Ahn b ㆍ Hyuck-Joon Namkoung c ㆍ Youngbin Yoon d a Future Launcher R&D Program Office, Korea Aerospace Research Institute, Korea b School of Mechanical Engineering, Chungbuk National University, Korea c Guided Munitions Team, Hyundai Rotem, Korea d Department of Aerospace Engineering, Seoul National University, Korea * Corresponding author. E-mail: [email protected] ABSTRACT Selecting liquid methane as fuel is a prevailing trend for recent rocket engine developments around the world, triggered by its affordability, reusability, storability for deep space exploration, and prospect for in-situ resource utilization. Given years of time required for acquiring a new rocket engine, a national-level R&D program to develop a methane engine is highly desirable at the earliest opportunity in order to catch up with this worldwide trend towards reusing launch vehicles for competitiveness and mission flexibility. In light of the monumental cost associated with development, fabrication, and testing of a booster stage engine, it is strategically a prudent choice to start with a low-thrust engine and build up space application cases.
    [Show full text]
  • Atlas Launch System Mission Planner's Guide, Atlas V Addendum
    ATLAS Atlas Launch System Mission Planner’s Guide, Atlas V Addendum FOREWORD This Atlas V Addendum supplements the current version of the Atlas Launch System Mission Plan- ner’s Guide (AMPG) and presents the initial vehicle capabilities for the newly available Atlas V launch system. Atlas V’s multiple vehicle configurations and performance levels can provide the optimum match for a range of customer requirements at the lowest cost. The performance data are presented in sufficient detail for preliminary assessment of the Atlas V vehicle family for your missions. This guide, in combination with the AMPG, includes essential technical and programmatic data for preliminary mission planning and spacecraft design. Interface data are in sufficient detail to assess a first-order compatibility. This guide contains current information on Lockheed Martin’s plans for Atlas V launch services. It is subject to change as Atlas V development progresses, and will be revised peri- odically. Potential users of Atlas V launch service are encouraged to contact the offices listed below to obtain the latest technical and program status information for the Atlas V development. For technical and business development inquiries, contact: COMMERCIAL BUSINESS U.S. GOVERNMENT INQUIRIES BUSINESS INQUIRIES Telephone: (691) 645-6400 Telephone: (303) 977-5250 Fax: (619) 645-6500 Fax: (303) 971-2472 Postal Address: Postal Address: International Launch Services, Inc. Commercial Launch Services, Inc. P.O. Box 124670 P.O. Box 179 San Diego, CA 92112-4670 Denver, CO 80201 Street Address: Street Address: International Launch Services, Inc. Commercial Launch Services, Inc. 101 West Broadway P.O. Box 179 Suite 2000 MS DC1400 San Diego, CA 92101 12999 Deer Creek Canyon Road Littleton, CO 80127-5146 A current version of this document can be found, in electronic form, on the Internet at: http://www.ilslaunch.com ii ATLAS LAUNCH SYSTEM MISSION PLANNER’S GUIDE ATLAS V ADDENDUM (AVMPG) REVISIONS Revision Date Rev No.
    [Show full text]
  • Materials for Liquid Propulsion Systems
    https://ntrs.nasa.gov/search.jsp?R=20160008869 2019-08-29T17:47:59+00:00Z CHAPTER 12 Materials for Liquid Propulsion Systems John A. Halchak Consultant, Los Angeles, California James L. Cannon NASA Marshall Space Flight Center, Huntsville, Alabama Corey Brown Aerojet-Rocketdyne, West Palm Beach, Florida 12.1 Introduction Earth to orbit launch vehicles are propelled by rocket engines and motors, both liquid and solid. This chapter will discuss liquid engines. The heart of a launch vehicle is its engine. The remainder of the vehicle (with the notable exceptions of the payload and guidance system) is an aero structure to support the propellant tanks which provide the fuel and oxidizer to feed the engine or engines. The basic principle behind a rocket engine is straightforward. The engine is a means to convert potential thermochemical energy of one or more propellants into exhaust jet kinetic energy. Fuel and oxidizer are burned in a combustion chamber where they create hot gases under high pressure. These hot gases are allowed to expand through a nozzle. The molecules of hot gas are first constricted by the throat of the nozzle (de-Laval nozzle) which forces them to accelerate; then as the nozzle flares outwards, they expand and further accelerate. It is the mass of the combustion gases times their velocity, reacting against the walls of the combustion chamber and nozzle, which produce thrust according to Newton’s third law: for every action there is an equal and opposite reaction. [1] Solid rocket motors are cheaper to manufacture and offer good values for their cost.
    [Show full text]
  • Atlas V Cutaway Poster
    ATLAS V Since 2002, Atlas V rockets have delivered vital national security, science and exploration, and commercial missions for customers across the globe including the U.S. Air Force, the National Reconnaissance Oice and NASA. 225 ft The spacecraft is encapsulated in either a 5-m (17.8-ft) or a 4-m (13.8-ft) diameter payload fairing (PLF). The 4-m-diameter PLF is a bisector (two-piece shell) fairing consisting of aluminum skin/stringer construction with vertical split-line longerons. The Atlas V 400 series oers three payload fairing options: the large (LPF, shown at left), the extended (EPF) and the extra extended (XPF). The 5-m PLF is a sandwich composite structure made with a vented aluminum-honeycomb core and graphite-epoxy face sheets. The bisector (two-piece shell) PLF encapsulates both the Centaur upper stage and the spacecraft, which separates using a debris-free pyrotechnic actuating 200 ft system. Payload clearance and vehicle structural stability are enhanced by the all-aluminum forward load reactor (FLR), which centers the PLF around the Centaur upper stage and shares payload shear loading. The Atlas V 500 series oers 1 three payload fairing options: the short (shown at left), medium 18 and long. 1 1 The Centaur upper stage is 3.1 m (10 ft) in diameter and 12.7 m (41.6 ft) long. Its propellant tanks are constructed of pressure-stabilized, corrosion-resistant stainless steel. Centaur is a liquid hydrogen/liquid oxygen-fueled vehicle. It uses a single RL10 engine producing 99.2 kN (22,300 lbf) of thrust.
    [Show full text]
  • Overview of GX Launch Services by GALEX Koji Sato∗, Yoshirou Kondou
    Acta Astronautica 59 (2006) 381–391 www.elsevier.com/locate/actaastro Overview of GX launch services by GALEX Koji Sato∗, Yoshirou Kondou Galaxy Express Corporation, Tokyo, Japan Available online 19 May 2006 Abstract Galaxy Express Corporation (GALEX) is a launch service company in Japan to develop a medium size rocket, GX rocket and to provide commercial launch services for medium/small low Earth orbit (LEO) and Sun synchronous orbit (SSO) payloads with a future potential for small geo-stationary transfer orbit (GTO). It is GALEX’s view that small/medium LEO/SSO payloads compose of medium scaled but stable launch market due to the nature of the missions. GX rocket is a two-stage rocket of well flight proven liquid oxygen (LOX)/kerosene booster and LOX/liquid natural gas (LNG) upper stage. This LOX/LNG propulsion under development by Japan’s Aerospace Exploration Agency (JAXA), is robust with comparable performance as other propulsions and have future potential for wider application such as exploration programs. GX rocket is being developed through a joint work between the industries and GX rocket is applying a business oriented approach in order to realize competitive launch services for which well flight proven hardware and necessary new technology are to be introduced as much as possible. It is GALEX’s goal to offer “Easy Access to Space”, a highly reliable and user-friendly launch services with a competitive price. GX commercial launch will start in Japanese fiscal year (JFY) 2007–2008. © 2006 Elsevier Ltd. All rights reserved. 1. Background of GX rocket (R&D) budget was filed to the Ministry of Finance (MOF) to start the R&D as “Advance Technology The origin of GX rocket can be traced back to Demonstration Rocket Program” from JFY1998.
    [Show full text]
  • Atlas As a Human Rated LV
    AtlasAtlas As As A A Human Human RatedRated LV LV STAIF Conference 2006 Lockheed Martin Space Systems Company Atlas for Human Spaceflight 15 Feb 2006 1 © 2006 Lockheed Martin Corporation. All Rights Reserved Reliable and Versatile Launch Vehicle Family Atlas I Atlas II Atlas IIA Atlas IIAS Atlas IIIA Atlas IIIB Atlas V-400 Atlas V-500 AC-69 AC-102 AC-105 AC-108 AC-201 AC-204 AV-001 AV-003 Jul 1990 Dec 1991 Jun 1992 Dec 1993 May 2000 Feb 2002 Aug 2002 Jul 2003 8/11 10/10 23/23 30/30 2/2 4/4 4/4 3/3 Legend: First Flight X/Y X successes in Y flights •8 of 8 First Flight Successes •78 Consecutive Successful Atlas Centaur Flights •100% Mission Success Atlas II, IIA, IIAS, III & V Families •487 Total Launch Successes Since Atlas Program Inception Mission Success—One Launch at a Time Atlas for Human Spaceflight 15 Feb 2006 2 AV-010 Launch • January 19, 2006 • NASA Pluto New Horizons Spacecraft • First 551 configuration • First Block 2 Fault Tolerant Avionics • First Block B SRB • Nuclear certified • Nominal flight profile • Injection conditions well within 1 sigma – C3, RLA, DLA Fastest Spacecraft Ever Launched Atlas for Human Spaceflight 15 Feb 2006 3 Atlas Evolution History Atlas I/II Family Atlas III Family Atlas V Family 5-m PLF ) 30 GSO Kit T m ( y 26 t i l Avionics i Single Common Upgrade b Engine a 22 Centaur Centaur p a C 3.8-m . Common c 18 r LO2 Core i Tank Booster C Stretch ) 14 m n 0 2 10 Liquid 2 SRBs ( Strap-ons m RD-180 SRBs k 6 Engine 7 0 Atlas I Atlas IIAS Atlas IIIA Atlas IIIB Atlas V Atlas V Atlas V 4 2 Atlas II (SEC) (DEC)
    [Show full text]
  • Launch Vehicle:Atlas V-401 Launch Location:Cape Canaveral Air Force Station, FL Launch Date:2010
    National Aeronautics and Space Administration Launch Services Program presents... Solar Dynamics Observatory (SDO) is the first mission that will be launched for NASA’s Living With a Star (LWS) program and is designed to understand the causes of solar variability and its impacts on Earth. SDO will take a closer look at the Sun and help develop the ability to better understand the Sun’s influence on Earth and Near-Earth space by studying the solar atmosphere. SDO will perform several measurements that will help characterize the interior of the Sun, the Sun’s magnetic field, the hot plasma of the solar corona, and the density of radiation that creates the ionosphere of the planets. By better understanding the Sun and how it works, scientists will be able to better predict and better forecast the “weather out in space” providing earlier warning to protect our aircraft, satellites and astronauts when working in space. Launch Vehicle: Atlas V-401 Launch Location: Cape Canaveral Air Force Station, FL Launch Date: 2010 www.nasa.gov Spacecraft rendering courtesy of Chris Meaney/NASA SP-2008-10-150-KSC Solar Image courtesy of Stanford-Lockheed Institute for Space Research - TRACE Drawing Courtesy of SDO United Launch Alliance Atlas V is the newest member in the Atlas launch vehicle evolution. The Atlas V launch vehicle family integrates the Centaur III second stage and a newly developed, structurally stable, 3.83 meter (12.6 feet) diameter Common Core Booster™ (CCB) with RD-180 main engine. The Atlas V vehicles were developed to meet Air Force Evolved Expendable Launch Vehicle (EELV) program requirements for significantly lower cost access to space.
    [Show full text]
  • GEMINI 9 N66 28552 R (To Be Launched No Earl& E Than May 17) S CONTENTS S
    . NATIONAL AERONAUTICS AND SPACE ADMINISTRATION wr) 7-41 r,? 1 WASHINGTON, D C 20546 TELS wcl f-f,w-, FOR RELEASE: TDESDAY A.M. P RELEXSE NO: 66-97 PROJECT: GEMINI 9 N66 28552 R (To be launched no earl& E than May 17) S CONTENTS S K I T . -2- -End- NATIONAL AERONAUTICS AND SPACE ADMlNmRATlON WO 2-41 55 WASHINGTON, D.C. 20546 TELs.wo 3-6925 COR RELEA- TUESDAY A.M. my 10, 1966 FEJXASE NO: 66-97 GHviINI 9 LAUNCHES SET MAY 17 The National Aeronautics and Space Administration will launch the Gemini 9 spacecraft and its Age- Target Vehicle no earlier than May 17 from Cape Kennedy, Fla. Objectives of the mission are rendezvous and docking of the Gemini with the Agena and extravehicular activity by the pilot, Launch of the Agena is scheduled for 10 a.m. (EST) with the Gemini to lift of'f at 11:39:09 a.m. (EST). Command pilot for the three-day'Gemini flight is Astro- naut Thomas P. Stafford, Pilot is Eugene A. Cernan, Backup crew is James A. Lovell, Jr,, command pilot, and =win E. Aldrin, pilot . Stafford was pilot on the Gemini 6 mission which accomp- lished the first space rendezvous. Gemini 9 will be Cernan's first space flight. Lovell was pilot on the 14-day Gemini 7 mission which served as the rendezvous target for Gemini 6, Aldrin has not yet made a space flight. -more- 5/4/66 -2 - Stafford is an Air Force lieutenant colonel, Cernan a Navy lieutenant commander, kvell a Navy captain and Aldrin a major in the Air Force.
    [Show full text]
  • SPACE NUCLEAR THER4. PROPULSION Progrth Conpilation of New Releases, News Clippings, and Journal Articles
    ,SPACE NUCLEAR THER4. PROPULSION PROGRth Conpilation of new releases, news clippings, and journal articles DEPARTMENT OF THE AIR FORCE AIR FORCE CENTER FOR ENVIRONMENTAL EXCELLENCE (AFCEE) BROOKS AIR FORCE BASE, TEXAS 78235-5000 INEL Technical Library (PRR) Attn: Gail Willmore 1776 Science Center Drive Idaho Falls, ID 83415 Dear Ms Willmore Per our telephone conversation on 23 March, 1992, I am enclosing a compilation of news releases, news clippings, and journal articles on the Space Nuclear Thermal Propulsion program. Request you make these available to the general public through your reference desk (along with this letter), and suggest-a-3=74 31- hour--tinte---1-inti-t—on-ch-eekeut so all interested parties have the- opportunity to view-it7 All of this material is in the public domain and may be reproduced. Our intent in making this available is to provide an understanding of the technology and why it is being studied. However, since much of this consists of media articles, we cannot guarantee its accuracy. Decisions yet to be made about this program include whether to proceed with the technology development and if so, where to conduct ground testing. These decisions will be based in part on an Environmental Impact Statement (EIS) that we are preparing. Since two sites at the Idaho National Engineering Laboratory are under consideration, we will be conducting a scoping meeting in Idaho Falls on Thursday, 9 April, 1992. It will be held at the Bonneville High School Auditorium at 7:00 PM. This meeting is open to the general public, and will assist us in determining the scope of environmental issues to be analyzed in the EIS.
    [Show full text]
  • Evolved Expendable Launch Operations at Cape Canaveral, 2002-2009
    EVOLVED EXPENDABLE LAUNCH OPERATIONS AT CAPE CANAVERAL 2002 – 2009 by Mark C. Cleary 45th SPACE WING History Office PREFACE This study addresses ATLAS V and DELTA IV Evolved Expendable Launch Vehicle (EELV) operations at Cape Canaveral, Florida. It features all the EELV missions launched from the Cape through the end of Calendar Year (CY) 2009. In addition, the first chapter provides an overview of the EELV effort in the 1990s, summaries of EELV contracts and requests for facilities at Cape Canaveral, deactivation and/or reconstruction of launch complexes 37 and 41 to support EELV operations, typical EELV flight profiles, and military supervision of EELV space operations. The lion’s share of this work highlights EELV launch campaigns and the outcome of each flight through the end of 2009. To avoid confusion, ATLAS V missions are presented in Chapter II, and DELTA IV missions appear in Chapter III. Furthermore, missions are placed in three categories within each chapter: 1) commercial, 2) civilian agency, and 3) military space operations. All EELV customers employ commercial launch contractors to put their respective payloads into orbit. Consequently, the type of agency sponsoring a payload (the Air Force, NASA, NOAA or a commercial satellite company) determines where its mission summary is placed. Range officials mark all launch times in Greenwich Mean Time, as indicated by a “Z” at various points in the narrative. Unfortunately, the convention creates a one-day discrepancy between the local date reported by the media and the “Z” time’s date whenever the launch occurs late at night, but before midnight. (This proved true for seven of the military ATLAS V and DELTA IV missions presented here.) In any event, competent authorities have reviewed all the material presented in this study, and it is releasable to the general public.
    [Show full text]