Parallel Programming Models

Total Page:16

File Type:pdf, Size:1020Kb

Parallel Programming Models Lecture 3 Parallel Programming Models Dr. Wilson Rivera ICOM 6025: High Performance Computing Electrical and Computer Engineering Department University of Puerto Rico Outline • Goal: Understand parallel programming models – Programming Models – Application Models – Parallel Computing Frameworks • Open-MP • MPI • CUDA • Map-Reduce – Parallel Computing Libraries ICOM 6025: High Performance Computing 2 Parallel Programming Models • A parallel programming model represents an abstraction of the underlying hardware or computer system. – Programming models are not specific to a particular type of memory architecture. – In fact, any programming model can be in theory implemented on any underlying hardware. ICOM 6025: High Performance Computing 3 Programming Language Models • Threads Model • Data Parallel Model • Task Parallel Model • Message Passing Model • Partitioned Global Address Space Model ICOM 6025: High Performance Computing 4 Threads Model • A single process can have multiple, concurrent execution paths – The thread based model requires the programmer to manually manage synchronization, load balancing, and locality, • Deadlocks • Race conditions • Implementations – POSIX Threads • specified by the IEEE POSIX 1003.1c standard (1995) and commonly referred to as Pthreads, • Library-based explicit parallelism model. – OpenMP • Compiler directive-based model that supports parallel programming in C/C++ and FORTRAN. ICOM 6025: High Performance Computing 5 Data Parallel Model • Focus on data partition • Each task performs the same operation on their partition of data. – This model is suitable for problems with static load balancing (e.g. very regular fluid element analysis, image processing). • Implementations – FORTRAN 90 (F90), FORTRAN 95 (F95) – High Performance Fortran (HPF) – MapReduce, CUDA ICOM 6025: High Performance Computing 6 Task Parallel Model • Focus on task execution (workflow) • Each processor executes a different thread or process • Implementations – Threading Building Blocks (TBB) – Task Parallel Library (TPL) – Intel Concurrent Collections (CnC) ICOM 6025: High Performance Computing 7 Message Passing Model • A set of tasks use their own local memory during computation – Tasks exchange data through communications by sending and receiving messages – Data transfer usually requires cooperative operations to be performed by each process. • For example, a send operation must have a matching receive operation. • Implementations – MPI – Erlang ICOM 6025: High Performance Computing 8 Partitioned Global Address Space Model • Multiple threads share at least a part of a global address space – The idea behind this model is to provide the ability to access local and remote data with same mechanisms. • Implementations – Co-Array Fortran – Unified Parallel C (UPC) – Titanium ICOM 6025: High Performance Computing 9 Integrated view of PP Models Data Parallel © Wilson Rivera SIMD Data Task Parallel Parallel Data MIMD Parallel Message Passing Data Parallel SIMD Task Parallel Data Parallel Shared Memory Distributed Memory ICOM 6025: High Performance Computing 10 PP Model Ecosystem © Wilson Rivera Message Erlang MPI Passing Runtime CnC System Higher Abstraction Higher Task TBB TPL Parallel HPF UPC Co-Array MapReduce Data Fortran90 Ct CUDA RapidMind Parallel OpenMP Pthreads Thread ICOM 6025: High Performance Computing 11 Application Models • Bag-of-Tasks – The user simply states a set of unordered computation tasks and allows the system to assign them to processors • Map-Reduce – A map operator is applied to a set of name-value pairs to generate several intermediate sets – Subsequently, a reduce operator is then applied to summarize the intermediates sets into one or more final sets • Bulk-Synchronous-Parallel – Processes run in phases that are separated by a global synchronization step – During each phase, they perform calculations independently, and then communicate new results with their data dependent peers. – The execution time of a step is determined by the most heavily load processor • Directed Acyclic Graph (DAG) – A workflow application can be modeled as a directed acyclic graph A=(V,E) where V is the set of nodes that represent the tasks in an application, and E is the set of edges which represent the dependence between tasks. ICOM 6025: High Performance Computing 12 Application Models Direct Acyclic Graph Less Granularity Less Bulk Synchronous Parallel Map-Reduce Bag of Tasks © Wilson Rivera More Synchronization ICOM 6025: High Performance Computing 13 Application Settings High performance Computing High (Clusters) © Wilson Rivera Application Coupling Cloud Computing Grid Computing Low Low Latency High Motifs Embed SPEC DB Games ML HPC Health Image Speech Music Browser 1 Finite State Mach. 2 Combinational 3 Graph Traversal 4 Structured Grid 5 Dense Matrix 6 Sparse Matrix 7 Spectral (FFT) 8 Dynamic Prog 9 N-Body 10 MapReduce 11 Backtrack/ B&B 12 Graphical Models 13 Unstructured Grid Source: UC Berkeley ICOM 6025: High Performance Computing 15 High Performance Libraries http://www.netlib.org HPC Libraries • Basic Linear Algebra Subroutines (BLAS) • Linear Algebra PACKage (LAPACK) – IBM (ESSL), AMD (ACML), Intel (MKL), Cray (libsci) • Basic Linear Algebra Communication Subroutines (BLACS) • Automatically Tuned Linear Algebra Software (ATLAS) • Parallel Linear Algebra Software for Multicore Architectures (PLASMA) • Matrix Algebra on GPU and Multicore Architectures (MAGMA) Summary • Goal: Understand parallel programming models – Programming Models – Application Models – Parallel Computing Frameworks • Open-MP • MPI • CUDA • Map-Reduce – Parallel Computing Libraries ICOM 6025: High Performance Computing 18.
Recommended publications
  • L22: Parallel Programming Language Features (Chapel and Mapreduce)
    12/1/09 Administrative • Schedule for the rest of the semester - “Midterm Quiz” = long homework - Handed out over the holiday (Tuesday, Dec. 1) L22: Parallel - Return by Dec. 15 - Projects Programming - 1 page status report on Dec. 3 – handin cs4961 pdesc <file, ascii or PDF ok> Language Features - Poster session dry run (to see material) Dec. 8 (Chapel and - Poster details (next slide) MapReduce) • Mailing list: [email protected] December 1, 2009 12/01/09 Poster Details Outline • I am providing: • Global View Languages • Foam core, tape, push pins, easels • Chapel Programming Language • Plan on 2ft by 3ft or so of material (9-12 slides) • Map-Reduce (popularized by Google) • Content: • Reading: Ch. 8 and 9 in textbook - Problem description and why it is important • Sources for today’s lecture - Parallelization challenges - Brad Chamberlain, Cray - Parallel Algorithm - John Gilbert, UCSB - How are two programming models combined? - Performance results (speedup over sequential) 12/01/09 12/01/09 1 12/1/09 Shifting Gears Global View Versus Local View • What are some important features of parallel • P-Independence programming languages (Ch. 9)? - If and only if a program always produces the same output on - Correctness the same input regardless of number or arrangement of processors - Performance - Scalability • Global view - Portability • A language construct that preserves P-independence • Example (today’s lecture) • Local view - Does not preserve P-independent program behavior - Example from previous lecture? And what about ease
    [Show full text]
  • Parallel Programming
    Parallel Programming Libraries and implementations Outline • MPI – distributed memory de-facto standard • Using MPI • OpenMP – shared memory de-facto standard • Using OpenMP • CUDA – GPGPU de-facto standard • Using CUDA • Others • Hybrid programming • Xeon Phi Programming • SHMEM • PGAS MPI Library Distributed, message-passing programming Message-passing concepts Explicit Parallelism • In message-passing all the parallelism is explicit • The program includes specific instructions for each communication • What to send or receive • When to send or receive • Synchronisation • It is up to the developer to design the parallel decomposition and implement it • How will you divide up the problem? • When will you need to communicate between processes? Message Passing Interface (MPI) • MPI is a portable library used for writing parallel programs using the message passing model • You can expect MPI to be available on any HPC platform you use • Based on a number of processes running independently in parallel • HPC resource provides a command to launch multiple processes simultaneously (e.g. mpiexec, aprun) • There are a number of different implementations but all should support the MPI 2 standard • As with different compilers, there will be variations between implementations but all the features specified in the standard should work. • Examples: MPICH2, OpenMPI Point-to-point communications • A message sent by one process and received by another • Both processes are actively involved in the communication – not necessarily at the same time • Wide variety of semantics provided: • Blocking vs. non-blocking • Ready vs. synchronous vs. buffered • Tags, communicators, wild-cards • Built-in and custom data-types • Can be used to implement any communication pattern • Collective operations, if applicable, can be more efficient Collective communications • A communication that involves all processes • “all” within a communicator, i.e.
    [Show full text]
  • Outro to Parallel Computing
    Outro To Parallel Computing John Urbanic Pittsburgh Supercomputing Center Parallel Computing Scientist Purpose of this talk Now that you know how to do some real parallel programming, you may wonder how much you don’t know. With your newly informed perspective we will take a look at the parallel software landscape so that you can see how much of it you are equipped to traverse. How parallel is a code? ⚫ Parallel performance is defined in terms of scalability Strong Scalability Can we get faster for a given problem size? Weak Scalability Can we maintain runtime as we scale up the problem? Weak vs. Strong scaling More Processors Weak Scaling More accurate results More Processors Strong Scaling Faster results (Tornado on way!) Your Scaling Enemy: Amdahl’s Law How many processors can we really use? Let’s say we have a legacy code such that is it only feasible to convert half of the heavily used routines to parallel: Amdahl’s Law If we run this on a parallel machine with five processors: Our code now takes about 60s. We have sped it up by about 40%. Let’s say we use a thousand processors: We have now sped our code by about a factor of two. Is this a big enough win? Amdahl’s Law ⚫ If there is x% of serial component, speedup cannot be better than 100/x. ⚫ If you decompose a problem into many parts, then the parallel time cannot be less than the largest of the parts. ⚫ If the critical path through a computation is T, you cannot complete in less time than T, no matter how many processors you use .
    [Show full text]
  • The Continuing Renaissance in Parallel Programming Languages
    The continuing renaissance in parallel programming languages Simon McIntosh-Smith University of Bristol Microelectronics Research Group [email protected] © Simon McIntosh-Smith 1 Didn’t parallel computing use to be a niche? © Simon McIntosh-Smith 2 When I were a lad… © Simon McIntosh-Smith 3 But now parallelism is mainstream Samsung Exynos 5 Octa: • 4 fast ARM cores and 4 energy efficient ARM cores • Includes OpenCL programmable GPU from Imagination 4 HPC scaling to millions of cores Tianhe-2 at NUDT in China 33.86 PetaFLOPS (33.86x1015), 16,000 nodes Each node has 2 CPUs and 3 Xeon Phis 3.12 million cores, $390M, 17.6 MW, 720m2 © Simon McIntosh-Smith 5 A renaissance in parallel programming Metal C++11 OpenMP OpenCL Erlang Unified Parallel C Fortress XC Go Cilk HMPP CHARM++ CUDA Co-Array Fortran Chapel Linda X10 MPI Pthreads C++ AMP © Simon McIntosh-Smith 6 Groupings of || languages Partitioned Global Address Space GPU languages: (PGAS): • OpenCL • Fortress • CUDA • X10 • HMPP • Chapel • Metal • Co-array Fortran • Unified Parallel C Object oriented: • C++ AMP CSP: XC • CHARM++ Message passing: MPI Multi-threaded: • Cilk Shared memory: OpenMP • Go • C++11 © Simon McIntosh-Smith 7 Emerging GPGPU standards • OpenCL, DirectCompute, C++ AMP, … • Also OpenMP 4.0, OpenACC, CUDA… © Simon McIntosh-Smith 8 Apple's Metal • A "ground up" parallel programming language for GPUs • Designed for compute and graphics • Potential to replace OpenGL compute shaders, OpenCL/GL interop etc. • Close to the "metal" • Low overheads • "Shading" language based
    [Show full text]
  • C Language Extensions for Hybrid CPU/GPU Programming with Starpu
    C Language Extensions for Hybrid CPU/GPU Programming with StarPU Ludovic Courtès arXiv:1304.0878v2 [cs.MS] 10 Apr 2013 RESEARCH REPORT N° 8278 April 2013 Project-Team Runtime ISSN 0249-6399 ISRN INRIA/RR--8278--FR+ENG C Language Extensions for Hybrid CPU/GPU Programming with StarPU Ludovic Courtès Project-Team Runtime Research Report n° 8278 — April 2013 — 22 pages Abstract: Modern platforms used for high-performance computing (HPC) include machines with both general- purpose CPUs, and “accelerators”, often in the form of graphical processing units (GPUs). StarPU is a C library to exploit such platforms. It provides users with ways to define tasks to be executed on CPUs or GPUs, along with the dependencies among them, and by automatically scheduling them over all the available processing units. In doing so, it also relieves programmers from the need to know the underlying architecture details: it adapts to the available CPUs and GPUs, and automatically transfers data between main memory and GPUs as needed. While StarPU’s approach is successful at addressing run-time scheduling issues, being a C library makes for a poor and error-prone programming interface. This paper presents an effort started in 2011 to promote some of the concepts exported by the library as C language constructs, by means of an extension of the GCC compiler suite. Our main contribution is the design and implementation of language extensions that map to StarPU’s task programming paradigm. We argue that the proposed extensions make it easier to get started with StarPU, eliminate errors that can occur when using the C library, and help diagnose possible mistakes.
    [Show full text]
  • Unified Parallel C (UPC)
    Unified Parallel C (UPC) Vivek Sarkar Department of Computer Science Rice University [email protected] COMP 422 Lecture 21 March 27, 2008 Acknowledgments • Supercomputing 2007 tutorial on “Programming using the Partitioned Global Address Space (PGAS) Model” by Tarek El- Ghazawi and Vivek Sarkar —http://sc07.supercomputing.org/schedule/event_detail.php?evid=11029 2 Programming Models Process/Thread Address Space Message Passing Shared Memory DSM/PGAS MPI OpenMP UPC 3 The Partitioned Global Address Space (PGAS) Model • Aka the Distributed Shared Memory (DSM) model • Concurrent threads with a Th Th Th 0 … n-2 n-1 partitioned shared space —Memory partition Mi has affinity to thread Thi • (+)ive: x —Data movement is implicit —Data distribution simplified with M0 … Mn-2 Mn-1 global address space • (-)ive: —Computation distribution and Legend: synchronization still remain programmer’s responsibility Thread/Process Memory Access —Lack of performance transparency of local vs. remote Address Space accesses • UPC, CAF, Titanium, X10, … 4 What is Unified Parallel C (UPC)? • An explicit parallel extension of ISO C • Single global address space • Collection of threads —each thread bound to a processor —each thread has some private data —part of the shared data is co-located with each thread • Set of specs for a parallel C —v1.0 completed February of 2001 —v1.1.1 in October of 2003 —v1.2 in May of 2005 • Compiler implementations by industry and academia 5 UPC Execution Model • A number of threads working independently in a SPMD fashion —MYTHREAD specifies
    [Show full text]
  • IBM XL Unified Parallel C User's Guide
    IBM XL Unified Parallel C for AIX, V11.0 (Technology Preview) IBM XL Unified Parallel C User’s Guide Version 11.0 IBM XL Unified Parallel C for AIX, V11.0 (Technology Preview) IBM XL Unified Parallel C User’s Guide Version 11.0 Note Before using this information and the product it supports, read the information in “Notices” on page 97. © Copyright International Business Machines Corporation 2010. US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp. Contents Chapter 1. Parallel programming and Declarations ..............39 Unified Parallel C...........1 Type qualifiers ............39 Parallel programming ...........1 Declarators .............41 Partitioned global address space programming model 1 Statements and blocks ...........42 Unified Parallel C introduction ........2 Synchronization statements ........42 Iteration statements...........46 Chapter 2. Unified Parallel C Predefined macros and directives .......47 Unified Parallel C directives ........47 programming model .........3 Predefined macros ...........48 Distributed shared memory programming ....3 Data affinity and data distribution .......3 Chapter 5. Unified Parallel C library Memory consistency ............5 functions..............49 Synchronization mechanism .........6 Utility functions .............49 Chapter 3. Using the XL Unified Parallel Program termination ..........49 Dynamic memory allocation ........50 C compiler .............9 Pointer-to-shared manipulation .......56 Compiler options .............9
    [Show full text]
  • Overview of the Global Arrays Parallel Software Development Toolkit: Introduction to Global Address Space Programming Models
    Overview of the Global Arrays Parallel Software Development Toolkit: Introduction to Global Address Space Programming Models P. Saddayappan2, Bruce Palmer1, Manojkumar Krishnan1, Sriram Krishnamoorthy1, Abhinav Vishnu1, Daniel Chavarría1, Patrick Nichols1, Jeff Daily1 1Pacific Northwest National Laboratory 2Ohio State University Outline of the Tutorial ! " Parallel programming models ! " Global Arrays (GA) programming model ! " GA Operations ! " Writing, compiling and running GA programs ! " Basic, intermediate, and advanced calls ! " With C and Fortran examples ! " GA Hands-on session 2 Performance vs. Abstraction and Generality Domain Specific “Holy Grail” Systems GA CAF MPI OpenMP Scalability Autoparallelized C/Fortran90 Generality 3 Parallel Programming Models ! " Single Threaded ! " Data Parallel, e.g. HPF ! " Multiple Processes ! " Partitioned-Local Data Access ! " MPI ! " Uniform-Global-Shared Data Access ! " OpenMP ! " Partitioned-Global-Shared Data Access ! " Co-Array Fortran ! " Uniform-Global-Shared + Partitioned Data Access ! " UPC, Global Arrays, X10 4 High Performance Fortran ! " Single-threaded view of computation ! " Data parallelism and parallel loops ! " User-specified data distributions for arrays ! " Compiler transforms HPF program to SPMD program ! " Communication optimization critical to performance ! " Programmer may not be conscious of communication implications of parallel program HPF$ Independent HPF$ Independent s=s+1 DO I = 1,N DO I = 1,N A(1:100) = B(0:99)+B(2:101) HPF$ Independent HPF$ Independent HPF$ Independent
    [Show full text]
  • Introduction to Parallel Programming Concepts
    Introduction to Parallel Programming Concepts Alan Scheinine, IT Consultant High Performance Computing Center for Computational Technology and Information Technology Services Louisiana State University E-mail: [email protected] Web: http://www.cct.lsu.edu/~scheinin/Parallel/ Contents 1 Introduction 1 2 Terminology 2 2.1 Hardware Architecture Terminology . 2 2.2 HPC Terminology . 3 2.3 Bandwidth and Latency Examples . 4 2.4 Amdahl’s Law . 4 3 Pipelining: From Cray to PC 5 3.1 Hardware Considerations . 5 3.2 An Entire Computer Pipelined . 6 3.3 The ALU Pipelined . 9 3.4 Vectorization Programming Considerations . 13 3.5 NEC, a Modern Vector Computer . 13 4 Instruction Execution Model 14 4.1 SIMD . 14 4.2 SMT . 14 4.3 MIMD and SPMD . 15 5 Hardware Complexity of Conventional CPUs 16 6 The Cost of a Context Switch 17 7 Tera Computer and Multithreading 18 8 Shared Memory and Distributed Memory 18 9 Beowulf Clusters 19 10 GP-GPU and Multithreading 20 11 IBM-Toshiba-Sony Cell Broadband Engine 23 12 ClearSpeed Coprocessor, Massively SIMD 25 13 Large Embarrassingly Parallel Tasks 26 14 OpenMP 27 14.1 Overview of OpenMP . 27 14.2 OpenMP Code Examples . 30 15 Message Passing 32 ii 15.1 Overview . 32 15.2 Examples . 34 15.3 Point-to-Point Communication . 35 15.4 Blocking Send . 35 15.5 Blocking Receive . 35 15.6 Buffered Communication . 36 15.7 Non-blocking Send and Recv . 37 15.8 Summary of Collective Communication . 38 15.9 Domain Decomposition and Ghost Vertices . 39 16 Other Parallel Languages 41 16.1 Unified Parallel C (UPC) .
    [Show full text]
  • Unified Parallel C for GPU Clusters: Language Extensions and Compiler Implementation
    Unified Parallel C for GPU Clusters: Language Extensions and Compiler Implementation Li Chen1, Lei Liu1, Shenglin Tang1, Lei Huang2, Zheng Jing1, Shixiong Xu1, Dingfei Zhang1, Baojiang Shou1 1 Key Laboratory of Computer System and Architecture, Institute of Computing Technology, Chinese Academy of Sciences, China {lchen,liulei2007,tangshenglin,jingzheng,xushixiong, zhangdingfei, shoubaojiang}@ict.ac.cn; 2 Department of Computer Science, University of Houston; Houston, TX, USA [email protected] 5 Abstract. Unified Parallel C (UPC), a parallel extension to ANSI C, is designed for high performance computing on large-scale parallel machines. With General-purpose graphics processing units (GPUs) becoming an increasingly important high performance computing platform, we propose new language extensions to UPC to take advantage of GPU clusters. We extend UPC with hierarchical data distribution, revise the execution model of UPC to mix SPMD with fork-join execution model, and modify the semantics of upc_forall to reflect the data-thread affinity on a thread hierarchy. We implement the compiling system, including affinity-aware loop tiling, GPU code generation, and several memory optimizations targeting NVIDIA CUDA. We also put forward unified data management for each UPC thread to optimize data transfer and memory layout for separate memory modules of CPUs and GPUs. The experimental results show that the UPC extension has better programmability than the mixed MPI/CUDA approach. We also demonstrate that the integrated compile-time and runtime optimization is effective to achieve good performance on GPU clusters. 1 Introduction Following closely behind the industry-wide move from uniprocessor to multi-core and many-core systems, HPC computing platforms are undergoing another major change: from homogeneous to heterogeneous platform.
    [Show full text]
  • The Resurgence of Parallel Programming Languages
    The resurgence of parallel programming languages Jamie Hanlon & Simon McIntosh-Smith University of Bristol Microelectronics Research Group [email protected] © Simon McIntosh-Smith, Jamie Hanlon 1 The Microelectronics Research Group at the University of Bristol www.cs.bris.ac.uk/Research/Micro © Simon McIntosh-Smith, Jamie Hanlon 2 The team Simon McIntosh-Smith Prof David May Prof Dhiraj Pradhan Head of Group Dr Jose Dr Kerstin Eder Dr Simon Hollis Dr Dinesh Nunez-Yanez Pamunuwa 7 tenured staff, 6 research assistants, 16 PhD students © Simon McIntosh-Smith, Jamie Hanlon 3 Group expertise Energy Aware COmputing (EACO): • Multi-core and many-core computer architectures • Inmos, XMOS, ClearSpeed, Pixelfusion, … • Algorithms for heterogeneous architectures (GPUs, OpenCL) • Electronic and Optical Network on Chip (NoC) • Reconfigurable architectures (FPGA) • Design verification (formal and simulation-based), formal specification and analysis • Silicon process variation • Fault tolerant design (hardware and software) • Design methodologies, modelling & simulation of MNT based structures and systems © Simon McIntosh-Smith, Jamie Hanlon 4 Overview • Parallelism in computing • Overview and discussion of two current parallel languages • Chapel (HPC) • OpenCL (desktop/embedded) • Moving forward • Heterogeneous System Architecture • Research into scalable general purpose parallel architectures © Simon McIntosh-Smith, Jamie Hanlon 5 Didn’t parallel computing use to be a niche? © Simon McIntosh-Smith, Jamie Hanlon 6 A long history in HPC… © Simon McIntosh-Smith,
    [Show full text]
  • The State of the Chapel Union
    The State of the Chapel Union Bradford L. Chamberlain, Sung-Eun Choi, Martha Dumler Thomas Hildebrandt, David Iten, Vassily Litvinov, Greg Titus Cray Inc. Seattle, WA 98164 chapel [email protected] Abstract—Chapel is an emerging parallel programming Cray’s entry in the DARPA HPCS program concluded language that originated under the DARPA High Productivity successfully in the fall of 2012, culminating with the launch Computing Systems (HPCS) program. Although the HPCS pro- of the Cray XC30TM system. Even though the HPCS pro- gram is now complete, the Chapel language and project remain very much alive and well. Under the HCPS program, Chapel gram has completed, the Chapel project remains active and generated sufficient interest among HPC user communities to growing. This paper’s goal is to present a snapshot of Chapel warrant continuing its evolution and development over the next as it stands today at the juncture between HPCS and the several years. In this paper, we reflect on the progress that was next phase of Chapel’s development: to review the Chapel made with Chapel under the auspices of the HPCS program, project, describe its status, summarize its successes and noting key decisions made during the project’s history. We also summarize the current state of Chapel for programmers who lessons learned, and sketch out the next few years of the are interested in using it today. And finally, we describe current language’s life cycle. Generally speaking, this paper reports and ongoing work to evolve it from prototype to production- on Chapel as of version 1.7.01, released on April 18th, 2013.
    [Show full text]