Optical Outflows Associated with Herbig Ae/Be Stars

Total Page:16

File Type:pdf, Size:1020Kb

Optical Outflows Associated with Herbig Ae/Be Stars Optical Outflows associated with Herbig Ae/Be Stars by David Corcoran B.Sc. (Hons.) A thesis submitted for the degree of Doctor of Philosophy Supervisors: Prof. T.P. Ray, Prof. D.M. Heffernan. School of Physical Sciences, Dublin City University, Dublin 9, September 1993. DECLARATION I hereby certify that this material, which I now submit for assessment on the programme of study leading to the award of Doctor of Philosophy is entirely my own work and has not been taken from the work of others save and to the extent that such work has been cited and acknowledged within the text of my work. David Corcoran ii C ontents 1 Introduction 1 1.1 Historical Background ............................................................................................. 1 1.2 The Evolution of Intermediate Mass Stars: A Theoretical Perspective . 4 1.2.1 Stellar Evolution of H A E B E S s....................................... 4 1.2.2 Activity in H A E B E S s............................................................................... 7 1.3 Have Her big Ae/Be Stars Circumstellar D isks? ....................................................10 1.4 O utflow s........................................................................................................................ 14 1.4.1 Observational Properties of Optical Outflows: Herbig-Haro ob­ jects and Jets .................................................................... 14 1.4.2 Theoretical Aspects of Optical Outflows...................................................17 1.4.3 Outflows from High Luminosity Sources...................................................22 1.4.4 F o rw a rd ..............................................................................................................26 2 The V3&0 Orion Region 28 2.1 Introduction......................................................................................................................28 iii 2.1.1 NGC 1999 and its s o u r c e ............................................... 29 2.1.2 The Spectral Energy Distribution of V380 Ori ........................................30 2.1.3 The Outflow of V380 Ori ..............................................................................30 2.1.4 Other Outflows near V380 Ori .............................................................. 32 2.2 Observational Details and Data Reduction............................................................34 2.2.1 Direct Im a g in g ........................................................................................... 34 2.2.2 Spectroscopy ............................................................................................... 37 2.3 Results for V380 Ori and nearby outflows............................................................ 40 2.3.1 Large scale HH emission about V380 Ori .................................................. 40 2.3.2 HH emission close to V380 O r i .................................................................... 41 2.3.3 Spectroscopy of HH objects near V380 Ori ...........................................43 2.3.4 The Spectrum of V380 Ori and the Background HII Region .... 46 2.3.5 Other stars in NGC 1999 ........................................................................ 50 2.4 Other Optical Outflows in the Vicinity of V380 O ri............................................51 2.4.1 HH 147 ......................................................................................................... 51 2.4.2 HH 130 and HH 3 6 ..................................................................................... 53 2.5 Discussion................................................................................................................... 55 2.5.1 The Possible Outflow Sources in NGC 1999 ....................................... 55 2.5.2 The Geometry and Orientation of the Outflow from V380 Ori . 56 iv 2.5.3 A Model for the Outflow of V3S0 Ori ......................................................57 2.5.4 The Spectrum of V380 Ori ............................................................. 62 2.5.5 Other Optical Outflows: HH1 4 7 .......................................................... 63 2.5.6 Other Optical Outflows: HH 130 .................................................63 3 Cepheus A 67 3.1 Introduction...................................................................................................................67 3.1.1 Optical and Near-Infrared observations ................................................. 68 3.1.2 Molecular Observations ...............................................................................69 3.2 Observational Details and Data Reduction........................................................... 70 3.2.1 Direct Im a g in g ............................................................................................ 70 3.2.2 Spectroscopy............................................................................................... 71 3.3 Results......................................................................................................................... 72 3.3.1 Imaging ......................................................................................................... 72 3.3.2 Spectral Analysis......................................................................................... 73 3.4 Discussion................................................................................................................... 75 3.4.1 The Bipolar Optical Outflow of Cep A .......................................................75 3.4.2 The Question of Molecular Outflows in Cep A ? 78 3.4.3 HH-NE and HH-NE2...................................................................................... 79 v 4 LkHft 198 and V376 Cas 82 4.1 Introduction....................................................................................................................82 4.1.1 Outflows in the LkHa 198 and V376 Cas Re g io n ....................................83 4.1.2 The Local Environment of LkHa 198 and V376 Cas: Polarisation Studies ..............................................................................................................85 4.1.3 The Local Environment of LkHa 198 and V376 Cas: Photometry . 86 4.2 Observation Details and Data Reduction............................................................... 88 4.2.1 Direct Imaging ................................................................................................ 88 4.2.2 Spectroscopy ....................................................................................................89 4.3 Results.......................................................................................................................... 90 4.3.1 Optical Imaging ......................................................................................... 90 4.3.2 Infrared Imaging ......................................................................................... 92 4.3.3 Spectral Analysis......................................................................................... 92 4.4 Discussion........................................................................................................................96 4.4.1 LkHa 198 and its Companion LkHa 198B ................................................. 96 4.4.2 The Optical Outflow from LkHa 198B .......................................................96 4.4.3 The Origin of the Reflection “Loop” N ebulae ..........................................97 4.4.4 The Optical Outflow from LkHa 198 .......................................................... 98 4.4.5 The Origin of the Molecular Outflow .......................................................... 98 vi 4.4.6 The Polarimetric Data of the LkHa 198 Region:An Explanation . 99 4.4.7 Has LkHa 198 a Far-Infrared h alo ?...........................................................101 4.4.8 V376 Cas and its Surrounding Region .......................... 102 5 Summary and Conclusions 103 5.1 The V380 Ori Region ...............................................................................................103 5.2 Cep A ............................................................................................................................ 106 5.3 LkHa 198 and V376 C as ........................................................................................... 107 5.4 The Question of Poorly collimated Optical Outflows from Intermediate/High Luminosity Sources? ..................................................................................................109 6 Acknowledgements 114 7 References 116 vii A bstract Optical outflows (HH objects and jets) have only recently been found to be associated with high luminosity sources (> 50 L®) such as the Herbig Ae/Be stars. In this thesis, using deep narrow band CCD imaging, the regions about three Herbig Ae/Be stars, V380 Ori, LkHa 198 and V376 Cas, together with one high luminosity embedded infrared source Cepheus A, have been examined in detail. In most cases, these young stellar objects, have been known or have been suspected in the past to be associated with HH objects. However, each of these regions is found to be considerably more complex than previously thought with the detection of at least twenty new HH objects, many of which are examined by spectroscopy. For LkHa 198, a bright HH knot previously thought to be associated with it, is in fact, not related. This object appears to be part of an optical outflow, the source of which is a newly discovered star located 5" to the northeast. A jet is seen
Recommended publications
  • Plasma Physics and Pulsars
    Plasma Physics and Pulsars On the evolution of compact o bjects and plasma physics in weak and strong gravitational and electromagnetic fields by Anouk Ehreiser supervised by Axel Jessner, Maria Massi and Li Kejia as part of an internship at the Max Planck Institute for Radioastronomy, Bonn March 2010 2 This composition was written as part of two internships at the Max Planck Institute for Radioastronomy in April 2009 at the Radiotelescope in Effelsberg and in February/March 2010 at the Institute in Bonn. I am very grateful for the support, expertise and patience of Axel Jessner, Maria Massi and Li Kejia, who supervised my internship and introduced me to the basic concepts and the current research in the field. Contents I. Life-cycle of stars 1. Formation and inner structure 2. Gravitational collapse and supernova 3. Star remnants II. Properties of Compact Objects 1. White Dwarfs 2. Neutron Stars 3. Black Holes 4. Hypothetical Quark Stars 5. Relativistic Effects III. Plasma Physics 1. Essentials 2. Single Particle Motion in a magnetic field 3. Interaction of plasma flows with magnetic fields – the aurora as an example IV. Pulsars 1. The Discovery of Pulsars 2. Basic Features of Pulsar Signals 3. Theoretical models for the Pulsar Magnetosphere and Emission Mechanism 4. Towards a Dynamical Model of Pulsar Electrodynamics References 3 Plasma Physics and Pulsars I. The life-cycle of stars 1. Formation and inner structure Stars are formed in molecular clouds in the interstellar medium, which consist mostly of molecular hydrogen (primordial elements made a few minutes after the beginning of the universe) and dust.
    [Show full text]
  • Lurking in the Shadows: Wide-Separation Gas Giants As Tracers of Planet Formation
    Lurking in the Shadows: Wide-Separation Gas Giants as Tracers of Planet Formation Thesis by Marta Levesque Bryan In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy CALIFORNIA INSTITUTE OF TECHNOLOGY Pasadena, California 2018 Defended May 1, 2018 ii © 2018 Marta Levesque Bryan ORCID: [0000-0002-6076-5967] All rights reserved iii ACKNOWLEDGEMENTS First and foremost I would like to thank Heather Knutson, who I had the great privilege of working with as my thesis advisor. Her encouragement, guidance, and perspective helped me navigate many a challenging problem, and my conversations with her were a consistent source of positivity and learning throughout my time at Caltech. I leave graduate school a better scientist and person for having her as a role model. Heather fostered a wonderfully positive and supportive environment for her students, giving us the space to explore and grow - I could not have asked for a better advisor or research experience. I would also like to thank Konstantin Batygin for enthusiastic and illuminating discussions that always left me more excited to explore the result at hand. Thank you as well to Dimitri Mawet for providing both expertise and contagious optimism for some of my latest direct imaging endeavors. Thank you to the rest of my thesis committee, namely Geoff Blake, Evan Kirby, and Chuck Steidel for their support, helpful conversations, and insightful questions. I am grateful to have had the opportunity to collaborate with Brendan Bowler. His talk at Caltech my second year of graduate school introduced me to an unexpected population of massive wide-separation planetary-mass companions, and lead to a long-running collaboration from which several of my thesis projects were born.
    [Show full text]
  • Pos(MULTIF2017)001
    Multifrequency Astrophysics (A pillar of an interdisciplinary approach for the knowledge of the physics of our Universe) ∗† Franco Giovannelli PoS(MULTIF2017)001 INAF - Istituto di Astrofisica e Planetologia Spaziali, Via del Fosso del Cavaliere, 100, 00133 Roma, Italy E-mail: [email protected] Lola Sabau-Graziati INTA- Dpt. Cargas Utiles y Ciencias del Espacio, C/ra de Ajalvir, Km 4 - E28850 Torrejón de Ardoz, Madrid, Spain E-mail: [email protected] We will discuss the importance of the "Multifrequency Astrophysics" as a pillar of an interdis- ciplinary approach for the knowledge of the physics of our Universe. Indeed, as largely demon- strated in the last decades, only with the multifrequency observations of cosmic sources it is possible to get near the whole behaviour of a source and then to approach the physics governing the phenomena that originate such a behaviour. In spite of this, a multidisciplinary approach in the study of each kind of phenomenon occurring in each kind of cosmic source is even more pow- erful than a simple "astrophysical approach". A clear example of a multidisciplinary approach is that of "The Bridge between the Big Bang and Biology". This bridge can be described by using the competences of astrophysicists, planetary physicists, atmospheric physicists, geophysicists, volcanologists, biophysicists, biochemists, and astrobiophysicists. The unification of such com- petences can provide the intellectual framework that will better enable an understanding of the physics governing the formation and structure of cosmic objects, apparently uncorrelated with one another, that on the contrary constitute the steps necessary for life (e.g. Giovannelli, 2001).
    [Show full text]
  • A Basic Requirement for Studying the Heavens Is Determining Where In
    Abasic requirement for studying the heavens is determining where in the sky things are. To specify sky positions, astronomers have developed several coordinate systems. Each uses a coordinate grid projected on to the celestial sphere, in analogy to the geographic coordinate system used on the surface of the Earth. The coordinate systems differ only in their choice of the fundamental plane, which divides the sky into two equal hemispheres along a great circle (the fundamental plane of the geographic system is the Earth's equator) . Each coordinate system is named for its choice of fundamental plane. The equatorial coordinate system is probably the most widely used celestial coordinate system. It is also the one most closely related to the geographic coordinate system, because they use the same fun­ damental plane and the same poles. The projection of the Earth's equator onto the celestial sphere is called the celestial equator. Similarly, projecting the geographic poles on to the celest ial sphere defines the north and south celestial poles. However, there is an important difference between the equatorial and geographic coordinate systems: the geographic system is fixed to the Earth; it rotates as the Earth does . The equatorial system is fixed to the stars, so it appears to rotate across the sky with the stars, but of course it's really the Earth rotating under the fixed sky. The latitudinal (latitude-like) angle of the equatorial system is called declination (Dec for short) . It measures the angle of an object above or below the celestial equator. The longitud inal angle is called the right ascension (RA for short).
    [Show full text]
  • GRAVITY ASTROPHYSICS a Plan for the 1990S
    ULTRAVIOLET, VISIBLE, and GRAVITY ASTROPHYSICS A Plan for the 1990s (NASA-NP-I52) ULTRAVIOLET, N94-24973 VISI3LE, ANO GRAVITY ASTROPHYSICS: A PLAN FOR THE 1990'S (NASA) 76 p Unclas HI190 0207794 ORIGINAL PAGE COLOR PHOTOGRAPH National Aeronautics and Space Administration I-oreword N ASA'sprioritiesOfficefrom oftheSpaceU.S. NationalScience Academyand Applicationsof Sciences.(OSSA)Guidancereceivesto theadviceOSSAon Astrophysicsscientific strategyDivision,and in particular, is provided by dedicated Academy committees, ad hoc study groups and, at 10-year intervals, by broadly mandated astronomy and astrophysics survey committees charged with making recommen- dations for the coming decade. Many of the Academy's recommendations have important implications for the conduct of ultraviolet and visible-light astronomy from space. Moreover, these areas are now poised for an era of rapid growth. Through technological progress, ultraviolet astronomy has already risen from a novel observational technique four decades ago to the mainstream of astronomical research today. Recent developments in space technology and instrumen- tation have the potential to generate comparably dramatic strides in observational astronomy within the next 10 years. In 1989, the Ultraviolet and Visible Astrophysics Branch of the OSSA Astrophysics Division recognized the need for a new, long-range plan that would implement the Academy's recommendations in a way that yielded the most advantageous use of new technology. NASA's Ultraviolet, Visible, and Gravity Astrophysics Management Operations Working Group was asked to develop such a plan for the 1990s. Since the Branch holds programmatic responsibility for space research in gravitational physics and relativity, as well as for ultraviolet and visible-light astrophysics, missions in those areas were also included.
    [Show full text]
  • A Joint Chandra and Swift View of the 2015 X-Ray Dust Scattering Echo of V404 Cygni S
    Draft version July 20, 2021 Preprint typeset using LATEX style emulateapj v. 5/2/11 A JOINT CHANDRA AND SWIFT VIEW OF THE 2015 X-RAY DUST SCATTERING ECHO OF V404 CYGNI S. Heinz1, L. Corrales2, R. Smith3, W.N. Brandt4,5,6, P.G. Jonker7,8, R.M. Plotkin9,10, and J. Neilsen2,11 Draft version July 20, 2021 Abstract We present a combined analysis of the Chandra and Swift observations of the 2015 X-ray echo of V404 Cygni. Using stacking analysis, we identify eight separate rings in the echo. We reconstruct the soft X-ray lightcurve of the June 2015 outburst using the high-resolution Chandra images and cross-correlations of the radial intensity profiles, indicating that about 70% of the outburst fluence occurred during the bright flare at the end of the outburst on MJD 57199.8. By deconvolving the intensity profiles with the reconstructed outburst lightcurve, we show that the rings correspond to eight separate dust concentrations with precise distance determinations. We further show that the column density of the clouds varies significantly across the field of view, with the centroid of most of the clouds shifted toward the Galactic plane, relative to the position of V404 Cyg, invalidating the assumption of uniform cloud column typically made in attempts to constrain dust properties from light echoes. We present a new XSPEC spectral dust scattering model that calculates the differential dust scattering cross section for a range of commonly used dust distributions and compositions and use it to jointly fit the entire set of Swift echo data.
    [Show full text]
  • GEORGE HERBIG and Early Stellar Evolution
    GEORGE HERBIG and Early Stellar Evolution Bo Reipurth Institute for Astronomy Special Publications No. 1 George Herbig in 1960 —————————————————————– GEORGE HERBIG and Early Stellar Evolution —————————————————————– Bo Reipurth Institute for Astronomy University of Hawaii at Manoa 640 North Aohoku Place Hilo, HI 96720 USA . Dedicated to Hannelore Herbig c 2016 by Bo Reipurth Version 1.0 – April 19, 2016 Cover Image: The HH 24 complex in the Lynds 1630 cloud in Orion was discov- ered by Herbig and Kuhi in 1963. This near-infrared HST image shows several collimated Herbig-Haro jets emanating from an embedded multiple system of T Tauri stars. Courtesy Space Telescope Science Institute. This book can be referenced as follows: Reipurth, B. 2016, http://ifa.hawaii.edu/SP1 i FOREWORD I first learned about George Herbig’s work when I was a teenager. I grew up in Denmark in the 1950s, a time when Europe was healing the wounds after the ravages of the Second World War. Already at the age of 7 I had fallen in love with astronomy, but information was very hard to come by in those days, so I scraped together what I could, mainly relying on the local library. At some point I was introduced to the magazine Sky and Telescope, and soon invested my pocket money in a subscription. Every month I would sit at our dining room table with a dictionary and work my way through the latest issue. In one issue I read about Herbig-Haro objects, and I was completely mesmerized that these objects could be signposts of the formation of stars, and I dreamt about some day being able to contribute to this field of study.
    [Show full text]
  • 3 Star and Planet Formation
    3 Star and planet formation Part I: Star formation Abstract: All galaxies with a significant mass fraction of molecular gas show continuous formation of new stars. To form stars out of molecular clouds the physical properties of the gas have to change dramatically. Star formation is therefore all about: Initiating the collapse (Jeans criterion, demagnetization by ambipolar diffusion, external triggering) Compression of the gas by self-gravity Losing angular momentum (magnetic braking and fragmentation) 3.1 Criteria for gravitational collapse The basic idea to cause a molecular cloud to collapse due to its own gravity is to just make it massive enough, but the details are quite tricky. We look first at the Jeans criterion that gives the order of magnitude mass necessary for gravitational collapse. Then we consider the influence of a magnetic field before we discuss mechanisms for triggering a collapse by external forces. Jeans criterion (Sir James Jeans, 1877–1946): Let us consider the Virial theorem 20EEkin pot It describes the (time-averaged) state of a stable, gravitationally bound (and ergodic) system. Collins (1978) wrote a wonderful book on the Virial theorem including its derivation and applications in astrophysics, which has also been made available online (http://ads.harvard.edu/books/1978vtsa.book/). The Virial theorem applies to a variety of astrophysical objects including self-gravitating gas clouds, stars, planetary systems, stars in galaxies, and clusters of galaxies. Basically it describes the equilibrium situation of a gas for which pressure and gravitational forces are in balance. Depending on the values of kinetic and potential energies the following behavior results: Astrobiology: 3 Star and planet formation S.V.
    [Show full text]
  • EDUCATION 1985 Ph.D., Physics, University of Massachusetts 1983
    Dan Clemens: CV http://people.bu.edu/clemens/cv.htm EDUCATION 1985 Ph.D., Physics, University of Massachusetts 1983 M.S., Astronomy, University of Massachusetts 1980 M.S., Physics, University of Massachusetts 1978 B.S., Physics, University of California at Davis 1978 B.S., Electrical Engineering, University of California at Davis EMPLOYMENT 2002-Present - Professor, Boston University 1999-2003 - Director, Institute for Astrophysical Research, Boston University 1994-2002 - Associate Professor, Boston University 1988-1994 - Assistant Professor, Boston University 1987-1988 - Adjunct Assistant Professor, University of Arizona 1985-1987 - Bart J. Bok Fellow, University of Arizona 1978-1984 - Research Assistant, University of Massachusetts RESEARCH AREAS Molecular Clouds, Star Formation, Galactic Structure Polarimetry, Instrumentation SOCIETIES/AWARDS Metcalf Award for Excellence in Teaching (Boston University, 2000) American Astronomical Society International Astronomical Union Bart J. Bok Fellowship (1985-1987) Tau Beta Pi (1978) PROFESSIONAL ACTIVITIES: (click this link to view list) STUDENTS and POSTDOCS MENTORED (click this link to view list) COURSES TAUGHT University of Arizona AST 100 - Introductory Astronomy (F87; S88) 1 of 2 1/15/2013 5:10 PM Dan Clemens: CV http://people.bu.edu/clemens/cv.htm Boston University CLA/CAS AS102 - The Astronomical Universe (F89; F90; S92; F92; F94; F99; F00; F03; F04; F10) CLA/CAS AS312 - Stellar and Galactic Astrophysics (S89; S90; S92; S94; S96; S97; S98; S99; S03) CLA/CAS AS401,2 - Senior Distinction
    [Show full text]
  • ISO Observations of Starless Bok Globules: Usually No Embedded Stars
    ISO Observations of Starless Bok Globules: Usually No Embedded Stars D. Clemens and A. Byrne Astronomy Department, Boston University J. Yun Universidade de Lisboa B. Kane Phillips Laboratory Abstract. We have used ISOCAM to search the cores of a sample of small Bok globules previously classified to be mostly starless based on analysis of IRAS data. The ISO observations at 6.75#m (LW2 filter) and 14.5tim (LW3 filter) were sufficiently deep to enable detection of any low- mass hydrogen burning star or young stellar object (YSO) embedded in these globules. Of the 20 Bok globules observed by ISOCAM to date, we have reduced the data for 14. Of these, 13 show no evidence for faint red (S_(LW3) > S_(LW2)) stars missed by IRAS. One (CB68) does show the first mid-infrared detection of the very cool IRAS source toward this cloud, and may be a Class I or 0 YSO. We conclude, based on these new ISO observations, that Bok globules which have no IRAS sources are in general bona fide starless molecular clouds. 1. Introduction "Starless" Bok globules are interesting because they hold the potential for serv- ing as laboratories for investigations of the physical conditions present in molec- ular clouds preceding new star formation, and may reveal important clues con- cerning the relevant physics involved in initiating cloud core gravitational con- traction or collapse. Unknown, however, is whether these small molecular clouds are truly free of embedded low-mass stars, which could inject energy and turbu- lence into the clouds. IRAS data were incapable of being used to definitively state whether ap- parently starless globules were fully free of embedded stars.
    [Show full text]
  • Star Formation in Bok Globules Ba Reipurth, Copenhagen University Observatory
    mestic, wh ich can be the source of infection of the domestic or wild vinchucas. Does any medica/ treatment exist tor the Chagas disease? Yes. At present two types of drugs exist, Nifurtimox and Bensonidazol, both of proven efficiency. What is the situation at La Silla? In this area the wild species Triatoma spino/ai exists which, being attracted by the odor of humans, may bite them, especially during sleep. The risk of infection for people is low, because only a very small percentage of infected vinchucas (6.5 %) have been found, and moreover it is necessary that they defecate at the moment of biting. What precautions can be taken? Use of protective screens against insects in the windows of the dormitories. The ESO Administration is putting into practice aseries of One of the vinchucas that were sent to Europe for a test some years technical measures to control the vinchuca problem. In case a ago. Photographed by Or. G. Schaub of the Zoologicallnstitute of the person is bitten, the appropriate blood test will be arranged. So Freiburg University (FRG). far these tests have always had a negative result. Star Formation in Bok Globules Ba Reipurth, Copenhagen University Observatory Introduction Among the many dark clouds seen projected against the clouds, in wh ich thousands of stars can form. Although luminous band of the Milky Way are a number of smalI, isolated globules thus are no langer necessary to understand the bulk of compact clouds, wh ich often exhibit a large degree of regular­ star formation in our galaxy, it is no less likely that a globule can ity.
    [Show full text]
  • Imaging Polarimetry of the Bok Globule CB56
    Bull. Astr. Soc. India (2012) 40, in press Imaging polarimetry of the Bok globule CB56 D. Paul1, H. S. Das1∗ and A. K. Sen1 1Department of Physics, Assam university, Silchar 788 011, India Received 2012 April 01; accepted 2012 June 06 Abstract. The measurement of polarization of the background stars in the region of Bok globules is important to study the magnetic field geometry and dust grain characteristics in the globule. These parameters are important for the formation and evolution of dark clouds. We made polarimetric observations of Bok globule CB56 in the R-filter from the 2-metre telescope at IUCAA Girawali Observatory (IGO). The observations were carried out on 2011 March 4th and 5th. The CCD images obtained from the instrument (IFOSC) were analyzed, to produce the polarization map of the Bok globule CB56. Keywords : stars: formation – ISM: clouds – ISM: dust, extinction – polarization 1. Introduction Bok globules are the most simple molecular clouds in our Milky Way Galaxy, which are ideal sites for low-mass star formation (Bok & Reilly 1947). These are small, opaque, and relatively isolated molecular clouds with diameters of about 0.7 pc (0.1 – 2 pc) and masses of ≈ 10 M⊙ (2 – 100 M⊙) (Bok 1977, and Leung 1985). Several catalogues of globules and dark clouds were published during the past years (e.g. Barnard 1927; Bok 1956; Lynds 1962; Sandquist & Lindroos 1976; Feitzinger & Stuewe 1984; Hartly et al. 1986; Clemens & Barvainis 1988; Persi et al. 1990). The most homogeneous and complete compilation of dark clouds has been done by Clemens & Barvainis (1988) (henceforth CB catalogue).
    [Show full text]