Current Status of Neutrino Anomalies
Total Page:16
File Type:pdf, Size:1020Kb
Current Status of Neutrino Anomalies Srubabati Goswami Physical Research Laboratory, Ahmedabad, India Anomalies 2020 !1 Is it a monument, a madrasa or a market square? Charminar holds many mysteries within its fold https://www.thehindu.com/society/history-and-culture/the-very-many-mysteries-of-hyderabads-charminar/ article24311906.ece !2 Neutrino: many questions ❖ What Unknown oscillation parameters - hierarchy, octant of 2-3 mixing angle and CP phase ❖ Absolute neutrino masses — beta decay, cosmology ❖ Nature of neutrinos - Dirac or Majorana — neutrino less double beta decay ❖ Are there more than three flavours — sterile neutrinos ❖ Origin of neutrino masses and mixing — seesaw , flavour symmetry — physics beyond Standard Model !3 Neutrino Connections Baryogenesis via Collider leptogenesis Physics Dark Matter Higgs/Vacuum Cosmology stability Neutrinos Astrophysics/ CLFV Multimessenger Nucl. Physics/ interactions !4 Plan of talk New physics Neutrino Neutrinoless Ultra high In neutrino Oscillation double Energy neutrinos Parameters oscillation beta decay NSI Sterile Nus !5 Neutrino Oscillations Solar Atmospheric Reactor Accelerator !6 New result from Borexino !7 First detection of CNO neutrinos R(CNO) = 7.2 +2.9 -1.7 cpd/100ton Null hypothesis(CNO=0) rejected at 5.1 sigma. G. Ranucci , Neutrino 2020 !8 Three Neutrino Paradigm ❖ Measurement of non-zero in reactor experiments three neutrino picture !9 NOvA Results Joint analysis of disappearance and Appearance data in both neutrino and antineutrino channel ❖ P Preference for Neutrino 2020 !10 <latexit sha1_base64="YNe9BjUx7lO0i+8BBVI+kwZ9Qko=">AAAB7XicbVBNSwMxEJ2tX7V+tOrRS7AIXqy7paDeil48VrAf0C4lm2bb2GyyJFmhLP0PXjwo4tX/481/Y9ruQVsfDDzem2FmXhBzpo3rfju5tfWNza38dmFnd2+/WDo4bGmZKEKbRHKpOgHWlDNBm4YZTjuxojgKOG0H49uZ336iSjMpHswkpn6Eh4KFjGBjpdZ5L2YX1X6p7FbcOdAq8TJShgyNfumrN5AkiagwhGOtu54bGz/FyjDC6bTQSzSNMRnjIe1aKnBEtZ/Or52iU6sMUCiVLWHQXP09keJI60kU2M4Im5Fe9mbif143MeGVnzIRJ4YKslgUJhwZiWavowFTlBg+sQQTxeytiIywwsTYgAo2BG/55VXSqla8WuX6vlau32Rx5OEYTuAMPLiEOtxBA5pA4BGe4RXeHOm8OO/Ox6I152QzR/AHzucPnRyOhQ==</latexit> T2K Results Appearance channel Preference for NH CP phase close to ⇡/2 CP conserving values disfavoured− L. Muntaneu, Neutrino 2020 !11 Current Status ❖ Best-fit in second octant ❖ Preference for NO ❖ disfavoured at more than irrespective of mass ordering ❖ Oscillation experiments not sensitive to Majorana phases !12 Degeneracy problem ❖ The main problem in determination of hierarchy, octant and in LBL experiments is due to presence of degeneracies ❖ Degeneracy different set of parameters giving the same probability equally good fit to the data ❖ !13 Ongoing and planned experiments ORCA Daya-bay JUNO Dune T2K* SK* NOvA* T2HK HK INO Beam Reactor Atmospheric PINGU !14 Future Goals ❖ Determination of hierarchy, octant and CP phase ❖ Probing new physics in oscillation experiments ❖ Testing models of flavour symmetry ❖ Synergy between different experiments !15 Mass hierarchy and CP with DUNE Hierarchy sensitivity due Matter effects help in removing to enhanced matter effects wrong hierarchy-wrong CP solutions From: R. Patterson’s slides !16 Hierarchy: Juno+IceCube upgrade 8 core JUNO + IceCube upgrade/PINGU / (better efficiency for lower energy neutrinos) 5<latexit sha1_base64="WWseafwUHEZgzwBdIiAoiyqhv3M=">AAAB73icbVBNSwMxEJ2tX7V+VT16CRbBU9nVFj0WvXisYD+gXUo2zbahSXZNskJZ+ie8eFDEq3/Hm//GbLsHbX0w8Hhvhpl5QcyZNq777RTW1jc2t4rbpZ3dvf2D8uFRW0eJIrRFIh6pboA15UzSlmGG026sKBYBp51gcpv5nSeqNIvkg5nG1Bd4JFnICDZW6tb7mo0ELg3KFbfqzoFWiZeTCuRoDspf/WFEEkGlIRxr3fPc2PgpVoYRTmelfqJpjMkEj2jPUokF1X46v3eGzqwyRGGkbEmD5urviRQLracisJ0Cm7Fe9jLxP6+XmPDaT5mME0MlWSwKE45MhLLn0ZApSgyfWoKJYvZWRMZYYWJsRFkI3vLLq6R9UfUuq/X7WqVxk8dRhBM4hXPw4AoacAdNaAEBDs/wCm/Oo/PivDsfi9aCk88cwx84nz9L7I99</latexit> σ sensitivity in 4(6) years NO (IO) IceCube : earth matter effect of atmospheric neutrinos Synergy JUNO: interference effect in vacuum oscillation <latexit sha1_base64="hvoHiL5R/EOWhKvJ1YWzZXB1/eg=">AAAB6XicbVDLSgNBEOyNrxhfUY9eBoPgKez6QI9BLx6jmAckS5idzCZDZmeXmV4hLPkDLx4U8eofefNvnCR70MSChqKqm+6uIJHCoOt+O4WV1bX1jeJmaWt7Z3evvH/QNHGqGW+wWMa6HVDDpVC8gQIlbyea0yiQvBWMbqd+64lrI2L1iOOE+xEdKBEKRtFKD91Jr1xxq+4MZJl4OalAjnqv/NXtxyyNuEImqTEdz03Qz6hGwSSflLqp4QllIzrgHUsVjbjxs9mlE3JilT4JY21LIZmpvycyGhkzjgLbGVEcmkVvKv7ndVIMr/1MqCRFrth8UZhKgjGZvk36QnOGcmwJZVrYWwkbUk0Z2nBKNgRv8eVl0jyreufVy/uLSu0mj6MIR3AMp+DBFdTgDurQAAYhPMMrvDkj58V5dz7mrQUnnzmEP3A+fwCg0I1u</latexit> hep-ex} 1911.06745 !17 New Physics ❖ Sterile Neutrinos Two appoaches ❖ Non-standard Interactions (NSI) ❖ Non-unitary mixing ❖ CPT and Lorentz symmetry violation Impact on the standard Constraining new ❖ Long range forces Three neutrino picture physics parameters ❖ Neutrino decay !18 Non-standard interactions !19 Non-standard interactions Standard-NC interaction Non-Standard NC interaction !20 NSI and mass hierarchy Fit to T2K and NOvA data assuming NSI IO prefers non-zero NSI IO no longer disfavoured Capozzi, Chatterjee, Palazzo 1908.06992 !21 Degeneracies due to diagonal NSI ❖ New degeneracies with NSI ❖ Coloma, Schwetz, PRD 2016 In matter potential K.N. Deepthi, S.Goswami, N. Nath, PRD 2016 Spoils the hierarchy sensitivity of Dune !22 NSI and CP sensitivity Mehta, Masood, 1603.01380 NSI can spoil CP sensitivity !23 Dark-LMA solution ❖ Degenerate solution to the solar neutrinos problem ❖ 2 o sin<latexit sha1_base64="EnZeoJ7ILbb1GK81eZCTuIIAY50=">AAACAXicbVDLSgNBEJyNrxhfq14EL4NB8BR2Y4KeJOjFYwTzgOwmzE4myZDZ2WWmVwhLvPgrXjwo4tW/8ObfOHkcNLGgoajqprsriAXX4DjfVmZldW19I7uZ29re2d2z9w/qOkoUZTUaiUg1A6KZ4JLVgINgzVgxEgaCNYLhzcRvPDCleSTvYRQzPyR9yXucEjBSxz7yNJftogcDBqSTusUxvsKlcjvq2Hmn4EyBl4k7J3k0R7Vjf3ndiCYhk0AF0brlOjH4KVHAqWDjnJdoFhM6JH3WMlSSkGk/nX4wxqdG6eJepExJwFP190RKQq1HYWA6QwIDvehNxP+8VgK9Sz/lMk6ASTpb1EsEhghP4sBdrhgFMTKEUMXNrZgOiCIUTGg5E4K7+PIyqRcL7nmhfFfKV67ncWTRMTpBZ8hFF6iCblEV1RBFj+gZvaI368l6sd6tj1lrxprPHKI/sD5/AKTblbg=</latexit> ✓ 12 > 45 Miranda, Tortola, Valle ,JHEP. 10 (2006) 008. !24 COHERENT constraints Nucleus recoils as a whole Coherent upto 50 MeV ❖ Highly constrained by COHERENT using energy spectrum information Coloma, Esteban,Gonzalez-Garcia, Maltoni 1911.09109 !25 Neutrinoless double beta decay ❖ Standard picture mediated 0<latexit sha1_base64="dsoZ9MQG/Iqc6tMM/Q62LR3ISAE=">AAAB+HicbVDLSsNAFL3xWeujUZduBovgqiQ+0GXRjcsK9gFNKJPppB06mYSZiVBDv8SNC0Xc+inu/BsnaRbaeuBeDufcy9w5QcKZ0o7zba2srq1vbFa2qts7u3s1e/+go+JUEtomMY9lL8CKciZoWzPNaS+RFEcBp91gcpv73UcqFYvFg54m1I/wSLCQEayNNLBrjidSL6AaF606sOtOwymAlolbkjqUaA3sL28YkzSiQhOOleq7TqL9DEvNCKezqpcqmmAywSPaN1TgiCo/Kw6foROjDFEYS1NCo0L9vZHhSKlpFJjJCOuxWvRy8T+vn+rw2s+YSFJNBZk/FKYc6RjlKaAhk5RoPjUEE8nMrYiMscREm6zyENzFLy+TzlnDPW9c3l/UmzdlHBU4gmM4BReuoAl30II2EEjhGV7hzXqyXqx362M+umKVO4fwB9bnDwo0krE=</latexit> ⌫β by light neutrinos ❖ G contains the phase space factor M<latexit sha1_base64="P8rlATgstvISNqWOzm/6YrXHzN4=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRbBU9nVih6LXrwIFeyHtEvJptk2NMkuSVYoS3+FFw+KePXnePPfmG33oK0PBh7vzTAzL4g508Z1v53Cyura+kZxs7S1vbO7V94/aOkoUYQ2ScQj1QmwppxJ2jTMcNqJFcUi4LQdjG8yv/1ElWaRfDCTmPoCDyULGcHGSo/p3bTfkwkq9csVt+rOgJaJl5MK5Gj0y1+9QUQSQaUhHGvd9dzY+ClWhhFOp6VeommMyRgPaddSiQXVfjo7eIpOrDJAYaRsSYNm6u+JFAutJyKwnQKbkV70MvE/r5uY8MpPmYwTQyWZLwoTjkyEsu/RgClKDJ9Ygoli9lZERlhhYmxGWQje4svLpHVW9c6rF/e1Sv06j6MIR3AMp+DBJdThFhrQBAICnuEV3hzlvDjvzse8teDkM4fwB87nDwiDj+g=</latexit> ⌫ is the nuclear matrix elements !26 Current and future sensitivity Current Sensitivity KamLAND-ZEN : 61-165 meV EXO 200 : 93-286 meV GERDA : 110-260 meV CUORE : 110-520 meV Future sensitivity 0.008 - 0.3 eV : IH can be confirmed 0.003 - .008 eV : 1-10 ton detector 0.001 - .003 eV : 10-100 ton detector ultimate sensitivity Barabash, 1901.11342 !27 NSI and Neutrinoless double beta decay ❖ New predictions in presence of NSI for NH ❖ Within reach of 10 kt detectors ❖ New sensitivity goal ❖ For NH degeneracy between LMA and DLMA can be broken for lower values of lightest neutrino mass ❖ Model independent Vishnudath, Choubey, Goswami, Phys, Rev. D. (2019) !28 Are there more than 3 neutrinos ? Extra sterile neutrino ? Light or heavy or both ? !29 Sterile Neutrinos : indications LSND Ga Anomaly Lavedar et al 2017 SAGE PRC 2007 LSND PRL 1995, GALLEX PRC 2007 PRD 2001 Mueller et al PRC 2011 Huber PRC 2011 Mention et al PRD 2011 Reactor Anomaly !30 Very short baseline reactor experiments ❖ B L<latexit sha1_base64="VBv8G0FEYbbSCi88bKw/KVe2XsE=">AAAB9XicbVC5TgMxEJ3lDOEKUNJYREg0RLshHGUEDQVFkMghJUvkdbyJFdu7sr2gaBW+g4YChGj5Fzr+BucoIOFJIz29N6OZeUHMmTau++0sLC4tr6xm1rLrG5tb27md3ZqOEkVolUQ8Uo0Aa8qZpFXDDKeNWFEsAk7rQf9q5NcfqNIskndmEFNf4K5kISPYWOn+BrU0E+jsuFh6QqKdy7sFdww0T7wpycMUlXbuq9WJSCKoNIRjrZueGxs/xcowwukw20o0jTHp4y5tWiqxoNpPx1cP0aFVOiiMlC1p0Fj9PZFiofVABLZTYNPTs95I/M9rJia88FMm48RQSSaLwoQjE6FRBKjDFCWGDyzBRDF7KyI9rDAxNqisDcGbfXme1IoF76RwelvKly+ncWRgHw7gCDw4hzJcQwWqQEDBM7zCm/PovDjvzsekdcGZzuzBHzifP0VFkRI=</latexit> 6 24 m ⇠ − !31 NEOS and DANSS Neos Collaboration PRL 2016 Danss collaboration, PLB 2018 Comparison of measured spectra at different baselines Insensitive to flux calculation uncertainty !32 Bounds from reactor searches Dentler et al. JHEP 2018 Blue shaded regions allowed by fitting all reactor data with free fluxes ∆m2 DANSS 2019 results give a lower <latexit sha1_base64="CPsfgjCCu1Qq20Zhwqf5pj0NEVs=">AAAB+XicbVBNS8NAEJ3Ur1q/oh69LBbBU0lqRY9FPXisYD+gjWGz3bRLd5OwuymU0H/ixYMiXv0n3vw3btsctPXBwOO9GWbmBQlnSjvOt1VYW9/Y3Cpul3Z29/YP7MOjlopTSWiTxDyWnQAryllEm5ppTjuJpFgEnLaD0e3Mb4+pVCyOHvUkoZ7Ag4iFjGBtJN+2e3eUa4zEU9XPau4U+XbZqThzoFXi5qQMORq+/dXrxyQVNNKEY6W6rpNoL8NSM8LptNRLFU0wGeEB7RoaYUGVl80vn6Izo/RRGEtTkUZz9fdEhoVSExGYToH1UC17M/E/r5vq8NrLWJSkmkZksShMOdIxmsWA+kxSovnEEEwkM7ciMsQSE23CKpkQ3OWXV0mrWnEvKpcPtXL9Jo+jCCdwCufgwhXU4R4a0AQCY3iGV3izMuvFerc+Fq0FK585hj+wPn8A8kySkQ==</latexit>