Arxiv:2008.11851V1 [Hep-Ph] 26 Aug 2020
FTPI-MINN-20-28 Constraints on Decaying Sterile Neutrinos from Solar Antineutrinos 1, 2, 3, 1, 2 Matheus Hostert ∗ and Maxim Pospelov 1School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455, USA 2William I. Fine Theoretical Physics Institute, School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455, USA 3Perimeter Institute for Theoretical Physics, Waterloo, ON N2J 2W9, Canada (Dated: September 9, 2021) Solar neutrino experiments are highly sensitive to sources of ν ν conversions in the 8B neutrino flux. In this work we adapt these searches to non-minimal sterile! neutrino models recently proposed to explain the LSND, MiniBooNE, and reactor anomalies. The production of such sterile neutrinos in the Sun, followed the decay chain ν4 ν' ννν with a new scalar ' results in upper limits 2 ! ! for the neutrino mixing Ue4 at the per mille level. We conclude that a simultaneous explanations of all anomalies is in tensionj j with KamLAND, Super-Kamiokande, and Borexino constraints on the flux of solar antineutrinos. We then present other minimal models that violate parity or lepton number, and discuss the applicability of our constraints in each case. Future improvements can be expected from existing Borexino data as well as from future searches at Super-Kamiokande with added Gd. I. INTRODUCTION The flux of antineutrinos from the Sun at the MeV energies is negligible [18], which remains an excellent ap- Beyond neutrino mixing, the study of solar neutrinos proximation down to tens of keV in energy [19]. Com- provides important input to the standard solar Model bined with the fact that the detection cross section for (SSM) [1,2] and has been used to search for several phe- νe is much larger and easier to measure compared to nomena beyond the SM of particle physics.
[Show full text]