Euclid's Algorithm
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
On Fixed Points of Iterations Between the Order of Appearance and the Euler Totient Function
mathematics Article On Fixed Points of Iterations Between the Order of Appearance and the Euler Totient Function ŠtˇepánHubálovský 1,* and Eva Trojovská 2 1 Department of Applied Cybernetics, Faculty of Science, University of Hradec Králové, 50003 Hradec Králové, Czech Republic 2 Department of Mathematics, Faculty of Science, University of Hradec Králové, 50003 Hradec Králové, Czech Republic; [email protected] * Correspondence: [email protected] or [email protected]; Tel.: +420-49-333-2704 Received: 3 October 2020; Accepted: 14 October 2020; Published: 16 October 2020 Abstract: Let Fn be the nth Fibonacci number. The order of appearance z(n) of a natural number n is defined as the smallest positive integer k such that Fk ≡ 0 (mod n). In this paper, we shall find all positive solutions of the Diophantine equation z(j(n)) = n, where j is the Euler totient function. Keywords: Fibonacci numbers; order of appearance; Euler totient function; fixed points; Diophantine equations MSC: 11B39; 11DXX 1. Introduction Let (Fn)n≥0 be the sequence of Fibonacci numbers which is defined by 2nd order recurrence Fn+2 = Fn+1 + Fn, with initial conditions Fi = i, for i 2 f0, 1g. These numbers (together with the sequence of prime numbers) form a very important sequence in mathematics (mainly because its unexpectedly and often appearance in many branches of mathematics as well as in another disciplines). We refer the reader to [1–3] and their very extensive bibliography. We recall that an arithmetic function is any function f : Z>0 ! C (i.e., a complex-valued function which is defined for all positive integer). -
Lecture 3: Chinese Remainder Theorem 25/07/08 to Further
Department of Mathematics MATHS 714 Number Theory: Lecture 3: Chinese Remainder Theorem 25/07/08 To further reduce the amount of computations in solving congruences it is important to realise that if m = m1m2 ...ms where the mi are pairwise coprime, then a ≡ b (mod m) if and only if a ≡ b (mod mi) for every i, 1 ≤ i ≤ s. This leads to the question of simultaneous solution of a system of congruences. Theorem 1 (Chinese Remainder Theorem). Let m1,m2,...,ms be pairwise coprime integers ≥ 2, and b1, b2,...,bs arbitrary integers. Then, the s congruences x ≡ bi (mod mi) have a simultaneous solution that is unique modulo m = m1m2 ...ms. Proof. Let ni = m/mi; note that (mi, ni) = 1. Every ni has an inversen ¯i mod mi (lecture 2). We show that x0 = P1≤j≤s nj n¯j bj is a solution of our system of s congruences. Since mi divides each nj except for ni, we have x0 = P1≤j≤s njn¯j bj ≡ nin¯ibj (mod mi) ≡ bi (mod mi). Uniqueness: If x is any solution of the system, then x − x0 ≡ 0 (mod mi) for all i. This implies that m|(x − x0) i.e. x ≡ x0 (mod m). Exercise 1. Find all solutions of the system 4x ≡ 2 (mod 6), 3x ≡ 5 (mod 7), 2x ≡ 4 (mod 11). Exercise 2. Using the Chinese Remainder Theorem (CRT), solve 3x ≡ 11 (mod 2275). Systems of linear congruences in one variable can often be solved efficiently by combining inspection (I) and Euclid’s algorithm (EA) with the Chinese Remainder Theorem (CRT). -
Sequences of Primes Obtained by the Method of Concatenation
SEQUENCES OF PRIMES OBTAINED BY THE METHOD OF CONCATENATION (COLLECTED PAPERS) Copyright 2016 by Marius Coman Education Publishing 1313 Chesapeake Avenue Columbus, Ohio 43212 USA Tel. (614) 485-0721 Peer-Reviewers: Dr. A. A. Salama, Faculty of Science, Port Said University, Egypt. Said Broumi, Univ. of Hassan II Mohammedia, Casablanca, Morocco. Pabitra Kumar Maji, Math Department, K. N. University, WB, India. S. A. Albolwi, King Abdulaziz Univ., Jeddah, Saudi Arabia. Mohamed Eisa, Dept. of Computer Science, Port Said Univ., Egypt. EAN: 9781599734668 ISBN: 978-1-59973-466-8 1 INTRODUCTION The definition of “concatenation” in mathematics is, according to Wikipedia, “the joining of two numbers by their numerals. That is, the concatenation of 69 and 420 is 69420”. Though the method of concatenation is widely considered as a part of so called “recreational mathematics”, in fact this method can often lead to very “serious” results, and even more than that, to really amazing results. This is the purpose of this book: to show that this method, unfairly neglected, can be a powerful tool in number theory. In particular, as revealed by the title, I used the method of concatenation in this book to obtain possible infinite sequences of primes. Part One of this book, “Primes in Smarandache concatenated sequences and Smarandache-Coman sequences”, contains 12 papers on various sequences of primes that are distinguished among the terms of the well known Smarandache concatenated sequences (as, for instance, the prime terms in Smarandache concatenated odd -
Survey of Modern Mathematical Topics Inspired by History of Mathematics
Survey of Modern Mathematical Topics inspired by History of Mathematics Paul L. Bailey Department of Mathematics, Southern Arkansas University E-mail address: [email protected] Date: January 21, 2009 i Contents Preface vii Chapter I. Bases 1 1. Introduction 1 2. Integer Expansion Algorithm 2 3. Radix Expansion Algorithm 3 4. Rational Expansion Property 4 5. Regular Numbers 5 6. Problems 6 Chapter II. Constructibility 7 1. Construction with Straight-Edge and Compass 7 2. Construction of Points in a Plane 7 3. Standard Constructions 8 4. Transference of Distance 9 5. The Three Greek Problems 9 6. Construction of Squares 9 7. Construction of Angles 10 8. Construction of Points in Space 10 9. Construction of Real Numbers 11 10. Hippocrates Quadrature of the Lune 14 11. Construction of Regular Polygons 16 12. Problems 18 Chapter III. The Golden Section 19 1. The Golden Section 19 2. Recreational Appearances of the Golden Ratio 20 3. Construction of the Golden Section 21 4. The Golden Rectangle 21 5. The Golden Triangle 22 6. Construction of a Regular Pentagon 23 7. The Golden Pentagram 24 8. Incommensurability 25 9. Regular Solids 26 10. Construction of the Regular Solids 27 11. Problems 29 Chapter IV. The Euclidean Algorithm 31 1. Induction and the Well-Ordering Principle 31 2. Division Algorithm 32 iii iv CONTENTS 3. Euclidean Algorithm 33 4. Fundamental Theorem of Arithmetic 35 5. Infinitude of Primes 36 6. Problems 36 Chapter V. Archimedes on Circles and Spheres 37 1. Precursors of Archimedes 37 2. Results from Euclid 38 3. Measurement of a Circle 39 4. -
Math 3010 § 1. Treibergs First Midterm Exam Name
Math 3010 x 1. First Midterm Exam Name: Solutions Treibergs February 7, 2018 1. For each location, fill in the corresponding map letter. For each mathematician, fill in their principal location by number, and dates and mathematical contribution by letter. Mathematician Location Dates Contribution Archimedes 5 e β Euclid 1 d δ Plato 2 c ζ Pythagoras 3 b γ Thales 4 a α Locations Dates Contributions 1. Alexandria E a. 624{547 bc α. Advocated the deductive method. First man to have a theorem attributed to him. 2. Athens D b. 580{497 bc β. Discovered theorems using mechanical intuition for which he later provided rigorous proofs. 3. Croton A c. 427{346 bc γ. Explained musical harmony in terms of whole number ratios. Found that some lengths are irrational. 4. Miletus D d. 330{270 bc δ. His books set the standard for mathematical rigor until the 19th century. 5. Syracuse B e. 287{212 bc ζ. Theorems require sound definitions and proofs. The line and the circle are the purest elements of geometry. 1 2. Use the Euclidean algorithm to find the greatest common divisor of 168 and 198. Find two integers x and y so that gcd(198; 168) = 198x + 168y: Give another example of a Diophantine equation. What property does it have to be called Diophantine? (Saying that it was invented by Diophantus gets zero points!) 198 = 1 · 168 + 30 168 = 5 · 30 + 18 30 = 1 · 18 + 12 18 = 1 · 12 + 6 12 = 3 · 6 + 0 So gcd(198; 168) = 6. 6 = 18 − 12 = 18 − (30 − 18) = 2 · 18 − 30 = 2 · (168 − 5 · 30) − 30 = 2 · 168 − 11 · 30 = 2 · 168 − 11 · (198 − 168) = 13 · 168 − 11 · 198 Thus x = −11 and y = 13 . -
Number Theory Course Notes for MA 341, Spring 2018
Number Theory Course notes for MA 341, Spring 2018 Jared Weinstein May 2, 2018 Contents 1 Basic properties of the integers 3 1.1 Definitions: Z and Q .......................3 1.2 The well-ordering principle . .5 1.3 The division algorithm . .5 1.4 Running times . .6 1.5 The Euclidean algorithm . .8 1.6 The extended Euclidean algorithm . 10 1.7 Exercises due February 2. 11 2 The unique factorization theorem 12 2.1 Factorization into primes . 12 2.2 The proof that prime factorization is unique . 13 2.3 Valuations . 13 2.4 The rational root theorem . 15 2.5 Pythagorean triples . 16 2.6 Exercises due February 9 . 17 3 Congruences 17 3.1 Definition and basic properties . 17 3.2 Solving Linear Congruences . 18 3.3 The Chinese Remainder Theorem . 19 3.4 Modular Exponentiation . 20 3.5 Exercises due February 16 . 21 1 4 Units modulo m: Fermat's theorem and Euler's theorem 22 4.1 Units . 22 4.2 Powers modulo m ......................... 23 4.3 Fermat's theorem . 24 4.4 The φ function . 25 4.5 Euler's theorem . 26 4.6 Exercises due February 23 . 27 5 Orders and primitive elements 27 5.1 Basic properties of the function ordm .............. 27 5.2 Primitive roots . 28 5.3 The discrete logarithm . 30 5.4 Existence of primitive roots for a prime modulus . 30 5.5 Exercises due March 2 . 32 6 Some cryptographic applications 33 6.1 The basic problem of cryptography . 33 6.2 Ciphers, keys, and one-time pads . -
Introduction to Number Theory CS1800 Discrete Math; Notes by Virgil Pavlu; Updated November 5, 2018
Introduction to Number Theory CS1800 Discrete Math; notes by Virgil Pavlu; updated November 5, 2018 1 modulo arithmetic All numbers here are integers. The integer division of a at n > 1 means finding the unique quotient q and remainder r 2 Zn such that a = nq + r where Zn is the set of all possible remainders at n : Zn = f0; 1; 2; 3; :::; n−1g. \mod n" = remainder at division with n for n > 1 (n it has to be at least 2) \a mod n = r" means mathematically all of the following : · r is the remainder of integer division a to n · a = n ∗ q + r for some integer q · a; r have same remainder when divided by n · a − r = nq is a multiple of n · n j a − r, a.k.a n divides a − r EXAMPLES 21 mod 5 = 1, because 21 = 5*4 +1 same as saying 5 j (21 − 1) 24 = 10 = 3 = -39 mod 7 , because 24 = 7*3 +3; 10=7*1+3; 3=7*0 +3; -39=7*(-6)+3. Same as saying 7 j (24 − 10) or 7 j (3 − 10) or 7 j (10 − (−39)) etc LEMMA two numbers a; b have the same remainder mod n if and only if n divides their difference. We can write this in several equivalent ways: · a mod n = b mod n, saying a; b have the same remainder (or modulo) · a = b( mod n) · n j a − b saying n divides a − b · a − b = nk saying a − b is a multiple of n (k is integer but its value doesnt matter) 1 EXAMPLES 21 = 11 (mod 5) = 1 , 5 j (21 − 11) , 21 mod 5 = 11 mod 5 86 mod 10 = 1126 mod 10 , 10 j (86 − 1126) , 86 − 1126 = 10k proof: EXERCISE. -
CSU200 Discrete Structures Professor Fell Integers and Division
CSU200 Discrete Structures Professor Fell Integers and Division Though you probably learned about integers and division back in fourth grade, we need formal definitions and theorems to describe the algorithms we use and to very that they are correct, in general. If a and b are integers, a ¹ 0, we say a divides b if there is an integer c such that b = ac. a is a factor of b. a | b means a divides b. a | b mean a does not divide b. Theorem 1: Let a, b, and c be integers, then 1. if a | b and a | c then a | (b + c) 2. if a | b then a | bc for all integers, c 3. if a | b and b | c then a | c. Proof: Here is a proof of 1. Try to prove the others yourself. Assume a, b, and c be integers and that a | b and a | c. From the definition of divides, there must be integers m and n such that: b = ma and c = na. Then, adding equals to equals, we have b + c = ma + na. By the distributive law and commutativity, b + c = (m + n)a. By closure of addition, m + n is an integer so, by the definition of divides, a | (b + c). Q.E.D. Corollary: If a, b, and c are integers such that a | b and a | c then a | (mb + nc) for all integers m and n. Primes A positive integer p > 1 is called prime if the only positive factor of p are 1 and p. -
On Sets of Coprime Integers in Intervals Paul Erdös, András Sárközy
On sets of coprime integers in intervals Paul Erdös, András Sárközy To cite this version: Paul Erdös, András Sárközy. On sets of coprime integers in intervals. Hardy-Ramanujan Journal, Hardy-Ramanujan Society, 1993, 16, pp.1 - 20. hal-01108688 HAL Id: hal-01108688 https://hal.archives-ouvertes.fr/hal-01108688 Submitted on 23 Jan 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 Hardy-Ramanujan Joumal Vol.l6 (1993) 1-20 On sets of coprime integers in intervals P. Erdos and Sarkozy 1 1. Throughout this paper we use the following notations : ~ denotes the set of the integers. N denotes the set of the positive integers. For A C N,m E N,u E ~we write .A(m,u) ={f.£; a E A, a= u(mod m)}. IP(n) denotes Euler';; function. Pk dznotcs the kth prime: P1 = 2,p2 = 3,· ··and k we put Pk = IJP•· If k E N and k ~ 2, then .PA:(A) denotes the number of i=l the k-tuples (at,···, ak) such that at E A,·· · , ak E A,ai < a2 < · · · < ak and (at,aj = 1) for 1::; i < j::; k. -
History of Mathematics Log of a Course
History of mathematics Log of a course David Pierce / This work is licensed under the Creative Commons Attribution–Noncommercial–Share-Alike License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/ CC BY: David Pierce $\ C Mathematics Department Middle East Technical University Ankara Turkey http://metu.edu.tr/~dpierce/ [email protected] Contents Prolegomena Whatishere .................................. Apology..................................... Possibilitiesforthefuture . I. Fall semester . Euclid .. Sunday,October ............................ .. Thursday,October ........................... .. Friday,October ............................. .. Saturday,October . .. Tuesday,October ........................... .. Friday,October ............................ .. Thursday,October. .. Saturday,October . .. Wednesday,October. ..Friday,November . ..Friday,November . ..Wednesday,November. ..Friday,November . ..Friday,November . ..Saturday,November. ..Friday,December . ..Tuesday,December . . Apollonius and Archimedes .. Tuesday,December . .. Saturday,December . .. Friday,January ............................. .. Friday,January ............................. Contents II. Spring semester Aboutthecourse ................................ . Al-Khw¯arizm¯ı, Th¯abitibnQurra,OmarKhayyám .. Thursday,February . .. Tuesday,February. .. Thursday,February . .. Tuesday,March ............................. . Cardano .. Thursday,March ............................ .. Excursus................................. -
Discrete Mathematics Homework 3
Discrete Mathematics Homework 3 Ethan Bolker November 15, 2014 Due: ??? We're studying number theory (leading up to cryptography) for the next few weeks. You can read Unit NT in Bender and Williamson. This homework contains some programming exercises, some number theory computations and some proofs. The questions aren't arranged in any particular order. Don't just start at the beginning and do as many as you can { read them all and do the easy ones first. I may add to this homework from time to time. Exercises 1. Use the Euclidean algorithm to compute the greatest common divisor d of 59400 and 16200 and find integers x and y such that 59400x + 16200y = d I recommend that you do this by hand for the logical flow (a calculator is fine for the arith- metic) before writing the computer programs that follow. There are many websites that will do the computation for you, and even show you the steps. If you use one, tell me which one. We wish to find gcd(16200; 59400). Solution LATEX note. These are separate equations in the source file. They'd be better formatted in an align* environment. 59400 = 3(16200) + 10800 next find gcd(10800; 16200) 16200 = 1(10800) + 5400 next find gcd(5400; 10800) 10800 = 2(5400) + 0 gcd(16200; 59400) = 5400 59400x + 16200y = 5400 5400(11x + 3y) = 5400 11x + 3y = 1 By inspection, we can easily determine that (x; y) = (−1; 4) (among other solutions), but let's use the algorithm. 11 = 3 · 3 + 2 3 = 2 · 1 + 1 1 = 3 − (2) · 1 1 = 3 − (11 − 3 · 3) 1 = 11(−1) + 3(4) (x; y) = (−1; 4) 1 2. -
Math 105 History of Mathematics First Test February 2015
Math 105 History of Mathematics First Test February 2015 You may refer to one sheet of notes on this test. Points for each problem are in square brackets. You may do the problems in any order that you like, but please start your answers to each problem on a separate page of the bluebook. Please write or print clearly. Problem 1. Essay. [30] Select one of the three topics A, B, and C. Please think about these topics and make an outline before you begin writing. You will be graded on how well you present your ideas as well as your ideas themselves. Each essay should be relatively short|one to three written pages. There should be no fluff in your essays. Make your essays well-structured and your points as clearly as you can. Topic A. Explain the logical structure of the Elements (axioms, propositions, proofs). How does this differ from earlier mathematics of Egypt and Babylonia? How can such a logical structure affect the mathematical advances of a civilization? Topic B. Compare and contrast the arithmetic of the Babylonians with that of the Egyptians. Be sure to mention their numerals, algorithms for the arithmetic operations, and fractions. Illustrate with examples. Don't go into their algebra or geometry for this essay. Topic C. Aristotle presented four of Zeno's paradoxes: the Dichotomy, the Achilles, the Arrow, and the Stadium. Select one, but only one, of them and write about it. State the paradox as clearly and completely as you can. Explain why it was considered important. Refute the paradox, either as Aristotle did, or as you would from a modern point of view.