Guidelines for Diagnosis, Treatment and Prevention of Visceral Leishmaniasis in South Sudan

Total Page:16

File Type:pdf, Size:1020Kb

Guidelines for Diagnosis, Treatment and Prevention of Visceral Leishmaniasis in South Sudan Guidelines for diagnosis, treatment and prevention of visceral leishmaniasis in South Sudan Acromyns DAT Direct agglutination test FDA Freeze – dried antigen IM Intramuscular IV Intravenous KA Kala–azar ME Mercaptoethanol ORS Oral rehydration salt PKDL Post kala–azar dermal leishmaniasis RBC Red blood cells RDT Rapid diagnostic test RR Respiratory rate SSG Sodium stibogluconate TFC Therapeutic feeding centre TOC Test of cure VL Visceral leishmaniasis WBC White blood cells WHO World Health Organization Table of contents Acronyms ...................................................................................................................................... 2 Acknowledgements ....................................................................................................................... 4 Foreword ...................................................................................................................................... 5 1. Introduction ........................................................................................................................... 7 1.1 Background information ............................................................................................... 7 1.2 Lifecycle and transmission patterns ............................................................................. 7 1.3 Human infection and disease ....................................................................................... 8 2. Diagnosis ............................................................................................................................... 9 2.1 Clinical diagnosis .......................................................................................................... 9 2.2 Laboratory diagnosis .................................................................................................. 10 2.3 Diagnosis of primary kala–azar .................................................................................. 13 2.4 Diagnosis of relapse ................................................................................................... 14 2.5 Diagnosis of PKDL ..................................................................................................... 14 3. Treatment ............................................................................................................................. 14 3.1 Treatment of primary kala–azar (new cases) ............................................................. 16 3.2. Treatment of relapse of kala–azar .............................................................................. 18 3.3. Treatment of PKDL ..................................................................................................... 20 3.4. Other treatment related issues and special situations ............................................... 21 3.5 Treatment of concurrent infection and malnutrition .................................................... 23 4. Information system ............................................................................................................. 33 5. Prevention and control ....................................................................................................... 33 6. Annexes................................................................................................................................ 34 Annex 1. rK39 rapid diagnostic test procedure ...................................................................... 34 Annex 2. Direct agglutination test procedure ......................................................................... 38 Annex 3. Lymph node aspirate procedure ............................................................................. 44 Annex 4. Bone marrow aspiration procedures ...................................................................... 45 Annex 5. Procedures for splenic aspiration ........................................................................... 47 Annex 6. Preparation and examination of aspirates. grading of parasites. ........................... 49 Annex 7. Kala–azar laboratory register book ........................................................................ 53 Annex 8. Kala–azar treatment register book ......................................................................... 54 Annex 9. Kala–azar patient treatment card ........................................................................... 56 Annex 10. Kala–azar patient discharge card ......................................................................... 58 Annex 11. Dosage and precautions for the use of sodium stibogluconate (SSG) ............. 59 Annex 12. Dosage and precautions for the use of paromomycin (aminosidine). .................. 62 Annex 13. Dosage, administration and precautions for meglumine antimoniate. ................. 64 Annex 14. Anthropometry and nutrition therapy look–up tables. ........................................... 66 Annex 15. Overview of treatment for concurrent illnesses in kala–azar. ............................... 75 Annex 16. Medicine guidelines for kala–azar ........................................................................ 77 Annex 17. Kala–azar monthly reporting forms ...................................................................... 78 Annex 18. Kala–azar weekly reporting forms ........................................................................ 82 Guidelines for diagnosis, treatment and prevention of visceral leishmaniasis in South Sudan Acknowledgements The Visceral Leishmaniasis (VL) guideline for South Sudan has been updated through a highly participatory process involving officials from endemic kala-azar states, World Health Organization representatives from Geneva-HQ, Cairo-EMRO, Sudan, Ethiopia, Somalia, UNICEF South Sudan, UN-OCHA, international (MSF’s, CMA, DoT) and national partners. I sincerely appreciate and commend the role of the World Health Organization in supporting the Ministry of Health financially, technically and logistically; without which this document would have not been materialized. I would like to thank health workers in twenty four kala-azar treatment facilities; in particular nurses, laboratory technicians and community health workers. Without their continuous daily efforts in diagnosing, treating and monitoring patients, no progress on kala-azar guidelines would have been possible. A special thank you is extended to Dr Jose Postigo for valuable comments, guidance and effective assistance during the guidelines preparation and printing process. The guidance provided in this document has been drawn from vast experience and lessons learnt from global, regional and local level. We hope the guideline will unify kala-azar management in endemic foci and will be able to significantly reduce the high burden of kala-azar in the endemic states. Dr. Lul Riek, Director General for Community and Public Health, Ministry of Health, South Sudan-Juba 4 Guidelines for diagnosis, treatment and prevention of visceral leishmaniasis in South Sudan Foreword Visceral Leishmaniasis (VL) is the third most important vector-borne disease after malaria and lymphatic filariasis. It was responsible for an estimated 10,000 new cases in 2010, and a 4% case fatality rate in twenty four kala-azar treatment facilities in Jonglei, Upper Nile, Unity and Eastern Equatoria States of South Sudan. Efficient case management is the key to limit morbidity and to prevent mortality, and is also a measure to control the reservoir and transmission of the disease. South Sudan has upgraded from a first line regime of mono-therapy, sodium stibogluconate (SSG) for 30 days, to combination therapy of sodium stibogluconate (SSG) and paromomycin injections for 17 days; this is more effective than SSG monotherapy. In addition it offers the advantage of halving the patient’s required hospital stay, thus reducing overcrowding and the risk of nosocomial outbreaks of infectious diseases associated with overcrowding. Based on the guidelines, the WHO South Sudan office is willing to support the National Ministry of Health in providing training on VL diagnosis, treatment and prevention to the health workers in the twenty four kala-azar treatment facilities. The guidance provided in this document has been drawn upon vast experience and lessons learnt from global, regional, government, and national partners. It is the Ministry’s hope that the document will be a source of renewed motivation for a more unified, directional and concerted effort in further improving the diagnosis and management of kala-azar patients. Let us now, and in years ahead, join our efforts and ensure that the plan translates into concrete, focused and sustained actions. We hope this document will guide the Ministry’s efforts towards controlling kala-azar in South Sudan. We are looking forward to the cooperation and harmonization of the treatment regime in South Sudan. Dr. Makur Mathur Koriom, Undersecretary, Ministry of Health, South Sudan-Juba. 5 1. Introduction 1.1 Background information Leishmaniases is caused by over 20 species of parasitic protozoa of the genus Leishmania. The disease, transmitted to humans by sandflies (Phlebotomus and Lutzomyia species), is endemic in 98 countries or territories, affecting around two million people each year. Depending on the species of the parasite and the immune response of the host, the disease spectrum of leishmaniasis ranges from self–healing skin lesions to a fatal systemic disease called visceral leishmaniasis (VL) which is also known as kala–azar (KA), a Hindi term
Recommended publications
  • Visceral Leishmaniasis (Kala-Azar) and Malaria Coinfection in an Immigrant in the State of Terengganu, Malaysia: a Case Report
    Journal of Microbiology, Immunology and Infection (2011) 44,72e76 available at www.sciencedirect.com journal homepage: www.e-jmii.com CASE REPORT Visceral leishmaniasis (kala-azar) and malaria coinfection in an immigrant in the state of Terengganu, Malaysia: A case report Ahmad Kashfi Ab Rahman a,*, Fatimah Haslina Abdullah b a Infectious Disease Clinic, Department of Medicine, Hospital Sultanah Nur Zahirah, Jalan Sultan Mahmud, 20400 Kuala Terengganu, Malaysia b Microbiology Unit, Department of Pathology, Hospital Sultanah Nur Zahirah, Jalan Sultan Mahmud, 20400 Kuala Terengganu, Malaysia Received 28 April 2009; received in revised form 30 July 2009; accepted 30 November 2009 KEYWORDS Malaria is endemic in Malaysia. Leishmaniasis is a protozoan infection rarely reported in Amphotericin B; Malaysia. Here, a 24-year-old Nepalese man who presented with prolonged fever and he- Coinfection; patosplenomegaly is reported. Blood film examination confirmed a Plasmodium vivax ma- Leishmaniasis; laria infection. Despite being adequately treated for malaria, his fever persisted. Bone Malaria; marrow examination showed presence of Leishman-Donovan complex. He was success- Treatment fully treated with prolonged course of amphotericin B. The case highlights the impor- tance of awareness among the treating physicians of this disease occurring in a foreign national from an endemic region when he presents with fever and hepatosplenomegaly. Coinfection with malaria can occur although it is rare. It can cause significant delay of the diagnosis of leishmaniasis. Copyright ª 2011, Taiwan Society of Microbiology. Published by Elsevier Taiwan LLC. All rights reserved. Introduction leishmaniasis is not. Malaysia is considered free of endemic Leishmania species although few species of Malaysian sandflies have been described, possibly because the sand- Malaysia is a tropical country and located in the region of 1,3 Southeast Asia.
    [Show full text]
  • Review Article Use of Antimony in the Treatment of Leishmaniasis: Current Status and Future Directions
    SAGE-Hindawi Access to Research Molecular Biology International Volume 2011, Article ID 571242, 23 pages doi:10.4061/2011/571242 Review Article Use of Antimony in the Treatment of Leishmaniasis: Current Status and Future Directions Arun Kumar Haldar,1 Pradip Sen,2 and Syamal Roy1 1 Division of Infectious Diseases and Immunology, Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, 4 Raja S. C. Mullick Road, Kolkata West Bengal 700032, India 2 Division of Cell Biology and Immunology, Institute of Microbial Technology, Council of Scientific and Industrial Research, Chandigarh 160036, India Correspondence should be addressed to Syamal Roy, [email protected] Received 18 January 2011; Accepted 5 March 2011 Academic Editor: Hemanta K. Majumder Copyright © 2011 Arun Kumar Haldar et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. In the recent past the standard treatment of kala-azar involved the use of pentavalent antimonials Sb(V). Because of progressive rise in treatment failure to Sb(V) was limited its use in the treatment program in the Indian subcontinent. Until now the mechanism of action of Sb(V) is not very clear. Recent studies indicated that both parasite and hosts contribute to the antimony efflux mechanism. Interestingly, antimonials show strong immunostimulatory abilities as evident from the upregulation of transplantation antigens and enhanced T cell stimulating ability of normal antigen presenting cells when treated with Sb(V) in vitro. Recently, it has been shown that some of the peroxovanadium compounds have Sb(V)-resistance modifying ability in experimental infection with Sb(V) resistant Leishmania donovani isolates in murine model.
    [Show full text]
  • History of Kala-Azar Is Older Than the Dated Records
    Professor C. P. Thakur, MD, FRCP (London & Edin.) Emeritus Professor of Medicine, Patna Medical College Member of Parliament, Former Union Minister of Health, Government of India Chairman, Balaji Utthan Sansthan, Uma Complex, Fraser Road – Patna-800 001, Bihar. Tel.: +91-0612-2221797, Fax:+91-0612-2239423 Email: [email protected], [email protected], [email protected] Website: www.bus.org.in “History of kala-azar is older than the dated records. In those days malaria was very common and some epidemics of kala-azar were passed as toxic malaria. Twining writing in 1835 described a condition that he called “endemic cachexia of the tropical counties that are subject to paludal exhalations”. The disease remained unrecognized for a faily long time but the searching nature of human mind could come to a final diagnosis, though many aspects of the disease are still unexplored” • Leishmaniasis Cachexial Fever • Internal Catechetic fever leishmaniasis Dum-Dum Fever • Visceral Burdwan Fever leishmaniasis Sirkari Disease • General Sahib’s disease leishmaniasis Kala-dukh • Kala-azar of Kala-jwar adults Kala-hazar • Indian kala-azar Assam fever • Black Fever Leishman-Donovan Disease • Black Sickness Infantile Kala-azar (Nicolle) • Tropical leishmaniasis Infantile leishmaniasis • Tropical cachexia Mediterranean Kala-azar • Tropical Kala-azar Mediterranean leishmaniasis • Tropical Febrile splenic Anaemia (Fede) Splenomegaly Anaemia infantum a leishmania • Non-malarial (Pianese) remittent fever Leishmania anaemia (Jemme • Malaria Cachexia (in error)
    [Show full text]
  • Leishmaniasis in the United States: Emerging Issues in a Region of Low Endemicity
    microorganisms Review Leishmaniasis in the United States: Emerging Issues in a Region of Low Endemicity John M. Curtin 1,2,* and Naomi E. Aronson 2 1 Infectious Diseases Service, Walter Reed National Military Medical Center, Bethesda, MD 20814, USA 2 Infectious Diseases Division, Uniformed Services University, Bethesda, MD 20814, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-011-301-295-6400 Abstract: Leishmaniasis, a chronic and persistent intracellular protozoal infection caused by many different species within the genus Leishmania, is an unfamiliar disease to most North American providers. Clinical presentations may include asymptomatic and symptomatic visceral leishmaniasis (so-called Kala-azar), as well as cutaneous or mucosal disease. Although cutaneous leishmaniasis (caused by Leishmania mexicana in the United States) is endemic in some southwest states, other causes for concern include reactivation of imported visceral leishmaniasis remotely in time from the initial infection, and the possible long-term complications of chronic inflammation from asymptomatic infection. Climate change, the identification of competent vectors and reservoirs, a highly mobile populace, significant population groups with proven exposure history, HIV, and widespread use of immunosuppressive medications and organ transplant all create the potential for increased frequency of leishmaniasis in the U.S. Together, these factors could contribute to leishmaniasis emerging as a health threat in the U.S., including the possibility of sustained autochthonous spread of newly introduced visceral disease. We summarize recent data examining the epidemiology and major risk factors for acquisition of cutaneous and visceral leishmaniasis, with a special focus on Citation: Curtin, J.M.; Aronson, N.E.
    [Show full text]
  • Drugs for Amebiais, Giardiasis, Trichomoniasis & Leishmaniasis
    Antiprotozoal drugs Drugs for amebiasis, giardiasis, trichomoniasis & leishmaniasis Edited by: H. Mirkhani, Pharm D, Ph D Dept. Pharmacology Shiraz University of Medical Sciences Contents Amebiasis, giardiasis and trichomoniasis ........................................................................................................... 2 Metronidazole ..................................................................................................................................................... 2 Iodoquinol ........................................................................................................................................................... 2 Paromomycin ...................................................................................................................................................... 3 Mechanism of Action ...................................................................................................................................... 3 Antimicrobial effects; therapeutics uses ......................................................................................................... 3 Leishmaniasis ...................................................................................................................................................... 4 Antimonial agents ............................................................................................................................................... 5 Mechanism of action and drug resistance ......................................................................................................
    [Show full text]
  • Visceral Leishmaniasis: a Global Overview
    J Glob Health Sci. 2020 Jun;2(1):e3 https://doi.org/10.35500/jghs.2020.2.e3 pISSN 2671-6925·eISSN 2671-6933 Review Article Visceral leishmaniasis: a global overview Richard G. Wamai ,1 Jorja Kahn ,2 Jamie McGloin ,3 Galen Ziaggi 3 1Department of Cultures, Societies and Global Studies, Northeastern University, College of Social Sciences and Humanities, Integrated Initiative for Global Health, Boston, MA, USA 2Department of Behavioral Neuroscience, Northeastern University, College of Science, Boston, MA, USA 3Department of Health Sciences, Northeastern University, Bouvé College of Health Science, Boston, MA, USA Received: Feb 1, 2020 ABSTRACT Accepted: Mar 14, 2020 Correspondence to The leishmaniases are protozoan infections that are among the neglected tropical diseases Richard G. Wamai (NTDs). Over one billion people are at risk of these diseases in virtually all continents. Department of Cultures, Societies and Global These diseases debilitate large numbers of people, keeping them from full, productive lives. Studies, Northeastern University, College of Visceral leishmaniasis (VL) is the most severe form of these diseases, killing more people Social Sciences and Humanities, Integrated Initiative for Global Health, 360 Huntington than any other parasitic disease except malaria. About 90% of the global burden for VL is Ave., Boston, MA 02115, USA. found in just 7 countries, 4 of which are in Eastern Africa (Sudan, South Sudan, Ethiopia E-mail: [email protected] and Kenya), 2 in Southeast Asia (India, Bangladesh) and Brazil, which carries nearly all of cases in South America. In 2005 the World Health Organization launched a strategy to © 2020 Korean Society of Global Health.
    [Show full text]
  • 204684Orig1s000
    CENTER FOR DRUG EVALUATION AND RESEARCH APPLICATION NUMBER: 204684Orig1s000 SUMMARY REVIEW Division Director Review NDA 204684, Impavido (miltefosine)Capsules 1. Introduction NDA 204684 is submitted by Paladin Therapeutics, Inc., for the use of miltefosine for the treatment of visceral, cutaneous, and mucosal leishmaniasis in patients ≥12 years of age. The proposed dosing regimen is one 50 mg capsule twice daily with food for patients weighing 30- 44 kg (66-97 lbs.) and one 50 mg capsule three times daily with food for patients weighing ≥ 45 kg (≥ 99 lbs.). Leishmaniasis is caused by obligate intracellular protozoa of the genus Leishmania. The clinical manifestations are divided into three syndromes of visceral leishmaniasis, cutaneous leishmaniasis, and mucosal leishmaniasis. A single species of Leishmania can produce more than one clinical syndrome and each of the syndromes can be caused by more than species of Leishmania. Human infection is caused by about 21 of 30 species that infect mammals. These include the L. donovani complex with 2 species (L. donovani, L. infantum [also known as L. chagasi in the New World]); the L. mexicana complex with 3 main species (L. mexicana, L. amazonensis, and L. venezuelensis); L. tropica; L. major; L. aethiopica; and the subgenus Viannia with 4 main species (L. (V.) braziliensis, L. (V.) guyanensis, L. (V.) panamensis, and L. (V.) peruviana). Leishmaniasis is transmitted by the bite of infected female phlebotomine sandflies. The promastigotes injected by the sandflies during blood meals are phagocytized by macrophages and other types of mononuclear phagocytic cells and transform into amastigotes. The amastigotes multiply by simple binary fission and lead to rupture of the infected cell and invasion of other reticuloendothelial cells.1 Miltefosine is an alkyl phospholipid analog with in vitro activity against the promastigote and amastigote stages of Leishmania species.
    [Show full text]
  • Louisiana Morbidity Report
    Louisiana Morbidity Report Office of Public Health - Infectious Disease Epidemiology Section P.O. Box 60630, New Orleans, LA 70160 - Phone: (504) 568-8313 www.dhh.louisiana.gov/LMR Infectious Disease Epidemiology Main Webpage BOBBY JINDAL KATHY KLIEBERT GOVERNOR www.infectiousdisease.dhh.louisiana.gov SECRETARY September - October, 2015 Volume 26, Number 5 Cutaneous Leishmaniasis - An Emerging Imported Infection Louisiana, 2015 Benjamin Munley, MPH; Angie Orellana, MPH; Christine Scott-Waldron, MSPH In the summer of 2015, a total of 3 cases of cutaneous leish- and the species was found to be L. panamensis, one of the 4 main maniasis, all male, were reported to the Department of Health species associated with progression to metastasized mucosal and Hospitals’ (DHH) Louisiana Office of Public Health (OPH). leishmaniasis in some instances. The first 2 cases to be reported were newly acquired, a 17-year- The third case to be reported in the summer of 2015 was from old male and his father, a 49-year-old male. Both had traveled to an Australian resident with an extensive travel history prior to Costa Rica approximately 2 months prior to their initial medical developing the skin lesion, although exact travel history could not consultation, and although they noticed bug bites after the trip, be confirmed. The case presented with a non-healing skin ulcer they did not notice any flies while traveling. It is not known less than 1 cm in diameter on his right leg. The ulcer had been where transmission of the parasite occurred while in Costa Rica, present for 18 months and had not previously been treated.
    [Show full text]
  • Manual for the Diagnosis and Treatment of Leishmaniasis
    Republic of the Sudan Federal Ministry of Health Communicable and Non-Communicable Diseases Control Directorate MANUAL FOR THE DIAGNOSIS AND TREATMENT OF LEISHMANIASIS November 2017 Acknowledgements The Communicable and Non-Communicable Diseases Control Directorate (CNCDCD), Federal Ministry of Health, Sudan, would like to acknowledge all the efforts spent on studying, controlling and reducing morbidity and mortality of leishmaniasis in Sudan, which culminated in the formulation of this manual in April 2004, updated in October 2014 and again in November 2017. We would like to express our thanks to all National institutions, organizations, research groups and individuals for their support, and the international organization with special thanks to WHO, MSF and UK- DFID (KalaCORE). I Preface Leishmaniasis is a major health problem in Sudan. Visceral, cutaneous and mucosal forms of leishmaniasis are endemic in various parts of the country, with serious outbreaks occurring periodically. Sudanese scientists have published many papers on the epidemiology, clinical manifestations, diagnosis and management of these complex diseases. This has resulted in a better understanding of the pathogenesis of the various forms of leishmaniasis and has led to more accurate and specific diagnostic methods and better therapy. Unfortunately, many practitioners are unaware of these developments and still rely on outdated diagnostic procedures and therapy. This document is intended to help those engaged in the diagnosis, treatment and nutrition of patients with various forms of leishmaniasis. The guidelines are based on publications and experience of Sudanese researchers and are therefore evidence based. The guidelines were agreed upon by top researchers and clinicians in workshops organized by the Leishmaniasis Control response at the Communicable and Non-Communicable Diseases Control Directorate, Federal Ministry of Health, Sudan.
    [Show full text]
  • Visceral Leishmaniasis in the Developing World
    Visceral Leishmaniasis in the Developing World Gilead Sciences is committed to supporting global efforts to control and eliminate visceral leishmaniasis (VL), a parasitic infectious disease that predominantly affects people in developing world countries. AmBisome® is a World Health Organization (WHO)-preferred treatment for VL in most endemic regions,1 and Gilead undertakes a number of activities to expand global access to this therapy for patients in need. Snapshot • Visceral leishmaniasis (VL) is • Since 1992, Gilead has • Gilead is donating the world’s second-deadliest provided AmBisome®, 445,000 vials of AmBisome parasitic disease, after malaria.1 a preferred treatment for VL, to the World Health at no-profit prices. Organization over 5 years.2 and, in a recent study in India, this regimen was shown VL: A Deadly Disease in the to be significantly more cost-effective than conventional Developing World amphotericin B-containing treatment regimens.5 VL is the world’s second-deadliest parasitic Gilead has worked since 1992 to increase access to VL disease after malaria, with 400,000 cases and treatment by providing AmBisome to public sector agencies, 40,000 deaths occuring annually.1,3 It is caused by several including WHO, at no-profit prices. In December 2011, Gilead species of the Leishmania parasite, which are transmitted signed a new agreement with WHO to donate 445,000 vials to humans through the bite of infected female sandflies. of AmBisome over five years to treat VL in countries including Without treatment, VL is nearly always fatal.3 Bangladesh, Ethiopia, South Sudan and Sudan. The donation will provide treatment for more than 50,000 patients.2 Most VL cases worldwide affect children and young adults.
    [Show full text]
  • Public Health Goal for ANTIMONY in Drinking Water
    Public Health Goal for ANTIMONY in Drinking Water Prepared by Pesticide and Environmental Toxicology Section Office of Environmental Health Hazard Assessment California Environmental Protection Agency December 1997 LIST OF CONTRIBUTORS PHG PROJECT MANAGEMENT REPORT PREPARATION SUPPORT Project Officer Author Administrative Support Anna Fan, Ph.D. Lubow Jowa, Ph.D. Edna Hernandez Coordinator Chemical Prioritization Primary Reviewer Laurie Bliss Report Outline Robert Brodberg, Ph.D. Sharon Davis Joseph Brown, Ph.D. Kathy Elliott Coordinator Secondary Reviewer Vickie Grayson David Morry, Ph.D. Michael DiBartolomeis, Ph.D. Michelle Johnson Yi Wang, Ph.D. Juliet Rafol Final Reviewers Genevieve Shafer Document Development Anna Fan, Ph.D. Tonya Turner Michael DiBartolomeis, Ph.D. William Vance, Ph.D. Coordinator Library Support George Alexeeff, Ph.D. Editor Mary Ann Mahoney Hanafi Russell, M.S. Michael DiBartolomeis, Ph.D. Valerie Walter Yi Wang, Ph.D. Website Posting Public Workshop Robert Brodberg, Ph.D. Michael DiBartolomeis, Ph.D. Edna Hernandez Coordinator Laurie Monserrat, M.S. Judy Polakoff, M.S. Judy Polakoff, M.S. Organizer Hanafi Russell, M.S. Methodology/Approaches/ Review Comments Joseph Brown, Ph.D. Robert Howd, Ph.D. Coordinators Lubow Jowa, Ph.D. David Morry, Ph.D. Rajpal Tomar, Ph.D. Yi Wang, Ph.D. We thank the U.S. EPA’s Office of Water, Office of Pollution Prevention and Toxic Substances, and National Center for Environmental Assessment for their peer review of the PHG documents, and the comments received from all interested parties. ANTIMONY in Drinking Water ii December 1997 California Public Health Goal (PHG) PREFACE Drinking Water Public Health Goal of the Office of Environmental Health Hazard Assessment This Public Health Goal (PHG) technical support document provides information on health effects from contaminants in drinking water.
    [Show full text]
  • American Trypanosomiasis and Leishmaniasis Trypanosoma Cruzi
    American Trypanosomiasis and Leishmaniasis Trypanosoma cruzi Leishmania sp. American Trypanosomiasis History Oswaldo Cruz Trypanosoma cruzi - Chagas disease Species name was given in honor of Oswaldo Cruz -mentor of C. Chagas By 29, Chagas described the agent, vector, clinical symptoms Carlos Chagas - new disease • 16-18 million infected • 120 million at risk • ~50,000 deaths annually • leading cause of cardiac disease in South and Central America Trypanosoma cruzi Intracellular parasite Trypomastigotes have ability to invade tissues - non-dividing form Once inside tissues convert to amastigotes - Hela cells dividing forms Ability to infect and replicate in most nucleated cell types Cell Invasion 2+ Trypomatigotes induce a Ca signaling event 2+ Ca dependent recruitment and fusion of lysosomes Differentiation is initiated in the low pH environment, but completed in the cytoplasm Transient residence in the acidic lysosomal compartment is essential: triggers differentiation into amastigote forms Trypanosoma cruzi life cycle Triatomid Vectors Common Names • triatomine bugs • reduviid bugs >100 species can transmit • assassin bugs Chagas disease • kissing bugs • conenose bugs 3 primary vectors •Triatoma dimidiata (central Am.) •Rhodnius prolixis (Colombia and Venezuela) •Triatoma infestans (‘southern cone’ countries) One happy triatomid! Vector Distribution 4 principal vectors 10-35% of vectors are infected Parasites have been detected in T. sanguisuga Enzootic - in animal populations at all times Many animal reservoirs Domestic animals Opossums Raccoons Armadillos Wood rats Factors in Human Transmission Early defication - during the triatome bloodmeal Colonization of human habitats Adobe walls Thatched roofs Proximity to animal reservoirs Modes of Transmission SOURCE COMMENTS Natural transmission by triatomine bugs Vector through contamination with infected feces. A prevalent mode of transmission in urban Transfusion areas.
    [Show full text]