Covering Vectors by Spaces: Regular Matroids∗ Fedor V. Fomin1, Petr A. Golovach2, Daniel Lokshtanov3, and Saket Saurabh4 1 Department of Informatics, University of Bergen, Bergen, Norway
[email protected] 2 Department of Informatics, University of Bergen, Bergen, Norway
[email protected] 3 Department of Informatics, University of Bergen, Bergen, Norway
[email protected] 4 Department of Informatics, University of Bergen, Bergen, Norway; and Institute of Mathematical Sciences, Chennai, India
[email protected] Abstract We consider 5the problem of covering a set of vectors of a given finite dimensional linear space (vector space) by a subspace generated by a set of vectors of minimum size. Specifically, we study the Space Cover problem, where we are given a matrix M and a subset of its columns T ; the task is to find a minimum set F of columns of M disjoint with T such that that the linear span of F contains all vectors of T . This is a fundamental problem arising in different domains, such as coding theory, machine learning, and graph algorithms. We give a parameterized algorithm with running time 2O(k) · ||M||O(1) solving this problem in the case when M is a totally unimodular matrix over rationals, where k is the size of F . In other words, we show that the problem is fixed-parameter tractable parameterized by the rank of the covering subspace. The algorithm is “asymptotically optimal” for the following reasons. Choice of matrices: Vector matroids corresponding to totally unimodular matrices over ration- als are exactly the regular matroids.