Cenozoic extension in the Kenya Rift from low-temperature thermochronology: Links to diachronous spatiotemporal evolution of rifting in East Africa Verónica Torres Acosta*1, Alejandro Bande1, Edward R. Sobel1, Mauricio Parra2, Taylor F. Schildgen1,3, Finlay Stuart4, Manfred R. Strecker1 1 Institut für Erd- und Umweltwissenschaften, Universität Potsdam, Karl-Liebknecht-Str. 24, 14476 Potsdam, Germany. 2 Instituto de Energia e Ambiente (IEE). Universidade de São Paulo (USP). São Paulo, SP, Brazil. 3Deutsches GeoForschungsZentrum (GFZ) Potsdam, Potsdam, Germany 4 SUERC, Rankine Avenue, Scottish Enterprise Technology Park, East Kilbride, G750QF, Scotland, UK * Corresponding author, e-mail:
[email protected] Key points: Data and modeling show Paleogene and middle Miocene cooling episodes Cooling episodes separated by stable conditions, slow exhumation or subsidence Extension pattern is compatible with random rift initiation above a plume This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1002/2015TC003949 ©2015 American Geophysical Union. All rights reserved. Abstract The cooling history of rift shoulders and the subsidence history of rift basins are cornerstones for reconstructing the morphotectonic evolution of extensional geodynamic provinces, assessing their role in paleoenvironmental changes, and evaluating the resource potential of their basin fills. Our apatite fission-track and zircon (U-Th)/He data from the Samburu Hills and the Elgeyo Escarpment in the northern and central sectors of the Kenya Rift indicate a broadly consistent thermal evolution of both regions.