Manufacturing Process Modelling of Thermoplastic Composite Resistance Welding
Total Page:16
File Type:pdf, Size:1020Kb
MANUFACTURING PROCESS MODELLING OF THERMOPLASTIC COMPOSITE RESISTANCE WELDING By Edith Talbot Mechanical Engineering Department McGili University, Montreal June 2005 A thesis submitted to McGill University in partial fulfillment ofthe requirements ofthe degree ofEdith Talbot © Edith Talbot, 2005 Library and Bibliothèque et 1+1 Archives Canada Archives Canada Published Heritage Direction du Branch Patrimoine de l'édition 395 Wellington Street 395, rue Wellington Ottawa ON K1A ON4 Ottawa ON K1A ON4 Canada Canada Your file Votre référence ISBN: 978-0-494-22673-5 Our file Notre référence ISBN: 978-0-494-22673-5 NOTICE: AVIS: The author has granted a non L'auteur a accordé une licence non exclusive exclusive license allowing Library permettant à la Bibliothèque et Archives and Archives Canada to reproduce, Canada de reproduire, publier, archiver, publish, archive, preserve, conserve, sauvegarder, conserver, transmettre au public communicate to the public by par télécommunication ou par l'Internet, prêter, telecommunication or on the Internet, distribuer et vendre des thèses partout dans loan, distribute and sell th es es le monde, à des fins commerciales ou autres, worldwide, for commercial or non sur support microforme, papier, électronique commercial purposes, in microform, et/ou autres formats. paper, electronic and/or any other formats. The author retains copyright L'auteur conserve la propriété du droit d'auteur ownership and moral rights in et des droits moraux qui protège cette thèse. this thesis. Neither the thesis Ni la thèse ni des extraits substantiels de nor substantial extracts from it celle-ci ne doivent être imprimés ou autrement may be printed or otherwise reproduits sans son autorisation. reproduced without the author's permission. ln compliance with the Canadian Conformément à la loi canadienne Privacy Act some supporting sur la protection de la vie privée, forms may have been removed quelques formulaires secondaires from this thesis. ont été enlevés de cette thèse. While these forms may be included Bien que ces formulaires in the document page count, aient inclus dans la pagination, their removal does not represent il n'y aura aucun contenu manquant. any loss of content from the thesis. ••• Canada Abstract One-, two- and three-dimensional transient heat transfer finite element models are developed to simulate the resistance welding process of pre-consolidated unidirectional AS4 carbon fibre reinforced Poly-ether-ether-ketone (APC-2/AS4) laminates with a metal mesh heating element, in a lap-shear configuration. The finite element models are used to investigate the effect of process and material parameters on the thermal behaviour of the coupon size welds, yielding to a better understanding of the process. The I-D model determines: a) the importance of including the latent heat of PEEK, and b) the through-thickness temperature gradient away from the edges, for different tooling plate materials. The 2-D model simulates the cross-section of the process, considering the convective and irradiative heat losses from the areas of the heating element exposed to air. The 3-D model includes the heat conduction along the length of the laminates, to fully depict the thermal behaviour of the welds. Finally, the models are compared with experimental data. 1 Résumé Le procédé de soudage par résistance de laminés unidirectionnels de poly-éther-éther cétone renforcés de fibres de carbone AS4 continues (APC-2/AS4), avec un élément chauffant en treillis métallique, a été modélisé en I-D, 2-D et 3-D. Les modèles par éléments finis ont été utilisés pour déterminer l'effet de différents paramètres sur le comportement thermique des soudures, de façon à mieux comprendre le procédé. Le modèle I-D détermine l'importance d'inclure la chaleur massique de fusion du polymère dans l'analyse, ainsi que le gradient de température à travers l'épaisseur des laminés, loin des côtés, pour différents isolants. Le modèle 2-D simule une vue en coupe du procédé, pour considérer l'influence des pertes par convection et radiation provenant des parties de l'élément chauffant exposées à l'air. Le modèle 3-D inclut le transfert de chaleur dans les laminés, de façon à mieux représenter le comportement thermique du procédé. Finalement, les modèles sont comparés avec des données expérimentales. 11 Acknowledgements 1 am extremely grateful to the following people and organisations for their help regarding mywork. o Professor Pascal Hubert, McGill University, for supervision, advice and financial assistance. o Dr. Ali Yousefpour, Research Officer at Aerospace Manufacturing Technology Center and Adjunct Professor at McGill University, for supervision, advice and technical support for the experimental setup. o Aerospace Manufacturing Technology Center, Dr. Mehdi Hojjati, Composite Group Leader, for providing support to the project. o Mario Simard, ETS student, for his help with the experimental setup. o Alexandra Camargo-Salinas, McGill University student, for her Taguchi Analysis of the I-D model. o Eric St-Amant, Research Assistant at McGill University, for computer technical support and DSC experiments. o Martine Dubé, Ph. D. candidate, McGill University, for her help to debug the experimental setup. iii Table of Contents Abstract ............................................................................................................................... i Résumé ............................................................................................................................... ii Acknowledgements .......................................................................................................... iii Table of Contents ............................................................................................................. iv List of Figures .................................................................................................................. vii List of Tables ..................................................................................................................... x 1 Introduction ............................................................................................................... 1 1.1 General Goal ...................................................................................................... 2 1.2 Organisation ofthis Work. .................................................................................. 2 2 Thermoplastic Composites ....................................................................................... 4 2.1 Poly-ether-ether-ketone ...................................................................................... 5 2.2 Joining ofThermoplastic Composites ................................................................. 6 2.2.1 Thermal Welding ........................................................................................ 7 2.2.2 Friction Welding ....................................................................................... 10 2.2.3 Electromagnetic Welding .......................................................................... 14 3 Resistance Welding Process Review ...................................................................... 18 3.1 Set-up Components ........................................................................................... 18 3.1.1 Power and Pressure Systems ..................................................................... 19 3.1.2 Adherends ................................................................................................. 20 3.1.3 Heating Element. ....................................................................................... 20 3.2 Welding Parameters .......................................................................................... 21 3.2.1 Welding Pressure ...................................................................................... 21 3.2.2 Power Input ............................................................................................... 22 3.3 Temperature Distribution ................................................................................. 22 3.3.1 Preferential Heating .................................................................................. 23 3.3.2 Melt front propagation .............................................................................. 23 3.4 Alternative methods .......................................................................................... 24 3.4.1 Sequential Welding ................................................................................... 24 3.4.2 Impulse Resistance Welding ..................................................................... 25 3.4.3 Ramped Voltage ........................................................................................ 26 3.4.4 Others ........................................................................................................ 26 3.5 Resistance Welding Process Modelling ............................................................ 26 3.5.1 Insulating Material Effect ......................................................................... 27 IV 3.5.2 Preferential Heating .................................................................................. 28 3.5.3 Latent Heat ................................................................................................ 29 3.5.4 Surface Roughness and Non-Unifonn Heating of Fibre Bundles ............ 29 3.5.5 Effect of Consolidation Pressure .............................................................. 30 3.5.6 Material