Nilotinib Intermediates and Preparation Thereof

Total Page:16

File Type:pdf, Size:1020Kb

Nilotinib Intermediates and Preparation Thereof (19) & (11) EP 2 305 667 A2 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 06.04.2011 Bulletin 2011/14 C07D 401/14 (2006.01) (21) Application number: 11151589.6 (22) Date of filing: 17.07.2009 (84) Designated Contracting States: • Kansal, Vinod, Kumar AT BE BG CH CY CZ DE DK EE ES FI FR GB GR 121003, Faridabad Haryana (IN) HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL • Zhu, Jirang PT RO SE SI SK SM TR Pudong Shanghai (CN) Designated Extension States: • Lifshitz-Liron, Revital AL BA RS Herzlia (IL) • Mistry, Dhirenkumar, N. (30) Priority: 17.07.2008 US 81464 P 393145, Rajpipla Gujarat (IN) 24.07.2008 US 83424 P • Vasoya, Sanjay, L. 20.08.2008 US 90368 P 360002, Dist-rajkot Gujarat (IN) 24.11.2008 US 117478 P • Ariyamuthu, Sundaraselvan 19.03.2009 US 161670 P 627006, Tirunelveli Tamilnada (IN) 13.05.2009 US 168822 P • Pilarski, Gideon 22.05.2009 US 171706 P 58417 Holon (IL) • He, Xungui (62) Document number(s) of the earlier application(s) in 201204 Pudong Shanghai (CN) accordance with Art. 76 EPC: 09790590.5 (74) Representative: Wong, Kit Yee D Young & Co LLP (71) Applicant: Teva Pharmaceutical Industries Ltd. 120 Holborn 49131 Petah Tiqva (IL) London EC1N 2DY (GB) (72) Inventors: Remarks: • Wang, Yanling This application was filed on 20-01-2011 as a Pudong Shanhai (CN) divisional application to the application mentioned • Li, Jie under INID code 62. Pudong Shanghai (CN) (54) Nilotinib intermediates and preparation thereof (57) Nilotinib•3HCl and its crystalline forms are described, and processes for the preparation of the same. EP 2 305 667 A2 Printed by Jouve, 75001 PARIS (FR) EP 2 305 667 A2 Description CROSS-REFERENCE TO RELATED APPLICATIONS 5 [0001] This application claims the benefit of U.S. Provisional Patent Application Serial. Nos. 61/081,464, filed July 17, 2008; 61/083,424, filed July 24, 2008; 61/090,368, filed August 20, 2008; 61/117,478, filed November 24, 2008; 61/161,670, filed March 19, 2009; 61/171,706, filed April 22, 2009; 61/168,822, filed April 13, 2009, which are incorporated herein by reference. 10 FIELD OF INVENTION [0002] The present invention is directed to preparation of Nilotinib by a one-pot process, intermediates of Nilotinib, Nilotinib·3HC1 and its crystalline forms. 15 BACKGROUND OF THE INVENTION [0003] Nilotinib, 4- methyl-N-[3-(4-methyl-1H-imidazol-1-yl)-5-(trifluoromethyl)phenyl]-3-[[4-(3-pyridinyl)-2-pyrimidinyl] amino]-benzamide, having the following formula 20 25 30 is a tyrosine kinase inhibitor used for the treatment of drug-resistant chronic myelogenous leukemia (CML), and in particular, for the treatment of chronic phase and accelerated phase Philadelphia chromosome positive chronic myeloid leukemia (CML) in adult patients whose disease has progressed on or who cannot tolerate other therapies that included 35 imatinib. Nilotinib is administered as a hydrochloride salt in forms of capsules that are marketed in the USA and the EU under the name Tasigna®. [0004] US patent no. 7,169,791 ("US ’791 ") and its parallel PCT publication WO 2004/005281, the journal article in Synthesis, 2007, vol 14, pp 2121-2124, as well as PCT publication nos.: WO 2006/135640, WO 2006/135641 ("WO ’641 "), WO 2007/018325 and WO 2007/017734, report processes for preparing Nilotinib intermediate, 3-(trifluoromethyl)- 40 5-(4-methyl-1H-imidazole-1-yl)-benzeneamine of formula I 45 50 by reacting 3-bromo-5-trifluoromethylaniline of formula II and 4-methylimidazole of formula III in the presence of a non- 55 alkaline hydroxide inorganic base, such as potassium carbonate, cesium carbonate and sodium hydride, a copper (I) salt, such as copper iodide and a complexing amine ligand, such as ethylene diamine. The process can be illustrated by the following scheme: 2 EP 2 305 667 A2 5 10 15 [0005] The journal article in Synthesis, 2007, Vol 14, pp 2121-2124, describes a purification process of 3-(trifluorome- thyl-5-(4-methyl-1H-imidazole-1-yl)-beuzeneamine of formula I. [0006] US ’791 describes processes for preparing Nilotinib and its different intermediates, using di- ethyl cyano phos- phate, as described in the following scheme: 20 25 30 35 40 45 50 55 3 EP 2 305 667 A2 5 10 15 20 25 30 35 40 45 [0007] WO ’641 further describes a process for preparing Nilotinib according to the following scheme: 50 55 4 EP 2 305 667 A2 5 10 15 [0008] The present invention provides improved processes to prepare and/or purify 3-(trifluoromethyl)-5-(4-methyl- 1H-imidazole-1-yl)-benzeneamine of formula I without requiring the use of column chromatography, and thus can be easily applied to large scale manufacture, as well as new intermediates of Nilotinib, which result in higher yields in the preparation of Nilotinib. 20 [0009] PCT publications WO 2007/015870 ("WO’870") and WO 2007/015871 1 ("WO’871") describe several Nilotinib salts including crystalline forms of nilotinib free base, Nilotinib hydrochloride and Nilotinib Sulfate. [0010] The present invention also relates to the solid state physical properties of Nilotinib•3HCl, 4-methyl-N-[3-(4- methyl-1H-imidazol-1-yl)-5-(trifluoromethyl)phenyl]-3-[[4-(3-pyridinyl)-2-pyrimidinyl]amino]-benzamide trihydrochloride. These properties can be influenced by controlling the conditions under which Nilotinib-3HC1 is obtained in solid form. 25 Solid state physical properties include, for example, the flowability of the milled solid. Flowability affects the ease with which the material is handled during processing into a pharmaceutical product. When particles of the powdered compound do not flow past each other easily, a formulation specialist must necessitate the use of glidants such as colloidal silicon dioxide, talc, starch, or tribasic calcium phosphate. [0011] Another important solid state property of a pharmaceutical compound is its rate of dissolution in aqueous fluid. 30 The rate of dissolution of an active ingredient in a patient’s stomach fluid can have therapeutic consequences since it imposes an upper limit on the rate at which an orally administered active ingredient can reach the patient’s bloodstream. The rate of dissolution is also a consideration in formulation syrups, elixirs, and other liquid medicaments. The solid state form of a compound can also affect its behavior on compaction and its storage stability. [0012] These practical physical characteristics are influenced by the conformation and orientation of molecules in the 35 unit cell, which define a particular polymorphic form of a substance. The polymorphic form can give rise to thermal behavior different from that of the amorphous material or another polymorphic form. Thermal behavior is measured in the laboratory by such techniques as capillary melting point, thermogravimetric analysis ("TGA"), and differential scanning calorimetry ("DSC") and can be used to distinguish some polymorphic forms from others. A particular polymorphic form can also give rise to distinct spectroscopic properties that can be detectable by powder rayx- crystallography, solid 40 state l3C NMR spectroscopy, and infrared spectrometry. [0013] Generally, a crystalline solid has improved chemical and physical stability over the amorphous form, and forms with low crystallinity. Crystalline forms may also exhibit improved solubility, hygroscopicity, bulk properties, and/or flow- ability. [0014] The discovery of new polymorphic forms of a pharmaceutically useful compound provides a new opportunity 45 to improve the performance characteristics of a pharmaceutical product. It enlarges the repertoire of materials that a formulation scientist has available for designing, for example, a pharmaceutical dosage form of a drug with a targeted release profile or other desired characteristic. [0015] There is a need in the art for new intermediates of Nilotinib and processes for their preparation, new processes for preparing Nilotinib and new crystalline forms of Nilotinib•3HCl salt and processes for the preparation thereof. 50 SUMMARY OF THE INVENTION [0016] In one embodiment, the present invention provides a process for preparing 3-(trifluoromethyl)- 5-(4-methyl-1H- imidazole-1-yl)-benzeneamine of formula I, 55 5 EP 2 305 667 A2 5 10 comprising reacting 3-bromo-5- trifluoromethylaniline of formula II, 15 20 25 4-methylimidazole of formula III, 30 35 40 a base selected from a group consisting of: an alkaline metal hydroxide, an alkaline earth metal hydroxide and ammonium hydroxide; and a water absorbing agent. [0017] In another embodiment, the present invention provides a process for crystallizing the compound of formula I from a mixture of ethyl acetate and petroleum ether comprising dissolving 3-(trifluoromethyl- 5-(4-methyl-1H-imidazole- 1-yl)-benzeneamine of formula I in ethyl acetate; adding petroleum ether to obtain a suspension and isolating. 45 [0018] In yet another embodiment, the present invention further provides a process for purifying the intermediate of formula I by recrystallizing it from a mixture of IPA and water or a mixture of ethanol and water. [0019] In one embodiment, the present invention provides a process for preparing Nilotinib and salt thereof of the following formula 50 55 6 EP 2 305 667 A2 5 10 comprising: preparing 3-(trifluoromethyl)-5-(4-methyl-1H-imidazole-1-yl)-benzeneamine of formula I according to the 15 processes of the present and converting it to Nilotinib or a salt thereof wherein, n is either 0 or 1, and HA is an acid, preferably, HCI. [0020] In another embodiment, the present invention provides N-(3- Bromo-5-trifluoromethylphenyl)-4-methyl-3-[[4-(3- pyridinyl)-2-pyrimidinyl]amino]benzamide, a Nilotinib intermediate of formula IV, having the following structure: 20 25 30 [0021] In another embodiment, the present invention provides an isolated N-(3-Bromo-5-trifluoromethylphenyl)-4- methyl-3-[[4-(3-pyridinyl)-2-pyrimidinyl]amino]benzamide, a Nilotinib intermediate of formula IV.
Recommended publications
  • Acid Hydrazides, Potent Reagents for Synthesis of Oxygen‑, Nitrogen‑, And/Or Sulfur-Containing Heterocyclic Rings
    Review pubs.acs.org/CR Acid Hydrazides, Potent Reagents for Synthesis of Oxygen‑, Nitrogen‑, and/or Sulfur-Containing Heterocyclic Rings Poulomi Majumdar,†,‡ Anita Pati,†,§ Manabendra Patra,∥ Rajani Kanta Behera,† and Ajaya Kumar Behera*,† † Organic Synthesis Laboratory, School of Chemistry, Sambalpur University, Jyoti Vihar, Burla 768019, Orissa, India ‡ State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P.R. China § School of Applied Sciences (Chemistry), KIIT University, Bhubaneswar 751024, India ∥ National Institute of Science & Technology, Palur Hill, Berhampur 761068, Orissa, India Author Information 2971 Corresponding Author 2971 Notes 2971 Biographies 2971 Acknowledgments 2972 Abbreviations 2972 References 2972 1. INTRODUCTION Heterocycles form by far the largest of the classical divisions of organic chemistry. Moreover, they are of immense importance CONTENTS not only both biologically and industrially but also to the functioning of any developed human society as well. The 1. Introduction 2942 majority of pharmaceutical products that mimic natural products 2. Synthesis of Acid Hydrazides 2943 with biological activity are heterocycles. 3. Reactions of Acid Hydrazides 2944 Numerous natural drugs such as quinine, papaverine, atropine, 3.1. Synthesis of Five-Membered Rings with One codeine, emetine, reserpine, procaine, morphine, and theophyl- Heteroatom 2944 line are heterocycles. The majority of the compounds we are 3.1.1. Pyrrole and Their Fused Derivatives 2944 familiar with as synthetic drugs such as chlorpromazine, 3.2. Synthesis of Five-Membered Rings with Two diazepam, isoniazid, metronidazole, azidothymidine, barbitu- Heteroatoms 2945 rates, antipyrine, captopril, and methotrexate are also hetero- 3.2.1. Pyrazoles and Their Fused Derivatives 2945 cycles. Some dyes (e.g., mauveine), luminophores, (e.g., acridine 3.2.2.
    [Show full text]
  • Priya Mathew
    PROGRESS TOWARDS THE TOTAL SYNTHESIS OF MITOMYCIN C By Priya Ann Mathew Dissertation Submitted to the Faculty of the Graduate School of Vanderbilt University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in Chemistry August, 2012 Nashville, Tennessee Approved: Professor Jeffrey N. Johnston Professor Brian O. Bachmann Professor Ned A. Porter Professor Carmelo J. Rizzo ACKNOWLEDGMENTS I would like to express my gratitude to everyone who made my graduate career a success. Firstly, I would like to thank my advisor, Professor Jeffrey Johnston, for his dedication to his students. He has always held us to the highest standards and he does everything he can to ensure our success. During the challenges we faced in this project, he has exemplified the true spirit of research, and I am especially grateful to him for having faith in my abilities even when I did not. I would like to acknowledge all the past and present members of the Johnston group for their intellectual discussion and their companionship. In particular, I would like to thank Aroop Chandra and Julie Pigza for their incredible support and guidance during my first few months in graduate school, Jayasree Srinivasan who worked on mitomycin C before me, and Anand Singh whose single comment “A bromine is as good as a carbon!” triggered the investigations detailed in section 2.6. I would also like to thank the other members of the group for their camaraderie, including Jessica Shackleford and Amanda Doody for their friendship, Hubert Muchalski for everything related to vacuum pumps and computers, Michael Danneman and Ken Schwieter for always making me laugh, and Matt Leighty and Ki Bum Hong for their useful feedback.
    [Show full text]
  • Reaxysfiletm on STN
    1 ReaxysFile TM on STN: Reactions 2 ReaxysFile on STN August 2012 ReaxysFile TM on STN: Reactions Introduction Chemical reactions such as combustion in the fire, fermentation and the reduction of ores to metals are known since ancient times. Initial theories of transformation of materials were developed by Greek philosophers, such as the Four-Element Theory stating that any substance is composed of the four basic elements – fire, water, air and earth. In the Middle Ages, chemical transformations were studied by Alchemists. They attempted, in particular, to convert lead into gold. Regarding the organic chemistry, it was long believed that compounds obtained from living organisms were too complex to be obtained synthetically. According to the concept of “vitalism”, organic matter was endowed with a "vital force" and distinguished from inorganic materials. This separation ended by the synthesis of urea from inorganic precursors in 1828. The production of chemical substances that do not normally occur in nature has long been tried, with the devel- opment of the lead chamber process in 1746 and the Leblanc process, chemical reactions became implemented into the industry. Nowadays, the chemical and pharmaceutical industry represents an important economic acti - vity. To protect developed products and evaluate the freedom-to-operate, reactions from patents became more and more important over the last years. ReaxysFile includes detailed information on reactions associated with a substance from journals and patents. Fig.1: Reaction information derived from a patent Example Example Title Solvent (one detail) Reaction Text NMR/IR Data 3 ReaxysFile on STN August 2012 Fig.2: Corresponding part of the database record (RX) Reaction: RX Reaction ID: 22874415 Reactant AN (.RAN): 13197503, 5336292 Reactant (.RCT): 1-(4-chlorobutyl)-4,5-dichloro-2-methyl-1H -imidazole, 5-fluoro-2-(piperazin-1-yl)-pyrimidine Product AN (.PAN): 13218853 Product (.PRO): 2-<4-<4-(4,5-dichloro-2-methylimidazol-1-y l)butyl>-1-piperazinyl>-5-fluoropyrimidine React.
    [Show full text]
  • This Item Is the Archived Peer-Reviewed Author-Version Of
    This item is the archived peer-reviewed author-version of: Carbamate synthesis via a shelf stable and renewable C1 reactant Reference: Dobi Zoltan, Bheemireddy Narendraprasad Reddy, Renders Evelien, Van Raemdonck Laurent, Mensch Carl, De Smet Gilles, Chen Chen, Bheeter Charles, Sergeyev Sergey, Herrebout Wouter, ....- Carbamate synthesis via a shelf stable and renew able C1 reactant Chemsuschem - ISSN 1864-5631 - 12:13(2019), p. 3103-3114 Full text (Publisher's DOI): https://doi.org/10.1002/CSSC.201900406 To cite this reference: https://hdl.handle.net/10067/1583040151162165141 Institutional repository IRUA Carbamate Synthesis Via a Shelf Stable and Renewable C1 Reactant Zoltán Dobi,[a] B. Narendraprasad Reddy,[a] Evelien Renders,[a] Laurent Van Raemdonck,[a] Carl Mensch,[b] Gilles De Smet,[a] Chen Chen,[a] Charles Bheeter,[a] Sergey Sergeyev,[a] Wouter A. Herrebout,[b] and Bert U. W. Maes[a]* Abstract: 4-Propylcatechol carbonate is a shelf-stable, renewable C1 reactant. It is easily prepared from renewable 4-propylcatechol (derived from wood) and dimethyl carbonate (derived from CO2) using a reactive distillation system. In this work the carbonate reactant has been used for the two-step synthesis of carbamates under mild reaction conditions. In the first step, 4-propylcatechol carbonate is reacted with an alcohol . at 50-80 °C using a Lewis acid catalyst (e.g. Zn(OAc)2 2H2O). With liquid alcohols no solvent and with solid alcohols 2-methyltetrahydrofuran was used as solvent. In the second step, the alkyl 2-hydroxy-propylphenyl carbonates intermediates obtained are reacted with amines at room temperature in 2-methyltetrahydrofuran, forming the target carbamates and by-product 4-propylcatechol, which can be recycled into carbonate reactant.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 8,592,610 B2 Bretschneider Et Al
    USOO859261 OB2 (12) United States Patent (10) Patent No.: US 8,592,610 B2 Bretschneider et al. (45) Date of Patent: *Nov. 26, 2013 (54) SPIROHETEROCYCLICTETRONIC ACID 5,700,758 A 12/1997 Rösch et al. DERVATIVES 5,705,476 A 1, 1998 Hoffarth 5,739,079 A 4/1998 Holdgrin et al. 5,792,755 A 8/1998 Sagenmüller et al. (75) Inventors: Thomas Bretschneider, Lohmar (DE); 5,830,825 A 11/1998 Fischer et al. Reiner Fischer, Monheim (DE); Stefan 5,830,826 A 11/1998 Fischer et al. Lehr, Liederbach (DE); Olga Malsam, 5,972,839 A 10, 1999 Ziemer et al. Rosrath (DE); Arnd Voerste, Cologne 5,994,274 A 11/1999 Fischer et al. 6,114,374. A 9, 2000 Lieb et al. (DE) 6,140,358 A 10/2000 Lieb et al. 6,200,932 B1 3/2001 Fischer et al. (73) Assignee: Bayer CropScience AG, Monheim (DE) 6,235,680 B1 5, 2001 Ziemer et al. 6,251,827 B1 6/2001 Ziemer et al. (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 (Continued) U.S.C. 154(b) by 0 days. FOREIGN PATENT DOCUMENTS This patent is Subject to a terminal dis CA 1162 071 A1 2, 1984 claimer. CA 2671 179 A1 6, 2008 (21) Appl. No.: 13/616,437 (Continued) OTHER PUBLICATIONS (22) Filed: Sep. 14, 2012 Baur et al., 1997, Pesticide Science 51, 131-152.* Baur, P. et al., “Polydisperse Ethoxylated Fatty Alcohol Surfactants (65) Prior Publication Data as Accelerators of Cuticular Penetration.
    [Show full text]
  • Catalytic Carbonylation of Amines And
    CATALYTIC CARBONYLATION OF AMINES AND DIAMINES AS AN ALTERNATIVE TO PHOSGENE DERIVATIVES: APPLICATION TO SYNTHESES OF THE CORE STRUCTURE OF DMP 323 AND DMP 450 AND OTHER FUNCTIONALIZED UREAS By KEISHA-GAY HYLTON A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2004 Copyright 2004 by Keisha-Gay Hylton Dedicated to my father Alvest Hylton; he never lived to celebrate any of my achievements but he is never forgotten. ACKNOWLEDGMENTS A number of special individuals have contributed to my success. I thank my mother, for her never-ending support of my dreams; and my grandmother, for instilling integrity, and for her encouragement. Special thanks go to my husband Nemanja. He is my confidant, my best friend, and the love of my life. I thank him for providing a listening ear when I needed to “discuss” my reactions; and for his support throughout these 5 years. To my advisor (Dr. Lisa McElwee-White), I express my gratitude for all she has taught me over the last 4 years. She has shaped me into the chemist I am today, and has provided a positive role model for me. I am eternally grateful. I, of course, could never forget to mention my group members. I give special mention to Corey Anthony, for all the free coffee and toaster strudels; and for helping to keep the homesickness at bay. I thank Daniel for all the good gossip and lessons about France. I thank Yue Zhang for carbonylation discussions, and lessons about China.
    [Show full text]
  • FUNCTIONAL PLA BASED SYSTEMS a Dissertation Presented to the Graduate Faculty of the University of Akron in Partial Fulfillment
    FUNCTIONAL PLA BASED SYSTEMS A Dissertation Presented to The Graduate Faculty of The University of Akron In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy Colin Wright December, 2015 FUNCTIONAL PLA BASED SYSTEMS Colin Wright Dissertation Approved: Accepted: ________________________________ ____________________________________ Advisor Department Chair Dr. Coleen Pugh Dr. Coleen Pugh ________________________________ ____________________________________ Committee Chair Dean of the College Dr. Robert Weiss Dr. Eric Amis ________________________________ ____________________________________ Committee Member Dean of the Graduate School Dr. Mathew Becker Dr. Chand Midha ________________________________ ____________________________________ Committee Member Date Dr. William Landis ________________________________ Committee Member Dr. Yang Yun ii ABSTRACT Poly(lactic acid) (PLA), is used in a wide variety of applications. It is a well studied polymer and offers many advantages, such as being derived from renewable resources, being biodegradable, FDA approved for biomedical applications, and commercially available. The main synthetic drawback is that the only sites for post-polymerization functionalization are at the two end groups. By incorporating 3-hydroxy-2- bromopropionic acid as a co-monomer with lactic acid, a site for post-polymerization functionalization can be added. Since the halogen is alpha to a carbonyl, it is activated toward nucleophlic substitution, radical formation, and enolate chemistry. The spacing on the backbone of our polymer allows for additional functionalization including rearrangement, electrophilic aromatic substitution, and cationic ring-opening polymerization. iii DEDICATION I would like to dedicate this dissertation to my parents for encouraging me to attend graduate school. iv ACKNOWLEDGMENTS I would like to thank my mother and father for their unfailing support of me during my time in academia.
    [Show full text]
  • I the Tandem Chain Extension-Acylation Reaction II Synthesis of Papyracillic Acid A
    University of New Hampshire University of New Hampshire Scholars' Repository Doctoral Dissertations Student Scholarship Fall 2013 I The tandem chain extension-acylation reaction II Synthesis of papyracillic acid A: Application of the tandem homologation- acylation reaction III Synthesis of tetrahydrofuran-based peptidomimetics Carley Meredith Spencer Follow this and additional works at: https://scholars.unh.edu/dissertation Recommended Citation Spencer, Carley Meredith, "I The tandem chain extension-acylation reaction II Synthesis of papyracillic acid A: Application of the tandem homologation-acylation reaction III Synthesis of tetrahydrofuran-based peptidomimetics" (2013). Doctoral Dissertations. 749. https://scholars.unh.edu/dissertation/749 This Dissertation is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. I. THE TANDEM CHAIN EXTEN SION - AC YL ATION REACTION II. SYNTHESIS OF PAPYRACILLIC ACID A: APPLICATION OF THE TANDEM HOMOLOGATION-ACYLATION REACTION III. SYNTHESIS OF TETRAHYDROFURAN-BASED PEPTIDOMIMETICS BY Carley Meredith Spencer B.A., Connecticut College, 2008 DISSERTATION Submitted to the University of New Hampshire in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Chemistry September 2013 UMI Number: 3575989 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.
    [Show full text]
  • Information to Users
    INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book. Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6" x 9” black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order. University Microfilms International A Bell & Howell Information Company 300 North Zeeb Road. Ann Arbor, Ml 48106-1346 USA 313/761-4700 800/521-0600 Order Number 9411957 Studies toward the synthesis of ptilomycalin A analogs Grillot, Anne-Laure, Ph.D. The Ohio State University, 1993 UMI 300 N.
    [Show full text]
  • (See Paragraph – 6) FORM 1 (I) Basic Information S. No. Item Details 1 Name of the Project/S M/S. Teck Bond Labo
    APPENDIX I (See paragraph – 6) FORM 1 (I) Basic Information S. Item Details No. 1 Name of the Project/s M/s. Teck Bond Laboratories Pvt. Ltd., (APIs & API Intermediate Manufacturing Unit) Application for EC Validity extension 2 S.No. in the Schedule 5 (f) 3 Proposed capacity / area / length / Production capacity : 240 TPA tonnage to be handled / command area / (Four products will be manufacture at a time lease area / number of wells to be drilled on campaign basis out of 18 products) 4 New/ Expansion / Modernization Application for EC Validity extension 5 Existing Capacity / Area etc., Application for EC Validity extension Area : 2.72 hectares 6 Category of Project ie., ‘A’ or ‘B’ Category ‘A’ 7 Does it attract the general Condition? If No Yes, Please specify 8 Does it attract the specific condition? If No Yes, Please specify 9 Location Plot/Survey/Khasra No. Sy. No. 168,170/A, 170/AA, 173/1, 173/1A. Village Anantharam Tehsil Jinnaram District Medak State Telangana 10. Nearest railway station / Dabilpur Railway Station – 10 km (SE) airport along with distance in km. Shamshabad (Hyderabad) – 51 km (S) (aerial distance) 11. Nearest Town, City, Jinnaram – 9 km (SW) District Headquarters along with distance Hyderabad ORR – 12km (S) in kms. Sangareddy – 32 km (SSW) District Headquarters – Medak – 39 km (NNW) (aerial distance) 12. Village Panchayats, Zilla Parishad, Village Panchayat address (local body): Municipal Corporation, Local body Gram Panchayat Office, (complete postal addresses with Anantaram Village, telephone nos. to be given) Jinnaram Mandal, Medak District, Telangana State 13 Name of the applicant M/s.
    [Show full text]
  • Keteneylidenetriphenylphosphor
    Keteneylidenetriphenylphosphorane as a Versatile C-2 Building Block Leading to Tetronic Acids with Potential Herbicidal and anti-HIV Activity by Gary John Gordon BSc. (Hons) Being a thesis submitted for the degree of Doctor of Natural Science (Dr. Rer. Nat.) to the Faculty of Biology, Chemistry and Geological Sciences of the University of Bayreuth Based on research carried out under the supervision of Prof. Rainer Schobert Organische Chemie I University of Bayreuth, (Germany) and The School of Chemistry The Queen’s University of Belfast, (UK) January 2004 Erklärung Hiermit erkläre ich, dass ich die vorliegende Arbeit selbst verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel verwendet habe. Ich habe nicht versucht (mit oder ohne Erfolg), eine Dissertation einzureichen oder mich der Doktorprufung zu unterziehen. Bayreuth, den 19. Januar, 2004 Gary Gordon The following work was completed from February 2000 until September 2001 at The Queen’s University of Belfast (U.K.) and from October 2001 until January 2004 at the University of Bayreuth (Germany). This work was completed under the supervision of Prof. Schobert. I would like to thank Prof. Schobert for the interesting project and for all his encouragement and enthusiasm throughout the course of my research, for all his help and many hours of patience when I bombarded him with endless questions. I would also like to thank Prof. Schobert for the opportunity to come to Germany to complete my studies. Thanks are also due for his assistance in learning German (the language and the beer) and for encouraging us to travel and explore Germany. Acknowlegements I would like to thank Dr.
    [Show full text]
  • Mechanochemical 1,1'-Carbonyldiimidazole-Mediated Synthesis of Carbamates
    Mechanochemical 1,1’-Carbonyldiimidazole-Mediated Synthesis of Carbamates Marialucia Lanzillotto, Laure Konnert, Frédéric Lamaty, Jean Martinez, Evelina Colacino To cite this version: Marialucia Lanzillotto, Laure Konnert, Frédéric Lamaty, Jean Martinez, Evelina Colacino. Mechanochemical 1,1’-Carbonyldiimidazole-Mediated Synthesis of Carbamates. ACS Sustainable Chemistry & Engineering, American Chemical Society, 2015, 3 (11), pp.2882-2889. 10.1021/ac- ssuschemeng.5b00819. hal-02370950 HAL Id: hal-02370950 https://hal.archives-ouvertes.fr/hal-02370950 Submitted on 5 Feb 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Research Article pubs.acs.org/journal/ascecg Mechanochemical 1,1′-Carbonyldiimidazole-Mediated Synthesis of Carbamates Marialucia Lanzillotto, Laure Konnert, Fredérić Lamaty, Jean Martinez, and Evelina Colacino* Institut des Biomoleculeś Max Mousseron (IBMM) UMR 5247 CNRS−UM−ENSCM, UniversitéMontpellier, Campus Triolet, Place E. Bataillon, 34095 Montpellier, Cedex 5, France *S Supporting Information ABSTRACT: 1,1′-Carbonyldiimidazole (CDI) was used as an eco-friendly acylation agent for the mechanochemical prepara- tion of carbamates. The anticonvulsant N-methyl-O-benzyl carbamate was obtained in a vibrational ball-mill, while planetary ball-mill was suitable to develop a new sustainable method to access N-protected amino esters with no racemization.
    [Show full text]