Pharmacological and Therapeutic Potential of Oxalis Corniculata Linn. Ansari Mushir, Nasreen Jahan*, Nadeem Ashraf, Mohd
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Spread of Citrus Tristeza Virus in a Heavily Infested Citrus Area in Spain
Spread of Citrus Tristeza Virus in a Heavily Infested Citrus Area in Spain P. Moreno, J. Piquer, J. A. Pina, J. Juarez and M. Cambra ABSTRACT. Spread of Citrus Tristeza Virus (CTV) in a heavily infested citrus area in Southern Valencia (Spain) has been monitored since 1981. Two adjacent plots with 400 trees each were selected and tested yearly by ELISA (enzyme-linked immunosorbent assay). One of them was planted to 4-yr-old Newhall navel orange on Troyer citrange and the other to 8-yr-old Marsh seedless grapefruit on the same rootstock. Both had been established using virus-free budwood. In 1981, 98.7% of the Newhall navel plants indexed CTV-positive and by 1984 all of them were infected, whereas only 17.8% of the Marsh grapefruit indexed CTV-positive in 1981, and 42.5% were infected in 1986. This is an indication that grapefruit is less susceptible than navel orange to tristeza infection under the Spanish field conditions. Wild plants of 66 species collected in the same heavily tristeza-infested area were also tested by ELISA to find a possible alternate non-citrus host. CTV was not found in any of the more than 450 plants analyzed. Index words. virus spread, ELISA, noncitrus hosts. Tristeza was first detected in virus diffusion under various environ- Spain in 1957 and since then has mental conditions. In this paper we caused the death of about 10 million present data on CTV spread in a trees grafted on sour orange and the heavily infested area. A survey progressive decline of an additional among wild plants growing in the several thousand hectares of citrus on same citrus area was also undertaken this rootstock. -
Draft Conservation Advice: Natural Damp Grasslands of the South East Coastal Plain Bioregion Ecological Community
Environment Protection and Biodiversity Conservation Act 1999 (EPBC Act) Draft <Approved> Conservation Advice for the Natural Damp Grasslands of the South East Coastal Plain Bioregion 1. The Threatened Species Scientific Committee (the Committee) was established under the EPBC Act and has obligations to present advice to the Minister for the Environment (the Minister) in relation to the listing and conservation of threatened ecological communities, including under sections 189, 194N and 266B of the EPBC Act. 2. The Committee provided its advice on the Natural Damp Grasslands of the South East Coastal Plain Bioregion ecological community to the Minister as a draft of this <approved> conservation advice. In 2014, the Minister <accepted / rejected> the Committee’s advice, <adopting it as the approved conservation advice>. 3. <If accepted> The Minister amended the list of threatened ecological communities under section 184 of the EPBC Act to include the Natural Damp Grasslands of the South East Coastal Plain Bioregion ecological community in the <critically endangered> category. Part of the ecological community is also listed as threatened under the Flora and Fauna Guarantee Act 1988 in Victoria, as the Plains Grassland (South Gippsland) Community. 4. A draft description for this ecological community was made available for expert and public comment for a minimum of 30 business days. The Committee and Minister had regard to all public and expert comment that was relevant to the consideration of the ecological community. 5. This <approved> conservation advice has been developed based on the best available information at the time it was <approved>; this includes scientific literature, advice from consultations, existing plans, records or management prescriptions for this ecological community. -
Plant Life of Western Australia
INTRODUCTION The characteristic features of the vegetation of Australia I. General Physiography At present the animals and plants of Australia are isolated from the rest of the world, except by way of the Torres Straits to New Guinea and southeast Asia. Even here adverse climatic conditions restrict or make it impossible for migration. Over a long period this isolation has meant that even what was common to the floras of the southern Asiatic Archipelago and Australia has become restricted to small areas. This resulted in an ever increasing divergence. As a consequence, Australia is a true island continent, with its own peculiar flora and fauna. As in southern Africa, Australia is largely an extensive plateau, although at a lower elevation. As in Africa too, the plateau increases gradually in height towards the east, culminating in a high ridge from which the land then drops steeply to a narrow coastal plain crossed by short rivers. On the west coast the plateau is only 00-00 m in height but there is usually an abrupt descent to the narrow coastal region. The plateau drops towards the center, and the major rivers flow into this depression. Fed from the high eastern margin of the plateau, these rivers run through low rainfall areas to the sea. While the tropical northern region is characterized by a wet summer and dry win- ter, the actual amount of rain is determined by additional factors. On the mountainous east coast the rainfall is high, while it diminishes with surprising rapidity towards the interior. Thus in New South Wales, the yearly rainfall at the edge of the plateau and the adjacent coast often reaches over 100 cm. -
Mother's Day Weekend
MAY 2019 Serving You Since 1955 981 Alden Lane, Livermore, CA • www.aldenlane.com • (925) 447-0280 Mother’s Day Weekend May 11th & 12th Take time to Smell the Roses! To celebrate Mother’s Day, Kelly will set up a “FRESH Cut Perfume Bar” where roses will be displayed and labeled. You’ll be able to cup the blooms and inhale their fragrance. What a great way to experience the wonder of rose diversity. Come sip iced tea and “Take Time to Smell the Roses”! Our “Rose Garden” is awash with color. The roses are blooming beautifully and it’s a wonderful time to select just the right color, form and FRAGRANCE for your garden and vase. Stroll the aisles and soak up the beauty and perfume. We had the opportunity to visit a rose hybridizer where specialized staff discerningly evaluate each rose variety bloom and translate its aromas, much like a vintner describing a wine. Take your turn at sampling the essence of each rose. Is it citrus, notes of old rose or a hint of Hyacinth? This will be a fun and ‘Fragrant’ activity. Heather will have a “Floral” Market set up in the “Rose Garden” filled with blossom themed gift items including soaps & lotions. Don’t miss Nancy’s rose companion Pop Up Garden demonstrating what plants to pair with your roses. Her artful combinations will inspire you! SAVE THE DATE!! Art Under the Oaks $$ It’s Time for $$ on July 20 & 21 from 11-4 p.m. The event showcases $$ Bonus Dollars Again! $$ many talented Our traditional springtime event – artists, musicians Bonus Dollars are back! and wine makers. -
Acute and Sub-Chronic Pre-Clinical Toxicological Study of Averrhoa Carambola L
Vol. 12(40), pp. 5917-5925, 2 October, 2013 DOI: 10.5897/AJB10.2401 ISSN 1684-5315 ©2013 Academic Journals African Journal of Biotechnology http://www.academicjournals.org/AJB Full Length Research Paper Acute and sub-chronic pre-clinical toxicological study of Averrhoa carambola L. (Oxalidaceae) Débora L. R. Pessoa, Maria S. S. Cartágenes, Sonia M.F. Freire, Marilene O. R. Borges and Antonio C. R. Borges* Federal University of Maranhão, Physiological Science Department, Pharmacology Research and Post-Graduate Laboratory. Av. dos Portugueses. S/N, Bacanga, São Luís – Maranhão-Brazil, CEP 65085-582. Accepted 18 June, 2013 Averrhoa carambola L., a species belonging to the Oxalidaceae family, is associated with neurological symptoms in individuals with renal diseases. The objective of this work was to accomplish a pre- clinical toxicological study of the hydroalcoholic extract (HE) from A. carambola leaves. Wistar rats and Swiss mice, both male and female, were used in these experiments. The rats were used in the acute toxicity assessment, with the extract administered at doses of 0.1 to 8.0 g/kg (oral route), and 0.5 to 3.0 g/kg (via intraperitoneal route). The mice received the extract in doses of 0.5 to 5.0 g/kg (via oral and intraperitoneal routes) and were observed for 14 days. Rats were also used in the sub-chronic toxicity evaluation, and divided into three groups (n=10): control group, HE 0.125 g/kg and HE 0.25 g/kg. These animals received HE for a 60 day period, at the end of which a macroscopic analysis of selected organs was performed with biochemical analysis of the blood. -
Oxalis Violacea L. Violet Wood-Sorrel
New England Plant Conservation Program Oxalis violacea L. Violet Wood-Sorrel Conservation and Research Plan for New England Prepared by: Thomas Mione Professor Central Connecticut State University For: New England Wild Flower Society 180 Hemenway Road Framingham, MA 01701 508/877-7630 e-mail: [email protected] • website: www.newfs.org Approved, Regional Advisory Council, December 2002 1 SUMMARY Violet Wood-Sorrel (Oxalis violacea L., Oxalidaceae) is a low-growing herbaceous, self-incompatible perennial that produces violet flowers in May, June and again in September. Reproduction is both sexual (with pollination mostly by bees), and asexual (by way of runners). The species is widely distributed in the United States but is rare in New England. Oxalis violacea is an obligate outcrosser: the species is distylous, meaning that there are two flower morphs (pin and thrum), with a given plant producing one morph, not both. Pin flowers are more common than thrum flowers. In New England, the habitat varies from dry to moist, and for populations to remain vigorous forest canopies must remain partially open. Succession, the growth of plants leading to shading, is a factor contributing to decline of O. violacea in New England, as are invasive species and habitat fragmentation. Fire benefits this species, in part by removing competitors. Human consumption of the leaves has been reported. Oxalis violacea has a Global Status Rank of G5, indicating that it is demonstrably widespread, abundant and secure. In Massachusetts, it is ranked as Threatened; five occurrences are current (in four towns among three counties) and 10 are historic. In Connecticut, it is listed as a species of Special Concern; 10 occurrences are current (in ten towns among six counties) and 19 are historic. -
Host Plants and Nectar Plants of Butterflies in San Diego County
Host Plants and Nectar Plants of Butterflies in San Diego County Speaker: Marcia Van Loy San Diego Master Gardener Association Butterfly Caterpillar Host Plant Butterfly Nectar Source Admiral Aspens, birches, oaks sp., willows, poplars, Aphid honeydew, bramble blossom (Rubus) honeysuckle, wild cherry Admiral, California Sister Coast & canyon live oak Rotting fruit, dung, sap; rarely flowers Admiral, Lorquin’s Willows, cottonwood, aspens, oak sp. Calif. lilac, mint, sap, fruit, dung poplars, willows sp. Admiral, Red Aspens, birches, hops, nettle sp., oak sp., Dandelion, goldenrod, mallow, verbena, willows buddleja, purple coneflower, garlic chives, lantana, marigold, privet, thistel, dogbane Blues: Achmon, Arrowhead, Alfalfa, clovers, dogwoods, legumes, lupines, California aster, asclepias, Spanish lotus, Bernardino, Lupine, Marine, vetches, wild cherry, Chinese wisteria, legumes, lupine, heliotrope, wild pea, dudleya, Sonoran plumbago violets, buckwheat (Eriogonum) Buckeye, Common Snapdragon, loosestrife (Lysimachia, Ajuga (carpet bugle) Lythurum), mallows, nettles, thistles, plantains, antennaria everlasting Cabbage White Mustard and cabbage family, broccoli, Arugula, blood flower, Brazilian verbena, nasturtium spp. buddleja, asclepias, day lily, lantana, lavender, liatris, marigold, mint, oregano, radishes, red clover, some salvia and sedum, thyme, tithonia, winter cress, zinnia, eupatorium Checkerspots: Wright’s, Gabb’s, Asters, chelone, digitalis, hostas, rudbeckia Asclepias, viburnum, wild rose, Calif. aster Imperial, Variable, Chalcedon, -
Flora of South Australia 5Th Edition | Edited by Jürgen Kellermann
Flora of South Australia 5th Edition | Edited by Jürgen Kellermann KEY TO FAMILIES1 J.P. Jessop2 The sequence of families used in this Flora follows closely the one adopted by the Australian Plant Census (www.anbg.gov. au/chah/apc), which in turn is based on that of the Angiosperm Phylogeny Group (APG III 2009) and Mabberley’s Plant Book (Mabberley 2008). It differs from previous editions of the Flora, which were mainly based on the classification system of Engler & Gilg (1919). A list of all families recognised in this Flora is printed in the inside cover pages with families already published highlighted in bold. The up-take of this new system by the State Herbarium of South Australia is still in progress and the S.A. Census database (www.flora.sa.gov.au/census.shtml) still uses the old classification of families. The Australian Plant Census web-site presents comparison tables of the old and new systems on family and genus level. A good overview of all families can be found in Heywood et al. (2007) and Stevens (2001–), although these authors accept a slightly different family classification. A number of names with which people using this key may be familiar but are not employed in the system used in this work have been included for convenience and are enclosed on quotation marks. 1. Plants reproducing by spores and not producing flowers (“Ferns and lycopods”) 2. Aerial shoots either dichotomously branched, with scale leaves and 3-lobed sporophores or plants with fronds consisting of a simple or divided sterile blade and a simple or branched spikelike sporophore .................................................................................. -
Ethnoecology of Oxalis Adenophylla Gillies Ex Hook. Ampamp
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CONICET Digital Journal of Ethnopharmacology 155 (2014) 533–542 Contents lists available at ScienceDirect Journal of Ethnopharmacology journal homepage: www.elsevier.com/locate/jep Research Paper Ethnoecology of Oxalis adenophylla Gillies ex Hook. & Arn.$ Juan José Ochoa a, Ana Haydeé Ladio b,n a Instituto de Investigaciones en Diversidad Cultural y Procesos de Cambio (CONICET-UNRN), Mitre 630 5to A, Río Negro, San Carlos de Bariloche 8400, Argentina b Instituto de Investigaciones en Biodiversidad y Medioambiente (CONICET-UNComa), Quintral 1250, Río Negro, San Carlos de Bariloche 8400, Argentina article info abstract Article history: Ethnopharmacological relevance: We studied the ethnoecological knowledge of medicinal Oxalis adeno- Received 4 February 2014 phylla in 3 rural villages of north Patagonia, Argentina. To evaluate links between use frequency, Received in revised form ethnoecological knowledge, sociocultural variables and the conservation status of this plant. 21 April 2014 Materials and method: Forty informants were interviewed in relation to their knowledge, use, perception Accepted 29 May 2014 and the ecology of Oxalis adenophylla. Sociocultural variables were also documented, such as age, gender, Available online 6 June 2014 size of family group living in the house, economic activities and ethnic self-determination. The Keywords: abundance and availability of these plants were estimated in two villages, by measuring the number Conservation of plants per area, their weight and the relation between time invested and biomass collected. We tested Wild edible and medicinal plant frequency of use and age with Spearman's rank correlation coefficient. -
[ Plug + Play ] Programs
plug + play [ VARIETY CATALOG 2011-2012 ] ® PLUG CONNECTION 2627 Ramona Drive Vista, California 92084 760.631.0992 760.940.1555 (fax) [email protected] plugconnection.com © 2011 PLUG CONNECTION. ALL RIGHTS RESERVED. PLUG INTO THE MOST STIMULATING SOURCE FOR DAZZLING PLANTS. OUR TEAM IS INTERLINKED WITH THE MOST FORWARD-THINKING BREEDERS ON THE PLANET, ALLOWING US TO BRING YOU IMPRESSIVE NEW VARIETIES AND TURN UP THE VOLUME ON THE CLASSICS. EACH OF THESE POWERFUL PLANTS COMES PACKAGED WITH SIMPLICITY, SERVICE AND SUPPORT, MAKING IT EASY TO KEEP YOUR BUSINESS SHOOTING UPWARD. INSTALL OUR PRODUCTS AND GET PROFITS. PROSPERITY. PEACE OF MIND. IF YOU’RE READY FOR THE GOOD STUFF, IT’S TIME TO HIT PLAY. PLUG + PLAY PROGRAMS. 17 WESTFLOWERS® BY WESTHOFF. 78 ERYSIMUM GLOW™. 18 ASTERS KICKIN™ . 82 contents ERYSIMUM RYSI. 19 BIDENS. 84 of ERYSIMUM POEM . 20 BRACTEANTHA . 84 ERYSIMUM WINTER. 21 COSMOS CHOCAMOCHA. 84 table BUDDLEJA BUZZ™ BUTTERFLY BUSH. 22 CHRYSOCEPHALUM. 85 GERANIUM FIREWORKS® COLLECTION. 24 OSTEOSPERMUM . 85 GERANIUM – IVY P. PELTATUM HYBRIDS . 25 LUCKY LANTERN™ ABUTILON . 85 GERANIUM – CRISPUM ANGEL EYES® SERIES. 26 ORGANIKS®. 86 GERANIUM – GRANDIFLORA ARISTO® SERIES. 27 TOMACCIO™. 92 GERANIUM ZONAL . 28 SUPERNATURALS™ GRAFTED VEGETABLES . 94 ANGELONIA PAC ADESSA® SERIES. 30 BAMBOO FROM TISSUE CULTURE. 98 BEGONIA SUMMERWINGS™ . 32 KIA ORA FLORA. 101 BEGONIA BELLECONIA™ . 33 COPROSMA. 102 TROPICAL SURGE. 34 HEBE . 104 DRAKENSBERG™ DAISY HARDY GARDEN GERBERA. 36 CORDYLINE . 104 BELARINA™ DOUBLE-FLOWERED PRIMULA. 38 ITOH PEONY. 106 NESSIE™ PLUS NEMESIA. 40 TECOMA BELLS OF FIRE™ . 108 KAROO™ NEMESIA. 41 TECOMA LYDIA™. 109 DIASCIA MARSHMALLOW™ SERIES. 42 POWERFUL PROGRAMS. 111 ALLURE™ OXALIS TRIANGULARIS HYBRIDS. -
Research Article
Received: 10th Jan-2014 Revised: 13th Jan-2014 Accepted: 18th Jan-2014 Research article EVALUATION OF LEAF EXTRACT OF SOME MEDICINAL WILD PLANTS ON THE GROWTH AND SPORULATION OF PAECILOMYCES LILACINUS Rushda Sharf, Hisamuddin, Abbasi and Ambreen akhtar Department of Botany, Aligarh Muslim University, Aligarh-202002 Email: [email protected] ABSRACT-: In vitro experiment was conducted to determine the effect of leaf extracts of five medicinal wild plant viz, Chenopodium album, Eclipta prostrata, Euphorbia pulcherima, Oxalis corniculata and Stellaria media on the growth and sporulation of fungus Paecilomyces lilacinus. The effect of the leaf extracts of these medicinal wild plant was noted at the different time interval such as, 24hrs, 48hrs, 72hrs, 96hrs and 120hrs. After 120 hrs the maximum mycelial growth was observed in Oxalis corniculata and minimum in Euphorbia pulcherima. However maximum number of spores/cm2 was recorded in Eclipta prostrata and minimum in Stellaria media. Keywords-: Leaf extract, Medicinal plants, Paecilomyces lilacinus. INTRODUCTION Medicinal plants as a group, comprise approximately 8,000 species and account for around 50% of all the higher flowering plant species of India. India possesses almost 8% of the estimated biodiversity of the world with around 0.126% million species. India is one of the 12 mega biodiversity centers with 2 hot-spot of biodiversity in Western Ghat and North-Eastern Region. Chenopodium album It is the fast growing weedy plant belonging to the family Chenopodiaceae. Plant bears seeds which are high in protein, vitamin A, calcium, phosphorus and potassium. The leaves contain considerable amount of soluble oxalate that interact with calcium and induces hypocalcemia. -
Further Observations on the Oxalis Dillenii Group (Oxalidaceae)
Nesom, G.L., D.D. Spaulding, and H.E. Horne. 2014. Further observations on the Oxalis dillenii group (Oxalidaceae). Phytoneuron 2014-12: 1–10. Published 6 January 2014. ISSN 2153 733X FURTHER OBSERVATIONS ON THE OXALIS DILLENII GROUP (OXALIDACEAE) GUY L. NESOM 2925 Hartwood Drive Fort Worth, Texas 76109 www.guynesom.com DANIEL D. SPAULDING Curator of Collections Anniston Museum of Natural History 800 Museum Drive/P.O. Box 1587 Anniston, Alabama 36202 www.annistonmuseum.org HOWARD E. HORNE Barry A. Vittor and Associates, Inc. 8060 Cottage Hill Road Mobile, Alabama 36695 [email protected] ABSTRACT Oxalis macrantha (synonym = O. priceae ) is mostly restricted to limestone substrates (glades, chalk prairies, etc.) in Kentucky, Tennessee, and Alabama and is characterized by its completely hirsute-pilose stems, strongly rhizomatous-colonial habit, and large, red-lined corollas. Oxalis colorea also produces hirsute-pilose stems but the distal portions and the pedicels tend to be loosely strigose, and it also differs from O. macrantha in its less colonial habit and generally smaller corollas with a variable tendency to produce distinct red lines. Where their ranges meet, O. colorea apparently intergrades with O. florida , which, in its most distinct form, is a species of the Atlantic coastal plain, although plants in Texas, Louisiana, southwestern Mississippi, Arkansas, and Missouri also are identified here as O. florida . Oxalis texana produces densely and closely strigose stems like those of O. dillenii but differs in its larger, red-lined corollas, less colonial habit, and (in Texas, Louisiana, and Arkansas) characteristically woodland habitat; it is centered in Texas, Louisiana, and Arkansas, but as identified here it also occurs in a disjunct system in southern Alabama and adjacent Florida.