IBM Power System AC922 Introduction and Technical Overview

Total Page:16

File Type:pdf, Size:1020Kb

IBM Power System AC922 Introduction and Technical Overview Front cover IBM Power System AC922 Introduction and Technical Overview Alexandre Bicas Caldeira Redpaper International Technical Support Organization IBM Power System AC922 Introduction and Technical Overview March 2018 REDP-5472-00 Note: Before using this information and the product it supports, read the information in “Notices” on page v. First Edition (March 2018) This edition applies to the IBM Power System AC922 server models 8335-GTG and 8335-GTW. © Copyright International Business Machines Corporation 2018. All rights reserved. Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp. Contents Notices . .v Trademarks . vi Preface . vii Authors. vii Now you can become a published author, too! . viii Comments welcome. viii Stay connected to IBM Redbooks . viii Chapter 1. Product summary . 1 1.1 Key server features . 2 1.2 Server models . 4 1.2.1 Power AC922 server model 8335-GTG . 4 1.2.2 Power AC922 server model 8335-GTW . 5 1.2.3 Minimum features . 7 Chapter 2. System architecture . 9 2.1 System architecture . 10 2.2 Processor subsystem . 15 2.2.1 POWER9 processor overview. 16 2.2.2 Processor feature codes . 18 2.3 Memory subsystem . 18 2.3.1 Memory features and placement rules . 18 2.3.2 Memory bandwidth . 19 2.4 I/O subsystem . 20 2.4.1 PCIe . 20 2.4.2 IBM CAPI2 . 21 2.4.3 OpenCAPI. 22 2.4.4 The NVIDIA Tesla V100 . 25 2.4.5 NVLINK 2.0 . 28 2.5 PCI adapters . 29 2.5.1 Slot configuration . 29 2.5.2 Local area network adapters. 30 2.5.3 Fibre Channel adapters . 31 2.5.4 CAPI-enabled InfiniBand adapters . 31 2.5.5 Compute-intensive accelerators . 31 2.5.6 Flash storage adapters . 32 2.6 System ports . 32 2.7 Internal storage . 32 2.7.1 Disk and media features . 33 2.8 External I/O subsystems . 33 2.9 Location codes . 34 2.10 IBM System Storage . 34 2.11 Operating system support . 35 2.11.1 Ubuntu . 35 2.11.2 Red Hat Enterprise Linux . 35 2.11.3 More information . 36 2.12 Java. 36 © Copyright IBM Corp. 2018. All rights reserved. iii Chapter 3. Physical infrastructure. 37 3.1 Operating environment . 38 3.1.1 Leak detection. 40 3.1.2 Water pressure . 41 3.2 Physical package . 41 3.3 System power . 41 3.4 System cooling . 42 3.5 Rack specifications . 46 3.5.1 IBM Enterprise Slim Rack 7965-S42. 46 3.5.2 AC power distribution units . 51 3.5.3 Rack-mounting rules . 53 3.5.4 OEM racks . 53 Related publications . 59 IBM Redbooks . 59 Online resources . 59 Help from IBM . 59 iv IBM Power System AC922 Introduction and Technical Overview Notices This information was developed for products and services offered in the US. This material might be available from IBM in other languages. However, you may be required to own a copy of the product or product version in that language in order to access it. IBM may not offer the products, services, or features discussed in this document in other countries. Consult your local IBM representative for information on the products and services currently available in your area. Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM product, program, or service may be used. Any functionally equivalent product, program, or service that does not infringe any IBM intellectual property right may be used instead. However, it is the user’s responsibility to evaluate and verify the operation of any non-IBM product, program, or service. IBM may have patents or pending patent applications covering subject matter described in this document. The furnishing of this document does not grant you any license to these patents. You can send license inquiries, in writing, to: IBM Director.
Recommended publications
  • Supermicro GPU Solutions Optimized for NVIDIA Nvlink
    SuperServers Optimized For NVIDIA® Tesla® GPUs Maximizing Throughput and Scalability 16 Tesla® V100 GPUs With NVLink™ and NVSwitch™ Most Powerful Solution for Deep Learning Training • New Supermicro NVIDIA® HGX-2 based platform • 16 Tesla® V100 SXM3 GPUs (512GB total GPU memory) • 16 NICs for GPUDirect RDMA • 16 hot-swap NVMe drive bays • Fully configurable to order SYS-9029GP-TNVRT 8 Tesla® V100 GPUs With NVLink™ 4 Tesla® V100 GPUs With NVLink™ SYS-1029GQ-TVRT SYS-4029GP-TVRT www.supermicro.com/GPU March 2019 Maximum Acceleration for AI/DL Training Workloads PERFORMANCE: Highest Parallel peak performance with NVIDIA Tesla V100 GPUs THROUGHPUT: Best in class GPU-to-GPU bandwidth with a maximum speed of 300GB/s SCALABILITY: Designed for direct interconections between multiple GPU nodes FLEXIBILITY: PCI-E 3.0 x16 for low latency I/O expansion capacity & GPU Direct RDMA support DESIGN: Optimized GPU cooling for highest sustained parallel computing performance EFFICIENCY: Redundant Titanium Level power supplies & intelligent cooling control Model SYS-1029GQ-TVRT SYS-4029GP-TVRT • Dual Intel® Xeon® Scalable processors with 3 UPI up to • Dual Intel® Xeon® Scalable processors with 3 UPI up to 10.4GT/s CPU Support 10.4GT/s • Supports up to 205W TDP CPU • Supports up to 205W TDP CPU • 8 NVIDIA® Tesla® V100 GPUs • 4 NVIDIA Tesla V100 GPUs • NVIDIA® NVLink™ GPU Interconnect up to 300GB/s GPU Support • NVIDIA® NVLink™ GPU Interconnect up to 300GB/s • Optimized for GPUDirect RDMA • Optimized for GPUDirect RDMA • Independent CPU and GPU thermal zones
    [Show full text]
  • Energy-Efficient VLSI Architectures for Next
    UNIVERSITY OF CALIFORNIA Los Angeles Energy-Efficient VLSI Architectures for Next- Generation Software-Defined and Cognitive Radios A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Electrical Engineering by Fang-Li Yuan 2014 c Copyright by Fang-Li Yuan 2014 ABSTRACT OF THE DISSERTATION Energy-Efficient VLSI Architectures for Next- Generation Software-Defined and Cognitive Radios by Fang-Li Yuan Doctor of Philosophy in Electrical Engineering University of California, Los Angeles, 2014 Professor Dejan Markovic,´ Chair Dedicated radio hardware is no longer promising as it was in the past. Today, the support of diverse standards dictates more flexible solutions. Software-defined radio (SDR) provides the flexibility by replacing dedicated blocks (i.e. ASICs) with more general processors to adapt to various functions, standards and even allow mutable de- sign changes. However, such replacement generally incurs significant efficiency loss in circuits, hindering its feasibility for energy-constrained devices. The capability of dy- namic and blind spectrum analysis, as featured in the cognitive radio (CR) technology, makes chip implementation even more challenging. This work discusses several design techniques to achieve near-ASIC energy effi- ciency while providing the flexibility required by software-defined and cognitive radios. The algorithm-architecture co-design is used to determine domain-specific dataflow ii structures to achieve the right balance between energy efficiency and flexibility. The flexible instruction-set-architecture (ISA), the multi-scale interconnects, and the multi- core dynamic scheduling are also proposed to reduce the energy overhead. We demon- strate these concepts on two real-time blind classification chips for CR spectrum anal- ysis, as well as a 16-core processor for baseband SDR signal processing.
    [Show full text]
  • Linux on POWER
    http://ibmsystemsmag.com/CMSTemplates/IBMSystemsMag/Print.aspx?... close window Print May 2016 | by Jaqui Lynch IBM is serious about Linux on POWER. Linux now runs on every POWER8 server, with specialized offerings for Linux. These include the new LC (Linux only, PowerKVM only) servers, the L model (Linux only) servers, Linux IFLs, EasyScale for MSP offerings, and SAP Hana on POWER. Additionally, significant work has been done to encourage ISVs to increase their offerings on Linux on POWER, resulting in a flourishing ecosystem that wasn’t available on POWER five years ago. Power systems are designed for big data and optimized for performance and scalability. They provide great I/O and memory bandwidth with significant reliability and other availability features not available anywhere else except the mainframe. With full support for various levels of RHEL (Redhat Enterprise Linux), SLES (SuSE Linux Enterprise Server) and Ubuntu, it’s a great time to consider migrating to Linux on Power. Here are some decisions to make: 1. Do you want to run Linux alongside other workloads like AIX or IBM i 2. Do you want to run a Linux only server 3. Do you want to use and HMC or virtual HMC to control the server (won’t work with PowerKVM) 4. Do you want to use PowerKVM or PowerVM for virtualization 5. Do you have some dark cores and memory that you would like to run Linux on at a reduced rate 6. Do you have x86 workload running on Linux that you would like to migrate 7. Do you want to reduce costs for IBM software (PVU based licensing) Reducing costs Software can be expensive, especially middleware.
    [Show full text]
  • Linux: IBM Electronic Service Agent for Powerlinux User's Guide Chapter 1
    Linux Version 4.5.5 IBM Electronic Service Agent for PowerLinux User's Guide IBM Note Before using this information and the product it supports, read the information in “Notices” on page 123 . Nineteenth Edition (August 2020) © Copyright International Business Machines Corporation 2020. US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp. Contents About this document..............................................................................................v Highlighting...................................................................................................................................................v Case-sensitivity in Linux...............................................................................................................................v ISO 9000.......................................................................................................................................................v Chapter 1. IBM Electronic Service Agent................................................................ 1 What's new...................................................................................................................................................1 Overview.......................................................................................................................................................7 Accessing the IBM Electronic Support portal........................................................................................7
    [Show full text]
  • High Performance Computing and AI Solutions Portfolio
    Brochure High Performance Computing and AI Solutions Portfolio Technology and expertise to help you accelerate discovery and innovation Discovery and innovation have always started with great minds Go ahead. dreaming big. As artificial intelligence (AI), high performance computing (HPC) and data analytics continue to converge and Dream big. evolve, they are fueling the next industrial revolution and the next quantum leap in human progress. And with the help of increasingly powerful technology, you can dream even bigger. Dell Technologies will be there every step of the way with the technology you need to power tomorrow’s discoveries and the expertise to bring it all together, today. 463 exabytes The convergence of HPC and AI is driven by data. The data‑driven age is dramatically reshaping industries and reinventing the future. As of data will be created each day by 20251 vast amounts of data pour in from increasingly diverse sources, leveraging that data is both critical and transformational. Whether you’re working to save lives, understand the universe, build better machines, neutralize financial risks or anticipate customer sentiment, 44X ROI data informs and drives decisions that impact the success of your organization — and Average return on investment (ROI) shapes the future of our world. for HPC2 AI, HPC and data analytics are technologies designed to unlock the value of your data. While they have long been treated as separate, the three technologies are converging as 83% of CIOs it becomes clear that analytics and AI are both big‑data problems that require the power, Say they are investing in AI scalable compute, networking and storage provided by HPC.
    [Show full text]
  • BRKIOT-2394.Pdf
    Unlocking the Mystery of Machine Learning and Big Data Analytics Robert Barton Jerome Henry Distinguished Architect Principal Engineer @MrRobbarto Office of the CTAO CCIE #6660 @wirelessccie CCDE #2013::6 CCIE #24750 CWNE #45 BRKIOT-2394 Cisco Webex Teams Questions? Use Cisco Webex Teams to chat with the speaker after the session How 1 Find this session in the Cisco Events Mobile App 2 Click “Join the Discussion” 3 Install Webex Teams or go directly to the team space 4 Enter messages/questions in the team space BRKIOT-2394 © 2020 Cisco and/or its affiliates. All rights reserved. Cisco Public 3 Tuesday, Jan. 28th Monday, Jan. 27th Wednesday, Jan. 29th BRKIOT-2600 BRKIOT-2213 16:45 Enabling OT-IT collaboration by 17:00 From Zero to IOx Hero transforming traditional industrial TECIOT-2400 networks to modern IoT Architectures IoT Fundamentals 08:45 BRKIOT-1618 Bootcamp 14:45 Industrial IoT Network Management PSOIOT-1156 16:00 using Cisco Industrial Network Director Securing Industrial – A Deep Dive. Networks: Introduction to Cisco Cyber Vision PSOIOT-2155 Enhancing the Commuter 13:30 BRKIOT-1775 Experience - Service Wireless technologies and 14:30 BRKIOT-2698 BRKIOT-1520 Provider WiFi at the Use Cases in Industrial IOT Industrial IoT Routing – Connectivity 12:15 Cisco Remote & Mobile Asset speed of Trains and Beyond Solutions PSOIOT-2197 Cisco Innovates Autonomous 14:00 TECIOT-2000 Vehicles & Roadways w/ IoT BRKIOT-2497 BRKIOT-2900 Understanding Cisco's 14:30 IoT Solutions for Smart Cities and 11:00 Automating the Network of Internet Of Things (IOT) BRKIOT-2108 Communities Industrial Automation Solutions Connected Factory Architecture Theory and 11:00 Practice PSOIOT-2100 BRKIOT-1291 Unlock New Market 16:15 Opening Keynote 09:00 08:30 Opportunities with LoRaWAN for IOT Enterprises Embedded Cisco services Technologies IOT IOT IOT Track #CLEMEA www.ciscolive.com/emea/learn/technology-tracks.html Cisco Live Thursday, Jan.
    [Show full text]
  • POWER® Processor-Based Systems
    IBM® Power® Systems RAS Introduction to IBM® Power® Reliability, Availability, and Serviceability for POWER9® processor-based systems using IBM PowerVM™ With Updates covering the latest 4+ Socket Power10 processor-based systems IBM Systems Group Daniel Henderson, Irving Baysah Trademarks, Copyrights, Notices and Acknowledgements Trademarks IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines Corporation in the United States, other countries, or both. These and other IBM trademarked terms are marked on their first occurrence in this information with the appropriate symbol (® or ™), indicating US registered or common law trademarks owned by IBM at the time this information was published. Such trademarks may also be registered or common law trademarks in other countries. A current list of IBM trademarks is available on the Web at http://www.ibm.com/legal/copytrade.shtml The following terms are trademarks of the International Business Machines Corporation in the United States, other countries, or both: Active AIX® POWER® POWER Power Power Systems Memory™ Hypervisor™ Systems™ Software™ Power® POWER POWER7 POWER8™ POWER® PowerLinux™ 7® +™ POWER® PowerHA® POWER6 ® PowerVM System System PowerVC™ POWER Power Architecture™ ® x® z® Hypervisor™ Additional Trademarks may be identified in the body of this document. Other company, product, or service names may be trademarks or service marks of others. Notices The last page of this document contains copyright information, important notices, and other information. Acknowledgements While this whitepaper has two principal authors/editors it is the culmination of the work of a number of different subject matter experts within IBM who contributed ideas, detailed technical information, and the occasional photograph and section of description.
    [Show full text]
  • Shippensburg University Investment Management Program
    Shippensburg University Investment Management Program Hold NVIDIA Corp. (NASDAQ: NVDA) 11.03.2020 Current Price Fair Value 52 Week Range $501.36 $300 $180.68 - 589.07 Analyst: Valentina Alonso Key Stock Statistics Email: [email protected] Sector: Information Technology Revenue (TTM) $13.06B Stock Type: Large Growth Operating Margin (TTM) 28.56% Industry: Semiconductors and Semiconductors Equipment Market Cap: $309.697B Net Income (TTM) $3.39B EPS (TTM) $5.44 Operating Cash Flow (TTM) $5.58B Free Cash Flow (TTM) $3.67B Return on Assets (TTM) 11.67% Return on Equity (TTM) 27.94% P/E $92.59 Company overview P/B $22.32 Nvidia is the leading designer of graphics processing units that P/S $23.29 enhance the experience on computing platforms. The firm's chips are used in a variety of end markets, including high-end PCs for gaming, P/FCF 44.22 data centers, and automotive infotainment systems. In recent years, the firm has broadened its focus from traditional PC graphics Beta (5-Year) 1.54 applications such as gaming to more complex and favorable Dividend Yield 0.13% opportunities, including artificial intelligence and autonomous driving, which leverage the high-performance capabilities of the Projected 5 Year Growth 17.44% firm's graphics processing units. (per annum) Contents Executive Summary ....................................................................................................................................................3 Company Overview ....................................................................................................................................................4
    [Show full text]
  • Manycore GPU Architectures and Programming, Part 1
    Lecture 19: Manycore GPU Architectures and Programming, Part 1 Concurrent and Mul=core Programming CSE 436/536, [email protected] www.secs.oakland.edu/~yan 1 Topics (Part 2) • Parallel architectures and hardware – Parallel computer architectures – Memory hierarchy and cache coherency • Manycore GPU architectures and programming – GPUs architectures – CUDA programming – Introduc?on to offloading model in OpenMP and OpenACC • Programming on large scale systems (Chapter 6) – MPI (point to point and collec=ves) – Introduc?on to PGAS languages, UPC and Chapel • Parallel algorithms (Chapter 8,9 &10) – Dense matrix, and sorng 2 Manycore GPU Architectures and Programming: Outline • Introduc?on – GPU architectures, GPGPUs, and CUDA • GPU Execuon model • CUDA Programming model • Working with Memory in CUDA – Global memory, shared and constant memory • Streams and concurrency • CUDA instruc?on intrinsic and library • Performance, profiling, debugging, and error handling • Direc?ve-based high-level programming model – OpenACC and OpenMP 3 Computer Graphics GPU: Graphics Processing Unit 4 Graphics Processing Unit (GPU) Image: h[p://www.ntu.edu.sg/home/ehchua/programming/opengl/CG_BasicsTheory.html 5 Graphics Processing Unit (GPU) • Enriching user visual experience • Delivering energy-efficient compung • Unlocking poten?als of complex apps • Enabling Deeper scien?fic discovery 6 What is GPU Today? • It is a processor op?mized for 2D/3D graphics, video, visual compu?ng, and display. • It is highly parallel, highly multhreaded mulprocessor op?mized for visual
    [Show full text]
  • IBM Powervm Virtualization Introduction and Configuration
    Front cover IBM PowerVM Virtualization Introduction and Configuration Understand PowerVM features and capabilities Plan, implement, and set up PowerVM virtualization Updated to include new POWER7 technologies Mel Cordero Lúcio Correia Hai Lin Vamshikrishna Thatikonda Rodrigo Xavier ibm.com/redbooks International Technical Support Organization IBM PowerVM Virtualization Introduction and Configuration June 2013 SG24-7940-05 Note: Before using this information and the product it supports, read the information in “Notices” on page xxi. Sixth Edition (June 2013) This edition applies to: Version 7, Release 1 of AIX Version 7, Release 1 of IBM i Version 2, Release 2, Modification 2, Fixpack 26 of the Virtual I/O Server Version 7, Release 7, Modification 6 of the HMC Version AL730, release 95 of the POWER7 System Firmware Version AL740, release 95 of the POWER7 System Firmware © Copyright International Business Machines Corporation 2004, 2013. All rights reserved. Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp. Contents Figures . xi Tables . xix Notices . xxi Trademarks . xxii Preface . xxiii Authors . xxiii Now you can become a published author, too! . xxvi Comments welcome. xxvi Stay connected to IBM Redbooks . .xxvii Summary of changes . xxix June 2013, Sixth Edition. xxix Part 1. Overview . 1 Chapter 1. PowerVM technologies. 3 1.1 The value of PowerVM . 4 1.2 What is PowerVM . 4 1.2.1 New PowerVM features . 6 1.2.2 PowerVM editions . 7 1.2.3 Activating the PowerVM feature . 12 1.3 The POWER Hypervisor . 15 1.4 Logical partitioning technologies . 17 1.4.1 Dedicated LPAR .
    [Show full text]
  • NVIDIA Gpudirect RDMA (GDR) Host Memory Host Memory • Pipeline Through Host for Large Msg 2 IB IB 4 2
    Efficient and Scalable Communication Middleware for Emerging Dense-GPU Clusters Ching-Hsiang Chu Advisor: Dhabaleswar K. Panda Network Based Computing Lab Department of Computer Science and Engineering The Ohio State University, Columbus, OH Outline • Introduction • Problem Statement • Detailed Description and Results • Broader Impact on the HPC Community • Expected Contributions Network Based Computing Laboratory SC 19 Doctoral Showcase 2 Trends in Modern HPC Architecture: Heterogeneous Multi/ Many-core High Performance Interconnects Accelerators / Coprocessors SSD, NVMe-SSD, Processors InfiniBand, Omni-Path, EFA high compute density, NVRAM <1usec latency, 100Gbps+ Bandwidth high performance/watt Node local storage • Multi-core/many-core technologies • High Performance Storage and Compute devices • High Performance Interconnects • Variety of programming models (MPI, PGAS, MPI+X) #1 Summit #2 Sierra (17,280 GPUs) #8 ABCI #22 DGX SuperPOD (27,648 GPUs) #10 Lassen (2,664 GPUs) (4,352 GPUs) (1,536 GPUs) Network Based Computing Laboratory SC 19 Doctoral Showcase 3 Trends in Modern Large-scale Dense-GPU Systems • Scale-up (up to 150 GB/s) • Scale-out (up to 25 GB/s) – PCIe, NVLink/NVSwitch – InfiniBand, Omni-path, Ethernet – Infinity Fabric, Gen-Z, CXL – Cray Slingshot Network Based Computing Laboratory SC 19 Doctoral Showcase 4 GPU-enabled HPC Applications Lattice Quantum Chromodynamics Weather Simulation Wave propagation simulation Fuhrer O, Osuna C, Lapillonne X, Gysi T, Bianco M, Schulthess T. Towards GPU-accelerated operational weather
    [Show full text]
  • Dell EMC Poweredge C4140 Technical Guide
    Dell EMC PowerEdge C4140 Technical Guide Regulatory Model: E53S Series Regulatory Type: E53S001 Notes, cautions, and warnings NOTE: A NOTE indicates important information that helps you make better use of your product. CAUTION: A CAUTION indicates either potential damage to hardware or loss of data and tells you how to avoid the problem. WARNING: A WARNING indicates a potential for property damage, personal injury, or death. © 2017 - 2019 Dell Inc. or its subsidiaries. All rights reserved. Dell, EMC, and other trademarks are trademarks of Dell Inc. or its subsidiaries. Other trademarks may be trademarks of their respective owners. 2019 - 09 Rev. A00 Contents 1 System overview ......................................................................................................................... 5 Introduction............................................................................................................................................................................ 5 New technologies.................................................................................................................................................................. 5 2 System features...........................................................................................................................7 Specifications......................................................................................................................................................................... 7 Product comparison.............................................................................................................................................................
    [Show full text]