BRKIOT-2394.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

BRKIOT-2394.Pdf Unlocking the Mystery of Machine Learning and Big Data Analytics Robert Barton Jerome Henry Distinguished Architect Principal Engineer @MrRobbarto Office of the CTAO CCIE #6660 @wirelessccie CCDE #2013::6 CCIE #24750 CWNE #45 BRKIOT-2394 Cisco Webex Teams Questions? Use Cisco Webex Teams to chat with the speaker after the session How 1 Find this session in the Cisco Events Mobile App 2 Click “Join the Discussion” 3 Install Webex Teams or go directly to the team space 4 Enter messages/questions in the team space BRKIOT-2394 © 2020 Cisco and/or its affiliates. All rights reserved. Cisco Public 3 Tuesday, Jan. 28th Monday, Jan. 27th Wednesday, Jan. 29th BRKIOT-2600 BRKIOT-2213 16:45 Enabling OT-IT collaboration by 17:00 From Zero to IOx Hero transforming traditional industrial TECIOT-2400 networks to modern IoT Architectures IoT Fundamentals 08:45 BRKIOT-1618 Bootcamp 14:45 Industrial IoT Network Management PSOIOT-1156 16:00 using Cisco Industrial Network Director Securing Industrial – A Deep Dive. Networks: Introduction to Cisco Cyber Vision PSOIOT-2155 Enhancing the Commuter 13:30 BRKIOT-1775 Experience - Service Wireless technologies and 14:30 BRKIOT-2698 BRKIOT-1520 Provider WiFi at the Use Cases in Industrial IOT Industrial IoT Routing – Connectivity 12:15 Cisco Remote & Mobile Asset speed of Trains and Beyond Solutions PSOIOT-2197 Cisco Innovates Autonomous 14:00 TECIOT-2000 Vehicles & Roadways w/ IoT BRKIOT-2497 BRKIOT-2900 Understanding Cisco's 14:30 IoT Solutions for Smart Cities and 11:00 Automating the Network of Internet Of Things (IOT) BRKIOT-2108 Communities Industrial Automation Solutions Connected Factory Architecture Theory and 11:00 Practice PSOIOT-2100 BRKIOT-1291 Unlock New Market 16:15 Opening Keynote 09:00 08:30 Opportunities with LoRaWAN for IOT Enterprises Embedded Cisco services Technologies IOT IOT IOT Track #CLEMEA www.ciscolive.com/emea/learn/technology-tracks.html Cisco Live Thursday, Jan. 30th Celebration 18:30 Friday, Jan. 31st Guest Keynote 17:00 BRKIOT-2548 BRKIOT-2100 Cisco Distributed 08:30 IoT and Intent-Based Networking Automation Solutions Solutions for Smart Cities and Connected Roadways 11:30 BRKIOT-2225 BRKIOT-3511 BRKIOT-2003 A security design for enabling IoT gateway scalable 09:45 Digital Building Theory & Practice deployment with Cisco Industry 4.0 Kinetic Gateway Management Module (GMM) BRKIOT-2204 BRKIOT-2394 Leveraging industrial BRKIOT-2526 Unlocking the Mystery of Machine 09:00 device visibility and 11:15 Wi-Fi Technology in Learning and Big Data operational intent to 14:45 Industrial IoT inform security policies and controls PSOIOT-2400 Bringing IT and OT together PSOIOT-1151 to drive business benefits Achieving business 13:15 outcomes using IoT 13:30 solutions IOT IOT IOT Track #CLEMEA www.ciscolive.com/emea/learn/technology-tracks.html Agenda 1. An introduction to Data Analytics and AI/ML • Principles 2. Fundamentals of Machine Learning • Principles • Supervised learning • Unsupervised learning • Deep learning (neural networks) 3. Applications of AI/ML at Cisco – IoT and Beyond • Data Analytics for IoT • Data Center • Collaboration • Security BRKIOT-2394 © 2020 Cisco and/or its affiliates. All rights reserved. Cisco Public 6 The Purpose of This Presentation • AI/ML and Big Data are among the most hyped technologies today . • This presentation will teach you how AI/ML and Big Data Analytics really work • This presentation will give network engineers a foundation in these technologies to build network architectures for data analysis . especially in the world of IoT © 2020 Cisco and/or its affiliates. All rights reserved. Cisco Public An Introduction to Big Data Analytics and Machine Learning Data Analytics Enables Insights • Big data and analytics entails not just a change in the volume of data, but also a change in the way we work with the data. • Traditional data warehouse tools do not uncover connections within those data sets – we need data analytics with Machine Learning! Automation for Faster Reveal Make Data Focus on Results Hidden Patterns Driven Decisions Important Things BRKIOT-2394 © 2020 Cisco and/or its affiliates. All rights reserved. Cisco Public 9 The Magic of Machine Learning Data is the Rocket Fuel for Machine Learning – Andrew Ng Machine Learning Definitions Traditional, Rules-based Arthur Samuel (1959) Live data Field of study that gives computers the Output ability to learn without being explicitly Program programmed Tom Mitchell (1997) Machine Learning / AI A computer program is said to learn if Training data Program its performance at a task T, as (Model) measured by a performance P, Output improves with experience E © 2020 Cisco and/or its affiliates. All rights reserved. Cisco Public So, What is Big Data ? (per Wikipedia definition) Big Data is the term for a collection of data sets so large and complex that it becomes difficult to process using traditional data processing tools © 2020 Cisco and/or its affiliates. All rights reserved. Cisco Public Comparing the Function of Traditional Data Management Systems (Structured Data) OLTP Business OLTP ETL EDW Intelligence Extract, OLTP Transform, Enterprise Load Data Online Transactional Warehouse Processing Systems BRKIOT-2394 © 2020 Cisco and/or its affiliates. All rights reserved. Cisco Public 12 Comparing Structured and Unstructured Data Customer Name ID Phone Email Irene 14213 408-923- [email protected] 1242 Walter 62342 514-231- [email protected] 2315 Miyuki 12344 416-231- [email protected] 2341 Bank Account Account Balance Transactions Number Credit Debit 234123 $1,232 $123 423142 $5,231 $611 521231 $50 $512 BRKIOT-2394 © 2020 Cisco and/or its affiliates. All rights reserved. Cisco Public 13 Unstructured vs. Structured Data • Unstructured data is a poor fit for traditional relational databases 10,000 •More than 90% is unstructured data UNSTRUCTURED DATA •Quantity doubles every 2 years •Most unstructured data is neither stored nor analyzed! (IN BILLIONS) GB of Data STRUCTURED DATA 0 2005 2010 2015 Source: Cloudera BRKIOT-2394 © 2020 Cisco and/or its affiliates. All rights reserved. Cisco Public 14 3Vs of Big Data Big Data refers to distributed computing architectures specifically aimed at the “3 V’s” of data: Volume, Velocity, and Variety VOLUME VELOCITY VARIETY BRKIOT-2394 © 2020 Cisco and/or its affiliates. All rights reserved. Cisco Public 15 Big Data Management Systems NoSQL (Not Only SQL) Massive Parallel Fast key-value Processing (MPP) store/retrieve in real time Shared-nothing Structured and Unstructured Structured Data (SQL) Hadoop Distributed batch, query, and processing Unstructured Data BRKIOT-2394 © 2020 Cisco and/or its affiliates. All rights reserved. Cisco Public 16 The Hadoop Stack Top-Level Interfaces ETLs Viz Tools BI Tools Mid-Level ZOO Many PIG HIVE Abstractions KEEPER more . (Projects) Distributed Data MapReduce / YARN Processing The foundational Hadoop File System (HDFS) file system BRKIOT-2394 © 2020 Cisco and/or its affiliates. All rights reserved. Cisco Public 17 Basics of the Hadoop File System (HDFS) Master Node Name Node Scalability of data management and processing Data is linear with the addition of new slave nodes Data Data Slave Nodes . Data Node Data Node Data Node BRKIOT-2394 © 2020 Cisco and/or its affiliates. All rights reserved. Cisco Public 18 Basics of the Hadoop File System (HDFS) Master Node Name Node Data Data Data . Slave Nodes Data Node Data Node Data Node BRKIOT-2394 © 2020 Cisco and/or its affiliates. All rights reserved. Cisco Public 19 Analyzing the Data (MapReduce) Master Node Batch processing of Name Node Java API Application the application Job job (the job sits Job Tracker in the queue) Task Tracker Task Tracker Task Tracker Slave Nodes . Data Node Data Node Data Node BRKIOT-2394 © 2020 Cisco and/or its affiliates. All rights reserved. Cisco Public 20 MapReduce: Job Trackers and Task Trackers Master Node Batch processing of Name Node Java API Application the application Job job (the job sits Job Tracker in the queue) Task Tracker Task Tracker Task Tracker Slave Nodes . Data Node Data Node Data Node BRKIOT-2394 © 2020 Cisco and/or its affiliates. All rights reserved. Cisco Public 21 MapReduce: Job Trackers and Task Trackers Master Node Name Node Application Job Job Tracker Output Cisco Cloudera CVD: https://www.cisco.com/c/en/us/td/docs/u nified_computing/ucs/UCS_CVDs/Cisco _UCS_Integrated_Infrastructure_for_Big _Data_with_Cloudera_28node.html Task Tracker Task Tracker Task Tracker . Data Node Data Node Data Node BRKIOT-2394 © 2020 Cisco and/or its affiliates. All rights reserved. Cisco Public 22 Making Sense of Data – Fundamental Concepts of Machine Learning Machine learning will decide which IoT ‘things’ survive - Jaques Touillon, Airboxlab BRKIOT-2394 © 2020 Cisco and/or its affiliates. All rights reserved. Cisco Public 24 Machine Learning Map Artificial Intelligence Any technology that allows a computing system to mimic human thinking functions Example 1 Example 2 If XYZ: do blah else: do blih BRKIOT-2394 © 2020 Cisco and/or its affiliates. All rights reserved. Cisco Public 25 Machine Learning Map Artificial Intelligence Machine Learning An AI technology where all the rules are not set in the program, but are learned Example while the program is used BRKIOT-2394 © 2020 Cisco and/or its affiliates. All rights reserved. Cisco Public 26 ML Applications Lip Reading Deep Blue Watson Deep Mind Playing Music WaveNet (TTS) Counting people Recognition NLP Translation Self-driving Computer Networks And Many more: CRM, Healthcare, Personal Assistants, …. BRKIOT-2394 © 2020 Cisco and/or its affiliates. All rights reserved. Cisco Public 27 McCullogh & Pitts - 1943 Artificial Intelligence Binary threshold neuron Von Neumann used this logic when designing the “universal computer” If sum > threshold, output 1 Send weighted inputs Output 0 otherwise BRKIOT-2394 © 2020 Cisco and/or its affiliates. All rights reserved. Cisco Public 28 In the 1950s, ML Research Expanded • 1962, Principles of Neurodynamics: Perceptrons and the Theory of Brain Mechanisms, Frank Rosenblatt When I show these shapes to the camera This IBM 704 computaah can say “it’s a triangle” (you will see why this works soon) BRKIOT-2394 © 2020 Cisco and/or its affiliates.
Recommended publications
  • Supermicro GPU Solutions Optimized for NVIDIA Nvlink
    SuperServers Optimized For NVIDIA® Tesla® GPUs Maximizing Throughput and Scalability 16 Tesla® V100 GPUs With NVLink™ and NVSwitch™ Most Powerful Solution for Deep Learning Training • New Supermicro NVIDIA® HGX-2 based platform • 16 Tesla® V100 SXM3 GPUs (512GB total GPU memory) • 16 NICs for GPUDirect RDMA • 16 hot-swap NVMe drive bays • Fully configurable to order SYS-9029GP-TNVRT 8 Tesla® V100 GPUs With NVLink™ 4 Tesla® V100 GPUs With NVLink™ SYS-1029GQ-TVRT SYS-4029GP-TVRT www.supermicro.com/GPU March 2019 Maximum Acceleration for AI/DL Training Workloads PERFORMANCE: Highest Parallel peak performance with NVIDIA Tesla V100 GPUs THROUGHPUT: Best in class GPU-to-GPU bandwidth with a maximum speed of 300GB/s SCALABILITY: Designed for direct interconections between multiple GPU nodes FLEXIBILITY: PCI-E 3.0 x16 for low latency I/O expansion capacity & GPU Direct RDMA support DESIGN: Optimized GPU cooling for highest sustained parallel computing performance EFFICIENCY: Redundant Titanium Level power supplies & intelligent cooling control Model SYS-1029GQ-TVRT SYS-4029GP-TVRT • Dual Intel® Xeon® Scalable processors with 3 UPI up to • Dual Intel® Xeon® Scalable processors with 3 UPI up to 10.4GT/s CPU Support 10.4GT/s • Supports up to 205W TDP CPU • Supports up to 205W TDP CPU • 8 NVIDIA® Tesla® V100 GPUs • 4 NVIDIA Tesla V100 GPUs • NVIDIA® NVLink™ GPU Interconnect up to 300GB/s GPU Support • NVIDIA® NVLink™ GPU Interconnect up to 300GB/s • Optimized for GPUDirect RDMA • Optimized for GPUDirect RDMA • Independent CPU and GPU thermal zones
    [Show full text]
  • Identificação De Textos Em Imagens CAPTCHA Utilizando Conceitos De
    Identificação de Textos em Imagens CAPTCHA utilizando conceitos de Aprendizado de Máquina e Redes Neurais Convolucionais Relatório submetido à Universidade Federal de Santa Catarina como requisito para a aprovação da disciplina: DAS 5511: Projeto de Fim de Curso Murilo Rodegheri Mendes dos Santos Florianópolis, Julho de 2018 Identificação de Textos em Imagens CAPTCHA utilizando conceitos de Aprendizado de Máquina e Redes Neurais Convolucionais Murilo Rodegheri Mendes dos Santos Esta monografia foi julgada no contexto da disciplina DAS 5511: Projeto de Fim de Curso e aprovada na sua forma final pelo Curso de Engenharia de Controle e Automação Prof. Marcelo Ricardo Stemmer Banca Examinadora: André Carvalho Bittencourt Orientador na Empresa Prof. Marcelo Ricardo Stemmer Orientador no Curso Prof. Ricardo José Rabelo Responsável pela disciplina Flávio Gabriel Oliveira Barbosa, Avaliador Guilherme Espindola Winck, Debatedor Ricardo Carvalho Frantz do Amaral, Debatedor Agradecimentos Agradeço à minha mãe Terezinha Rodegheri, ao meu pai Orlisses Mendes dos Santos e ao meu irmão Camilo Rodegheri Mendes dos Santos que sempre estiveram ao meu lado, tanto nos momentos de alegria quanto nos momentos de dificuldades, sempre me deram apoio, conselhos, suporte e nunca duvidaram da minha capacidade de alcançar meus objetivos. Agradeço aos meus colegas Guilherme Cornelli, Leonardo Quaini, Matheus Ambrosi, Matheus Zardo, Roger Perin e Victor Petrassi por me acompanharem em toda a graduação, seja nas disciplinas, nos projetos, nas noites de estudo, nas atividades extracurriculares, nas festas, entre outros desafios enfrentados para chegar até aqui. Agradeço aos meus amigos de infância Cássio Schmidt, Daniel Lock, Gabriel Streit, Gabriel Cervo, Guilherme Trevisan, Lucas Nyland por proporcionarem momentos de alegria mesmo a distância na maior parte da caminhada da graduação.
    [Show full text]
  • High Performance Computing and AI Solutions Portfolio
    Brochure High Performance Computing and AI Solutions Portfolio Technology and expertise to help you accelerate discovery and innovation Discovery and innovation have always started with great minds Go ahead. dreaming big. As artificial intelligence (AI), high performance computing (HPC) and data analytics continue to converge and Dream big. evolve, they are fueling the next industrial revolution and the next quantum leap in human progress. And with the help of increasingly powerful technology, you can dream even bigger. Dell Technologies will be there every step of the way with the technology you need to power tomorrow’s discoveries and the expertise to bring it all together, today. 463 exabytes The convergence of HPC and AI is driven by data. The data‑driven age is dramatically reshaping industries and reinventing the future. As of data will be created each day by 20251 vast amounts of data pour in from increasingly diverse sources, leveraging that data is both critical and transformational. Whether you’re working to save lives, understand the universe, build better machines, neutralize financial risks or anticipate customer sentiment, 44X ROI data informs and drives decisions that impact the success of your organization — and Average return on investment (ROI) shapes the future of our world. for HPC2 AI, HPC and data analytics are technologies designed to unlock the value of your data. While they have long been treated as separate, the three technologies are converging as 83% of CIOs it becomes clear that analytics and AI are both big‑data problems that require the power, Say they are investing in AI scalable compute, networking and storage provided by HPC.
    [Show full text]
  • Vikas Sindhwani Google May 17-19, 2016 2016 Summer School on Signal Processing and Machine Learning for Big Data
    Real-time Learning and Inference on Emerging Mobile Systems Vikas Sindhwani Google May 17-19, 2016 2016 Summer School on Signal Processing and Machine Learning for Big Data Abstract: We are motivated by the challenge of enabling real-time "always-on" machine learning applications on emerging mobile platforms such as next-generation smartphones, wearable computers and consumer robotics systems. On-device models in such settings need to be highly compact, and need to support fast, low-power inference on specialized hardware. I will consider the problem of building small-footprint non- linear models based on kernel methods and deep learning techniques, for on-device deployments. Towards this end, I will give an overview of various techniques, and introduce new notions of parsimony rooted in the theory of structured matrices. Such structured matrices can be used to recycle Gaussian random vectors in order to build randomized feature maps in sub-linear time for approximating various kernel functions. In the deep learning context, low-displacement structured parameter matrices admit fast function and gradient evaluation. I will discuss how such compact nonlinear transforms span a rich range of parameter sharing configurations whose statistical modeling capacity can be explicitly tuned along a continuum from structured to unstructured. I will present empirical results on mobile speech recognition problems, and image classification tasks. I will also briefly present some basics of TensorFlow: a open-source library for numerical computations on data flow graphs. Tensorflow enables large-scale distributed training of complex machine learning models, and their rapid deployment on mobile devices. Bio: Vikas Sindhwani is Research Scientist in the Google Brain team in New York City.
    [Show full text]
  • Warned That Big, Messy AI Systems Would Generate Racist, Unfair Results
    JULY/AUG 2021 | DON’T BE EVIL warned that big, messy AI systems would generate racist, unfair results. Google brought her in to prevent that fate. Then it forced her out. Can Big Tech handle criticism from within? BY TOM SIMONITE NEW ROUTES TO NEW CUSTOMERS E-COMMERCE AT THE SPEED OF NOW Business is changing and the United States Postal Service is changing with it. We’re offering e-commerce solutions from fast, reliable shipping to returns right from any address in America. Find out more at usps.com/newroutes. Scheduled delivery date and time depend on origin, destination and Post Office™ acceptance time. Some restrictions apply. For additional information, visit the Postage Calculator at http://postcalc.usps.com. For details on availability, visit usps.com/pickup. The Okta Identity Cloud. Protecting people everywhere. Modern identity. For one patient or one billion. © 2021 Okta, Inc. and its affiliates. All rights reserved. ELECTRIC WORD WIRED 29.07 I OFTEN FELT LIKE A SORT OF FACELESS, NAMELESS, NOT-EVEN- A-PERSON. LIKE THE GPS UNIT OR SOME- THING. → 38 ART / WINSTON STRUYE 0 0 3 FEATURES WIRED 29.07 “THIS IS AN EXTINCTION EVENT” In 2011, Chinese spies stole cybersecurity’s crown jewels. The full story can finally be told. by Andy Greenberg FATAL FLAW How researchers discovered a teensy, decades-old screwup that helped Covid kill. by Megan Molteni SPIN DOCTOR Mo Pinel’s bowling balls harnessed the power of physics—and changed the sport forever. by Brendan I. Koerner HAIL, MALCOLM Inside Roblox, players built a fascist Roman Empire.
    [Show full text]
  • Gmail Smart Compose: Real-Time Assisted Writing
    Gmail Smart Compose: Real-Time Assisted Writing Mia Xu Chen∗ Benjamin N Lee∗ Gagan Bansal∗ [email protected] [email protected] [email protected] Google Google Google Yuan Cao Shuyuan Zhang Justin Lu [email protected] [email protected] [email protected] Google Google Google Jackie Tsay Yinan Wang Andrew M. Dai [email protected] [email protected] [email protected] Google Google Google Zhifeng Chen Timothy Sohn Yonghui Wu [email protected] [email protected] [email protected] Google Google Google Figure 1: Smart Compose Screenshot. ABSTRACT our proposed system design and deployment approach. This system In this paper, we present Smart Compose, a novel system for gener- is currently being served in Gmail. ating interactive, real-time suggestions in Gmail that assists users in writing mails by reducing repetitive typing. In the design and KEYWORDS deployment of such a large-scale and complicated system, we faced Smart Compose, language model, assisted writing, large-scale serv- several challenges including model selection, performance eval- ing uation, serving and other practical issues. At the core of Smart ACM Reference Format: arXiv:1906.00080v1 [cs.CL] 17 May 2019 Compose is a large-scale neural language model. We leveraged Mia Xu Chen, Benjamin N Lee, Gagan Bansal, Yuan Cao, Shuyuan Zhang, state-of-the-art machine learning techniques for language model Justin Lu, Jackie Tsay, Yinan Wang, Andrew M. Dai, Zhifeng Chen, Timothy training which enabled high-quality suggestion prediction, and Sohn, and Yonghui Wu. 2019. Gmail Smart Compose: Real-Time Assisted constructed novel serving infrastructure for high-throughput and Writing. In The 25th ACM SIGKDD Conference on Knowledge Discovery and real-time inference.
    [Show full text]
  • The Machine Learning Journey with Google
    The Machine Learning Journey with Google Google Cloud Professional Services The information, scoping, and pricing data in this presentation is for evaluation/discussion purposes only and is non-binding. For reference purposes, Google's standard terms and conditions for professional services are located at: https://enterprise.google.com/terms/professional-services.html. 1 What is machine learning? 2 Why all the attention now? Topics How Google can support you inyour 3 journey to ML 4 Where to from here? © 2019 Google LLC. All rights reserved. What is machine0 learning? 1 Machine learning is... a branch of artificial intelligence a way to solve problems without explicitly codifying the solution a way to build systems that improve themselves over time © 2019 Google LLC. All rights reserved. Key trends in artificial intelligence and machine learning #1 #2 #3 #4 Democratization AI and ML will be core Specialized hardware Automation of ML of AI and ML competencies of for deep learning (e.g., MIT’s Data enterprises (CPUs → GPUs → TPUs) Science Machine & Google’s AutoML) #5 #6 #7 Commoditization of Cloud as the platform ML set to transform deep learning for AI and ML banking and (e.g., TensorFlow) financial services © 2019 Google LLC. All rights reserved. Use of machine learning is rapidly accelerating Used across products © 2019 Google LLC. All rights reserved. Google Translate © 2019 Google LLC. All rights reserved. Why all the attention0 now? 2 Machine learning allows us to solve problems without codifying the solution. © 2019 Google LLC. All rights reserved. San Francisco New York © 2019 Google LLC. All rights reserved.
    [Show full text]
  • Google's 'Project Nightingale' Gathers Personal Health Data
    Google's 'Project Nightingale' Gathers Personal Health Data on Millions of Americans; Search giant is amassing health records from Ascension facilities in 21 states; patients not yet informed Copeland, Rob . Wall Street Journal (Online) ; New York, N.Y. [New York, N.Y]11 Nov 2019. ProQuest document link FULL TEXT Google is engaged with one of the U.S.'s largest health-care systems on a project to collect and crunch the detailed personal-health information of millions of people across 21 states. The initiative, code-named "Project Nightingale," appears to be the biggest effort yet by a Silicon Valley giant to gain a toehold in the health-care industry through the handling of patients' medical data. Amazon.com Inc., Apple Inc. and Microsoft Corp. are also aggressively pushing into health care, though they haven't yet struck deals of this scope. Share Your Thoughts Do you trust Google with your personal health data? Why or why not? Join the conversation below. Google began Project Nightingale in secret last year with St. Louis-based Ascension, a Catholic chain of 2,600 hospitals, doctors' offices and other facilities, with the data sharing accelerating since summer, according to internal documents. The data involved in the initiative encompasses lab results, doctor diagnoses and hospitalization records, among other categories, and amounts to a complete health history, including patient names and dates of birth. Neither patients nor doctors have been notified. At least 150 Google employees already have access to much of the data on tens of millions of patients, according to a person familiar with the matter and the documents.
    [Show full text]
  • NVIDIA Gpudirect RDMA (GDR) Host Memory Host Memory • Pipeline Through Host for Large Msg 2 IB IB 4 2
    Efficient and Scalable Communication Middleware for Emerging Dense-GPU Clusters Ching-Hsiang Chu Advisor: Dhabaleswar K. Panda Network Based Computing Lab Department of Computer Science and Engineering The Ohio State University, Columbus, OH Outline • Introduction • Problem Statement • Detailed Description and Results • Broader Impact on the HPC Community • Expected Contributions Network Based Computing Laboratory SC 19 Doctoral Showcase 2 Trends in Modern HPC Architecture: Heterogeneous Multi/ Many-core High Performance Interconnects Accelerators / Coprocessors SSD, NVMe-SSD, Processors InfiniBand, Omni-Path, EFA high compute density, NVRAM <1usec latency, 100Gbps+ Bandwidth high performance/watt Node local storage • Multi-core/many-core technologies • High Performance Storage and Compute devices • High Performance Interconnects • Variety of programming models (MPI, PGAS, MPI+X) #1 Summit #2 Sierra (17,280 GPUs) #8 ABCI #22 DGX SuperPOD (27,648 GPUs) #10 Lassen (2,664 GPUs) (4,352 GPUs) (1,536 GPUs) Network Based Computing Laboratory SC 19 Doctoral Showcase 3 Trends in Modern Large-scale Dense-GPU Systems • Scale-up (up to 150 GB/s) • Scale-out (up to 25 GB/s) – PCIe, NVLink/NVSwitch – InfiniBand, Omni-path, Ethernet – Infinity Fabric, Gen-Z, CXL – Cray Slingshot Network Based Computing Laboratory SC 19 Doctoral Showcase 4 GPU-enabled HPC Applications Lattice Quantum Chromodynamics Weather Simulation Wave propagation simulation Fuhrer O, Osuna C, Lapillonne X, Gysi T, Bianco M, Schulthess T. Towards GPU-accelerated operational weather
    [Show full text]
  • Dell EMC Poweredge C4140 Technical Guide
    Dell EMC PowerEdge C4140 Technical Guide Regulatory Model: E53S Series Regulatory Type: E53S001 Notes, cautions, and warnings NOTE: A NOTE indicates important information that helps you make better use of your product. CAUTION: A CAUTION indicates either potential damage to hardware or loss of data and tells you how to avoid the problem. WARNING: A WARNING indicates a potential for property damage, personal injury, or death. © 2017 - 2019 Dell Inc. or its subsidiaries. All rights reserved. Dell, EMC, and other trademarks are trademarks of Dell Inc. or its subsidiaries. Other trademarks may be trademarks of their respective owners. 2019 - 09 Rev. A00 Contents 1 System overview ......................................................................................................................... 5 Introduction............................................................................................................................................................................ 5 New technologies.................................................................................................................................................................. 5 2 System features...........................................................................................................................7 Specifications......................................................................................................................................................................... 7 Product comparison.............................................................................................................................................................
    [Show full text]
  • HPE Apollo 6500 Gen10 System Overview
    QuickSpecs HPE Apollo 6500 Gen10 System Overview HPE Apollo 6500 Gen10 System The ability of computers to autonomously learn, predict, and adapt using massive datasets is driving innovation and competitive advantage across many industries and applications. The HPE Apollo 6500 Gen10 System is an ideal HPC and Deep Learning platform providing unprecedented performance with industry leading GPUs, fast GPU interconnect, high bandwidth fabric and a configurable GPU topology to match your workloads. The system with rock-solid RAS features (reliable, available, secure) includes up to eight high power GPUs per server tray (node), NVLink 2.0 for fast GPU-to-GPU communication, Intel® Xeon® Scalable Processors support, choice of up to four high-speed / low latency fabric adapters, and the ability to optimize your configurations to match your workload and choice of GPU. And while the HPE Apollo 6500 Gen10 System is ideal for deep learning workloads, the system is suitable for complex high performance computing workloads such as simulation and modeling. Eight GPU per server for faster and more economical deep learning system training compared to more servers with fewer GPU each. Keep your researchers productive as they iterate on a model more rapidly for a better solution, in less time. Now available with NVLink 2.0 to connect GPUs at up to 300 GB/s for the world’s most powerful computing servers. HPC and AI models that would consume days or weeks can now be trained in a few hours or minutes. Front View –with two HPE DL38X Gen10 Premium 6 SFF SAS/SATA + 2 NVMe drive cages shown 1.
    [Show full text]
  • The Computer That Could Be Smarter Than Us Cognitive Computing
    outthink limits The Computer that could be smarter than us Cognitive Computing Ingolf Wittmann Technical Director Leader of HPC Kinetica - Unstructured Databases What is Kinetica? Unparalleled acceleration Kinetica’s in-memory database powered by graphics processing units (GPUs) was built from the ground up to deliver truly real-time insights on data in 2.5x motion: orders of magnitude faster Bandwidth performance (potentially 100, 1000X) at 100100 ticktick QueryQuery Time:Time: CompetingCompeting SystemSystem PCI-EPCI-E x16x16 3.03.0 10% to 25% of the cost of traditional An industry first — POWER8 with data platforms. NVIDIA NVLink delivers 2.5X the Calculation* bandwidth to GPU accelerators, Data Transfer allowing you to experience Kinetica at 73 ticks 27 ticks the speed it was intended compared to x86 based systems. What are the Key Markets? 65% Reduction • Retail: Inventory Mgt, BI, Apps, Big Data tools, HPA Real-time results • Distribution / Logistics : Supply Chain Data Transfer Calculation* Mgt 26 ticks 14 ticks • Financial Services : Fraud Detection, AML 4040 ticktick QueryQuery Time:Time: S822LCS822LC forfor HPC,HPC, NVLinkNVLink 10x • Ad-Tech : More Targeted Marketing * Includes non-overlapping: CPU, GPU, and idle times. Performance • IoT : End Point Management, RFID With the unique capabilities of Tesla 65% reduction in data transfer time (3X improvement) in for P100 + POWER8, Kinetica has 2.4x POWER8 with NVLink the performance of competing Kinetica GPU-accelerated DB PCIe x16 3.0/x86 System System systems enabling you to analyze and • Less data-induced latency in all applications Xeon E5-2640 v4 Power Systems S822LC visualize large datasets in • with 4 Tesla K80s : Unique to POWER8 with NVLink with 4 Tesla P100s: milliseconds vs.
    [Show full text]