Article Volume 14, Number 10 4 October 2013 doi: 10.1002/ggge.20267 ISSN: 1525-2027 Constraints on past plate and mantle motion from new ages for the Hawaiian-Emperor Seamount Chain John M. O’Connor Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany GeoZentrum Nordbayern, University Erlangen-Nuremberg, Erlangen, Germany Deep Earth and Planetary Sciences, VU University Amsterdam, De Boelelaan 1085, 1081 HVAmsterdam, Neth- erlands (
[email protected]) Bernhard Steinberger Helmholtz Centre Potsdam—GFZ German Research Centre for Geosciences, Potsdam, Germany The Centre for Earth Evolution and Dynamics, University of Oslo, Oslo, Norway Marcel Regelous GeoZentrum Nordbayern, University Erlangen-Nuremberg, Erlangen, Germany Anthony A. P. Koppers CEOAS, Oregon State University, Corvallis, Oregon, USA Jan R. Wijbrans Deep Earth and Planetary Sciences, VU University Amsterdam, Amsterdam, Netherlands Karsten M. Haase GeoZentrum Nordbayern, University Erlangen-Nuremberg, Erlangen, Germany Peter Stoffers Institute for Geosciences, Christian-Albrechts-University, Kiel, Germany Wilfried Jokat Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany Dieter Garbe-Schönberg Institute for Geosciences, Christian-Albrechts-University, Kiel, Germany [1] Estimates of the relative motion between the Hawaiian and Louisville hot spots have consequences for understanding the role and character of deep Pacific-mantle return flow. The relative motion between these primary hot spots can be inferred by comparing the age records for their seamount trails. We report 40Ar/39Ar ages for 18 lavas from 10 seamounts along the Hawaiian-Emperor Seamount Chain (HESC), showing that volcanism started in the sharp portion of the Hawaiian-Emperor Bend (HEB) at 47.5 Ma and continued for 5 Myr.