Effective Hamiltonians for Interacting Superconducting Qubits--Local Basis

Total Page:16

File Type:pdf, Size:1020Kb

Effective Hamiltonians for Interacting Superconducting Qubits--Local Basis Effective Hamiltonians for interacting superconducting qubits: local basis reduction and the Schrieffer-Wolff transformation Gioele Consaniy and Paul A. Warburtony yUniversity College London March 27, 2020 Abstract An open question in designing superconducting quantum circuits is how best to reduce the full circuit Hamil- tonian which describes their dynamics to an effective two-level qubit Hamiltonian which is appropriate for ma- nipulation of quantum information. Despite advances in numerical methods to simulate the spectral properties of multi-element superconducting circuits[1, 2, 3], the literature lacks a consistent and effective method of deter- mining the effective qubit Hamiltonian. Here we address this problem by introducing a novel local basis reduction method. This method does not require any ad hoc assumption on the structure of the Hamiltonian such as its linear response to applied fields. We numerically benchmark the local basis reduction method against other Hamiltonian reduction methods in the literature and report specific examples of superconducting qubits, including the capacitively-shunted flux qubit, where the standard reduction approaches fail. By combining the local basis reduction method with the Schrieffer-Wolff transformation we further extend its applicability to systems of inter- acting qubits and use it to extract both non-stoquastic two-qubit Hamiltonians and three-local interaction terms in three-qubit Hamiltonians. 1 Introduction acterised by the fact that, under specific operation con- ditions, they can be regarded as two-level systems (in the Since their first appearance, superconducting (SC) cir- sense that any additional stationary state of the system cuits including Josephson junctions have proved to be has a substantially higher energy and a small probability one of the most promising platforms for quantum in- of being populated)[16]. formation processing applications[4, 5, 6, 7, 8]. The The fundamental theory describing SC circuits, i.e. lithographic fabrication process allows fine tuning of the quantum network theory, is well established and can be physical properties of each superconducting circuit, thus used, at least in some approximate form, to numerically resulting in qubits with different spectral properties. In- determine the energy spectrum of an arbitrary SC qubit dividual qubits can be manufactured in large arrays, circuit[1, 2, 3]. The literature seems, however, to be with electrostatic and magnetic interactions coupling missing an agreed and consistent way of connecting the pairs of them. The strength of the local fields on each electromagnetic Hamiltonian H^e:m: of an arbitrary sys- qubit and of the two-qubit interactions can further be tem of n SC qubits to the corresponding effective qubit adjusted dynamically by applying external electrostatic Hamiltonian H^1, or, equivalently, of numerically deter- arXiv:1912.00464v2 [quant-ph] 25 Mar 2020 and magnetic fields, making for a flexible and scalable mining the parameters of an n-spin Hamiltonian which architecture for both gate-based quantum computation reproduces the low-energy spectrum of H^e:m:, as well as (GBQC) and quantum annealing (QA)[9, 5, 4, 10, 11]. the computational state probabilities and the expecta- A two decades quest to improve the coherence met- tion values of the system observables. As we will see rics of superconducting qubits, by materials and circuit below, where such mapping methods do exist (see, for engineering, has led to a number of SC qubit designs, instance, supplementary materials of Ref. [17, 18]), they such as capacitively-shunted flux qubits and transmons, are not guaranteed to reproduce the correct low-energy having T1 and T2 times in the 100 μs range[12, 13]. spectrum of the circuit. These circuits, as much as the earlier designs, includ- A general scheme for reducing the circuit Hamilto- ing rf-SQUID qubits[14], persistent-current qubits[9] and nian of an arbitrary SC qubit system to the correct ef- single-Cooper-pair boxes[15] are, by construction, char- fective qubit Hamiltonian would serve several purposes. 1 Firstly, the effective qubit Hamiltonian can be used to scribing the superconducting circuit, we begin this paper model and interpret quantum state evolution experi- by revising how to write down the circuit Hamiltonian for ments, since it contains all the necessary information to a generic non-dissipative circuit. We start with isolated describe the dynamical evolution of the qubit system, as circuits and later consider the presence of interactions. long as this is not excited outside of the computational The framework which we use is that of quantum network space (leakage)[7, 18], while being much more compact theory, which is the quantum version of Lagrangian me- than the full circuit Hamiltonian. Secondly, specifically chanics applied to electrical circuits[1, 24]. Following in the context of adiabatic quantum computing (AQC), the standard procedure we will first write the classical identification of non-stoquastic and multi-local terms in Hamiltonian and then quantise it by replacing the vari- the qubit Hamiltonian could help the engineering of ables with the corresponding operators. The reader who such terms, which are fundamental to implement non- is familiar with these concepts may wish to skip to the stoquastic AQC (which is thought to be more powerful next section. than its stoquastic counterpart[19]) and error suppres- sion protocols based on stabiliser codes[20], respectively. 2.1 Isolated circuits In experiments involving such non-stoquastic and multi- body interaction terms, the analysis of spectroscopic The first key assumption we make in order to apply data can also be made substantially easier by the avail- quantum network theory is that the size of our qubit ability of the reduced Hamiltonian[18]. Lastly, in the is sufficiently small relative to microwave wavelengths, case of single qubits, the calculation of the effective qubit such that it is appropriate to use a lumped-element de- Hamiltonian represents an improved way of estimating scription of the circuit[25]. Because the system is super- the tunnelling amplitudes between semi-classical poten- conductive, this circuit will consist of nodes connected tial minima that is an alternative to instanton-based ap- by branches containing only non-dissipative elements, proaches and therefore potentially more accurate, espe- namely inductors, capacitors and Josephson junctions. cially in the limit of large tunnelling amplitudes[21, 22]. An example representing the equivalent circuit of an rf- In this paper we propose a method of implementing SQUID flux qubit is shown in figure 1. Then, without Hamiltonian reduction based on a natural local defini- loss of generality, we can arbitrarily assign one of the tion of the computational basis. Our method does not circuit nodes to ground. (For a floating qubit there will require any ad hoc assumption on the structure of the be a capacitor between the ground node and the rest of Hamiltonian, such as its linear response to the applied the circuit.) electrostatic and magnetic fields, which is at the core At this point, in order to later take into account the of standard perturbative reduction methods[17]. Ad- effect of external magnetic fields, we need to choose a ditionally the scheme can be applied to individual SC spanning tree, i.e. a path of connected branches going qubits of any kind, as well as to systems of qubits and from the ground node to every other node, without gen- coupler circuits, interacting magnetically or electrostat- erating loops. The specific choice of the spanning tree ically. In the interacting case the scheme makes use of will not affect our final results[24]. A possible choice of the Schrieffer-Wolff transformation to separate the low the spanning tree for the rf-SQUID flux qubit in figure 1 energy subspace from the rest of the Hilbert space[23]. The article is structured as follows: in the next section we revise how to write a general electromagnetic Hamil- tonian for isolated and coupled superconducting circuits. In section 3 we introduce some of the state-of-the-art re- duction methods in the literature and then present our novel approach to the problem, in the context of both single and interacting qubits. In section 4 we present the numerical results of Hamiltonian reduction applied to systems of superconducting qubits, with a specific ref- erence to recent publications. Finally we summarise our conclusions. 2 Circuit Hamiltonians from Quantum Circuit Analysis Figure 1: Equivalent lumped-element circuit of an rf- Since we want to establish a way to numerically derive an SQUID flux qubit[14]. One of the two possible choices effective qubit Hamiltonian from the full Hamiltonian de- of the spanning tree is highlighted in red. 2 is highlighted in red. We will indicate the set of branches branch bij connecting nodes i and j (the index 0 refers in the spanning tree by T and the complementary set of to the ground node here) and Φ0 = h=(2e) ' 2:0678 · closure branches by C. Every closure branch is associ- 10−15Wb is the magnetic flux quantum. The branch ated with an irreducible loop in the circuit, which is the fluxes fΦbij gj>i=0;:::;N appearing inside the expression smallest loop formed by that closure branch and by other are defined as branches in the spanning tree. For instance, in the flux ( qubit in Fig. 1 the closure branch b is associated with Φ − Φ ; if b 2 T ; 01 Φ = i j ij (7) the single loop in the circuit[24]. bij ext Φi − Φj + Φij ; if bij 2 C; Every state of our circuit is defined by specifying the instantaneous voltages at each of the nodes. Al- where Φext is the external magnetic flux threading the ternatively, we can define, for every node j (excluding ij irreducible loop associated with bij. ground), a node flux variable Φj, representing the inte- Our definition of the branch fluxes includes the effect gral over time of its voltage, i.e.
Recommended publications
  • Machine Learning for Designing Fast Quantum Gates
    University of Calgary PRISM: University of Calgary's Digital Repository Graduate Studies The Vault: Electronic Theses and Dissertations 2016-01-26 Machine Learning for Designing Fast Quantum Gates Zahedinejad, Ehsan Zahedinejad, E. (2016). Machine Learning for Designing Fast Quantum Gates (Unpublished doctoral thesis). University of Calgary, Calgary, AB. doi:10.11575/PRISM/26805 http://hdl.handle.net/11023/2780 doctoral thesis University of Calgary graduate students retain copyright ownership and moral rights for their thesis. You may use this material in any way that is permitted by the Copyright Act or through licensing that has been assigned to the document. For uses that are not allowable under copyright legislation or licensing, you are required to seek permission. Downloaded from PRISM: https://prism.ucalgary.ca UNIVERSITY OF CALGARY Machine Learning for Designing Fast Quantum Gates by Ehsan Zahedinejad A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY GRADUATE PROGRAM IN PHYSICS AND ASTRONOMY CALGARY, ALBERTA January, 2016 c Ehsan Zahedinejad 2016 Abstract Fault-tolerant quantum computing requires encoding the quantum information into logical qubits and performing the quantum information processing in a code-space. Quantum error correction codes, then, can be employed to diagnose and remove the possible errors in the quantum information, thereby avoiding the loss of information. Although a series of single- and two-qubit gates can be employed to construct a quan- tum error correcting circuit, however this decomposition approach is not practically desirable because it leads to circuits with long operation times. An alternative ap- proach to designing a fast quantum circuit is to design quantum gates that act on a multi-qubit gate.
    [Show full text]
  • Dr. Julien BASSET Maître De Conférences (Lecturer)
    Dr. Julien BASSET Maître de Conférences (Lecturer) Université Paris Sud Laboratoire de Physique des Solides Nanostructures at the Nanosecond group Bat 510 FR - 91405 Orsay France +33 1 69 15 80 11 [email protected] https://www.equipes.lps.u-psud.fr/ns2 Work Experience September University Lecturer in Experimental Condensed Matter Physics 2014– at Université Paris Sud XI Today Nanostructures at the nanosecond group - Laboratory for Solid State Physics, Orsay, France December Post-Doc in Experimental Condensed Matter Physics: “Dipole 2011– coupling semiconductor double quantum dots to microwave res- August onators: coherence properties and photon emission” 2014 Klaus ENSSLIN’s and Andreas WALLRAFF’s quantum physics groups (Joint project) - Laboratory for Solid State Physics (ETH Zürich) Zürich, Switzerland October PhD Thesis in Experimental Condensed Matter Physics: “High 2008 – frequency quantum noise of mesoscopic systems and current- October phase relation of hybrid junctions” 2011 Hélène BOUCHIAT’s and Richard DEBLOCK’s mesoscopic physics group - Laboratoire de Physique des Solides (CNRS - Université Paris Sud XI) Orsay, France • Jury members : – Referee: Silvano De Franceschi (CEA Grenoble) – Referee: Norman Birge (Michigan State University) – Examiner: Benoît Douçot (LPTHE Paris ) – Examiner: Christian Glattli (CEA Saclay) – President: Pascal Simon (Université Paris Sud) – Thesis co-director: Hélène Bouchiat (LPS Orsay) – Thesis co-director: Richard Deblock (LPS Orsay) March Researcher Assistant (3 months): : “Spin transfer
    [Show full text]
  • Quantum Information with Superconducting Circuits Benjamin Huard
    Quantum information with superconducting circuits Benjamin Huard To cite this version: Benjamin Huard. Quantum information with superconducting circuits. Systèmes mésoscopiques et effet Hall quantique [cond-mat.mes-hall]. Ecole Normale Supérieure de Paris - ENS Paris, 2014.tel- 01011096 HAL Id: tel-01011096 https://tel.archives-ouvertes.fr/tel-01011096 Submitted on 26 Jun 2014 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. D´epartement de Physique Ecole´ Normale Sup´erieure ÉCOLE NORMALE SUPÉRIEURE M´emoire d’habilitation `adiriger des recherches Benjamin Huard Circuits supraconducteurs pour l’information quantique qui sera d´efendue le 16 juin 2014 devant le jury compos´ede : M. Olivier Buisson .................. Rapporteur M. David DiVincenzo ................ Rapporteur M. Jean-Michel Raimond ........... Examinateur M. Jakob Reichel .................... Examinateur M. Andreas Wallraff ................ Rapporteur Acknowledgements I would like to thank here all the people I had the luck to interact with since I’m a physicist and who contributed directly or not to the work presented in this manuscript. I have fond memories of my time in the Quantronics group at Saclay, where it was a great pleasure to work everyday with such a talented, friendly and upright set of people.
    [Show full text]
  • Superconducting Qubits: Dephasing and Quantum Chemistry
    UNIVERSITY of CALIFORNIA Santa Barbara Superconducting Qubits: Dephasing and Quantum Chemistry A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Physics by Peter James Joyce O'Malley Committee in charge: Professor John Martinis, Chair Professor David Weld Professor Chetan Nayak June 2016 The dissertation of Peter James Joyce O'Malley is approved: Professor David Weld Professor Chetan Nayak Professor John Martinis, Chair June 2016 Copyright c 2016 by Peter James Joyce O'Malley v vi Any work that aims to further human knowledge is inherently dedicated to future generations. There is one particular member of the next generation to which I dedicate this particular work. vii viii Acknowledgements It is a truth universally acknowledged that a dissertation is not the work of a single person. Without John Martinis, of course, this work would not exist in any form. I will be eter- nally indebted to him for ideas, guidance, resources, and|perhaps most importantly| assembling a truly great group of people to surround myself with. To these people I must extend my gratitude, insufficient though it may be; thank you for helping me as I ventured away from superconducting qubits and welcoming me back as I returned. While the nature of a university research group is to always be in flux, this group is lucky enough to have the possibility to continue to work together to build something great, and perhaps an order of magnitude luckier that we should wish to remain so. It has been an honor. Also indispensable on this journey have been all the members of the physics depart- ment who have provided the support I needed (and PCS, I apologize for repeatedly ending up, somehow, on your naughty list).
    [Show full text]
  • Entanglement Stabilization Using Parity Detection and Real-Time Feedback in Superconducting Circuits Science Team: C
    Entanglement Stabilization using Parity Detection and Real-Time Feedback in Superconducting Circuits Science Team: C. Andersen, S. Balasiu, J.-C. Besse, M. Collodo, J. Heinsoo, J. Herrmann, S. Krinner, P. Kurpiers, P. Magnard, G. Norris, A. Remm, P. Scarlino, T. Walter, C. Eichler, A. Wallraff (ETH Zurich) B. Royer, and A. Blais (Université de Sherbrooke) Technical Team: A. Akin, M. Frey, M. Gabureac, J. Luetolf Andreas Wallraff, Quantum Device Lab | 29-Apr-19 | 13 Acknowledgements www.qudev.ethz.ch Former group members now K. Juliusson (CEA Saclay) Collaborations (last 5 years) Faculty/PostDoc/PhD/Industry C. Lang (Radionor) with groups of A. Abdumalikov (Gorba AG) P. Leek (Oxford) A. Bachtold (ICFO Barcelona) E. Solano (UPV/EHU) M. Allan (Leiden) P. Maurer (Chicago) A. Blais (Sherbrooke) H. Tureci (Princeton) M. Baur (ABB) J. Mlynek (Siemens) A. Chin (Cambridge) W. Wegscheider (ETH Zurich) J. Basset (U. Paris Sud) M. Mondal (IACS Kolkata) M. Delgado (UC Madrid) S. Berger (AWK Group) M. Oppliger L. DiCarlo (TU Delft) R. Bianchetti (ABB) M. Pechal (Stanford) P. Domokos (WRC Budapest) D. Bozyigit (MIT) A. Potocnik (imec), K. Ensslin (ETH Zurich) A. Fedorov (UQ Brisbane) G. Puebla (IBM Zurich) J. Faist (ETH Zurich) A. Fragner (Yale) A. Safavi-Naeini (Stanford) A. Fedorov (Brisbane) S. Filipp (IBM Zurich) Y. Salathe (Zurich Inst.) K. Hammerer (Hannover) J. Fink (IST Austria) M. Stammeier (Huba Control) M. Hartmann (Hariot Watt) T. Frey (Bosch) L. Steffen (AWK Group) T. Ihn (ETH Zurich) S. Garcia (College de France) A. Stockklauser (Rigetti) F. Merkt (ETH Zurich) S. Gasparinetti (Chalmers) T. Thiele (UC Boulder, JILA) L.
    [Show full text]
  • ROBERT J. SCHOELKOPF Yale University
    ROBERT J. SCHOELKOPF Yale University Phone: (203) 432-4289 15 Prospect Street, #423 Becton Center Fax: (203) 432-4283 New Haven, CT 06520-8284 e-mail: [email protected] website: http://rsl.yale.edu/ PERSONAL U.S. Citizen. Married, two children. EDUCATION Princeton University, A. B. Physics, cum laude. 1986 California Institute of Technology, Ph.D., Physics. 1995 ACADEMIC APPOINTMENTS Director of Yale Quantum Institute 2014 – present Sterling Professor of Applied Physics and Physics, Yale University 2013- present William A. Norton Professor of Applied Physics and Physics, Yale University 2009-2013 Co-Director of Yale Center for Microelectronic Materials and Structures 2006-2012 Associate Director, Yale Institute for Nanoscience and Quantum Engineering 2009 Professor of Applied Physics and Physics, Yale University 2003-2008 Interim Department Chairman, Applied Physics, Yale University July-December 2012 Visiting Professor, University of New South Wales, Australia March-June 2008 Assistant Professor of Applied Physics and Physics, Yale University July 1998-July 2003 Associate Research Scientist and Lecturer, January 1995-July 1998 Department of Applied Physics, Yale University Graduate Research Assistant, Physics, California Institute of Technology 1988-1994 Electrical/Cryogenic Engineer, Laboratory for High-Energy Astrophysics, NASA/Goddard Space Flight Center 1986-1988 HONORS AND AWARDS Connecticut Medal of Science (The Connecticut Academy of Science and Engineering) 2017 Elected to American Academy of Arts and Sciences 2016 Elected to National Academy of Sciences 2015 Max Planck Forschungspreis 2014 Fritz London Memorial Prize 2014 John Stewart Bell Prize 2013 Yale Science and Engineering Association (YSEA) Award for Advancement 2010 of Basic and Applied Science Member of Connecticut Academy of Science and Engineering 2009 APS Joseph F.
    [Show full text]
  • Circuit Quantum Electrodynamics
    REVIEWS OF MODERN PHYSICS, VOLUME 93, APRIL–JUNE 2021 Circuit quantum electrodynamics Alexandre Blais Institut quantique and D´epartement de Physique, Universit´e de Sherbrooke, Sherbrooke, Qu´ebec J1K 2R1, Canada and Canadian Institute for Advanced Research, Toronto M5G 1M1, Ontario, Canada Arne L. Grimsmo Centre for Engineered Quantum Systems, School of Physics, The University of Sydney, Sydney, New South Wales 2006, Australia S. M. Girvin Yale Quantum Institute, P.O. Box 208 334, New Haven, Connecticut 06520-8263, USA Andreas Wallraff Department of Physics, ETH Zurich, CH-8093 Zurich, Switzerland and Quantum Center, ETH Zurich, CH-8093 Zurich, Switzerland (published 19 May 2021) Quantum-mechanical effects at the macroscopic level were first explored in Josephson-junction- based superconducting circuits in the 1980s. In recent decades, the emergence of quantum information science has intensified research toward using these circuits as qubits in quantum information processors. The realization that superconducting qubits can be made to strongly and controllably interact with microwave photons, the quantized electromagnetic fields stored in superconducting circuits, led to the creation of the field of circuit quantum electrodynamics (QED), the topic of this review. While atomic cavity QED inspired many of the early developments of circuit QED, the latter has now become an independent and thriving field of research in its own right. Circuit QED allows the study and control of light-matter interaction at the quantum level in unprecedented detail. It also plays an essential role in all current approaches to gate-based digital quantum information processing with superconducting circuits. In addition, circuit QED provides a framework for the study of hybrid quantum systems, such as quantum dots, magnons, Rydberg atoms, surface acoustic waves, and mechanical systems interacting with microwave photons.
    [Show full text]
  • Circuit Quantum Electrodynamics (QED)
    Circuit Quantum Electrodynamics (QED) David Haviland Erik Tholen Jochen Walter Adem Ergul Frank Weber Evelyn Dorthy Nanostructure Physics, Dept. Applied Physics, KTH, Albanova Atom in a Cavity Consider only two levels of atom, with energy separation hΩ Atom drifts through electromagnetic resonant cavity with very high Q Jaynes-Cummings Hamiltonian: Strong Coupling limit Needed: g >> κ,γ High Q decay rate to nonmodes -γ cavity- Large d Blais et. al, Phys. Rev. A, 2004 Electropolished superconducting Nb cavity 50 mm diameter and a 40 mm radius of curvature Nice presentation at: http://www.lkb.ens.fr/recherche/qedcav/english/englishframes.html Energy Eigenstates Neglect damping for the moment, exact diagonalization gives energy eigenstates: For zero detuning the degeneracy of the photon states with the atom state is lifted by the coupling. These “dressed states” are “maximally entangled” atom – field states Blais et. al, Phys. Rev. A, 2004 Spectrum Vacuum Rabi flopping: ↓ 0, ↑ 1, 0 photons in cavity atom in GS atom in excited state 1 photon in cavity Cavity photon number Atom Atom ground excited state state Level splitting depends on number of photons in cavity 2g n+ 1 Blais et. al, Phys. Rev. A, 2004 Splitting of Cavity Resonance κ + γ Now consider damping: excitation is ½ photon, ½ atom ⇒ decay rate: 2 In strong coupling limit there is a splitting of cavity resonance which can be resolved because: ε d =g rms >>κ, γ h Blais et. al, Phys. Rev. A, 2004 CP box in Microstrip line cavity Very small effective volume, ~10-5 cubic wavelengths Blais et. al, Phys.
    [Show full text]
  • Design of an Inductively Shunted Transmon Qubit with Tunable Transverse and Longitudinal Coupling
    DESIGN OF AN INDUCTIVELY SHUNTED TRANSMON QUBIT WITH TUNABLE TRANSVERSE AND LONGITUDINAL COUPLING Von der Fakult¨atf¨urMathematik, Informatik und Naturwissenschaften der RWTH Aachen University genehmigte Dissertation zur Erlangung des akademischen Grades einer Doktorin der Naturwissenschaften vorgelegt von M. Sc. Susanne Richer aus Bocholt Berichter: Prof. Dr. David DiVincenzo Dr. Ioan Pop Prof. Dr. Christoph Stampfer Tag der m¨undlichen Pr¨ufung:28. Februar 2018 Diese Dissertation ist auf den Internetseiten der Universit¨atsbibliothek verf¨ugbar. ABSTRACT Superconducting qubits are among the most promising and versatile build- ing blocks on the road to a functioning quantum computer. One of the main challenges in superconducting qubit architectures is to couple qubits in a well-controlled manner, especially in circuit constructions that in- volve many qubits. In order to avoid unwanted cross-couplings, qubits are oftentimes coupled via harmonic resonators, which act as buses that mediate the interaction. This thesis is set in the framework of superconducting transmon-type qubit architectures with special focus on two important types of coupling between qubits and harmonic resonators: transverse and longitudinal coupling. While transverse coupling naturally appears in transmon-like circuit constructions, longitudinal coupling is much harder to implement and hardly ever the only coupling term present. Nevertheless, we will see that longitudinal coupling offers some remarkable advantages with respect to scalability and readout. This thesis will focus on a design, which combines both these coupling types in a single circuit and provides the possibility to choose between pure transverse and pure longitudinal or have both at the same time. The ability to choose between transverse and longitudinal coupling in the same circuit provides the flexibility to use one for coupling to the next qubit and one for readout, or vice versa.
    [Show full text]
  • Demonstration of an All-Microwave Controlled-Phase Gate Between Far Detuned Qubits
    Demonstration of an All-Microwave Controlled-Phase Gate between Far Detuned Qubits S. Krinner,1, ∗ P. Kurpiers,1, † B. Royer,2, 3 P. Magnard,1 I. Tsitsilin,1, 4 J.-C. Besse,1 A. Remm,1 A. Blais,2, 5 and A. Wallraff1, ‡ 1Department of Physics, ETH Zurich, 8093 Zurich, Switzerland 2Institut Quantique and Départment de Physique, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada 3Department of Physics, Yale University, New Haven, Connecticut 06520, USA 4Russian Quantum Center, National University of Science and Technology MISIS, Moscow 119049, Russia 5Canadian Institute for Advanced Research, Toronto, Canada (Dated: June 19, 2020) A challenge in building large-scale superconducting quantum processors is to find the right balance between coherence, qubit addressability, qubit-qubit coupling strength, circuit complexity and the number of required control lines. Leading all-microwave approaches for coupling two qubits require comparatively few control lines and benefit from high coherence but suffer from frequency crowding and limited addressability in multi-qubit settings. Here, we overcome these limitations by realizing an all-microwave controlled-phase gate between two transversely coupled transmon qubits which are far detuned compared to the qubit anharmonicity. The gate is activated by applying a single, strong microwave tone to one of the qubits, inducing a coupling between the two-qubit |f, gi and |g, ei states, with |gi, |ei, and |fi denoting the lowest energy states of a transmon qubit. Interleaved randomized benchmarking yields a gate fidelity of 97.5 ± 0.3% at a gate duration of 126 ns, with the dominant error source being decoherence. We model the gate in presence of the strong drive field using Floquet theory and find good agreement with our data.
    [Show full text]
  • Press Dossier
    Press Dossier Quantum Flagship Kick-off Event Vienna, October 29-30, 2018 All information in this press dossier is Embargoed until Monday October 29th at 12:00pm CET Index The Quantum Flagship (QF) ........................................................................................................................ 3 The Goals of the QF ................................................................................................................................. 4 The Activities of the QF ........................................................................................................................ 4 The Pillars ................................................................................................................................................... 5 QSA Team - Quantum Flagship .................................................................................................................. 6 Selected projects ............................................................................................................................................... 7 Spokespersons Individual Projects ........................................................................................................ 8 Quantum Community Network ................................................................................................................. 25 The Quantum Flagship The Quantum Flagship was launched in 2018 area as well as to transfer quantum physics as one of the largest and most ambitious research from the lab to the market
    [Show full text]
  • Pulsed Reset Protocol for Fixed-Frequency Superconducting
    Pulsed reset protocol for fixed-frequency superconducting qubits D. J. Egger, M. Werninghaus, M. Ganzhorn, G. Salis, A. Fuhrer, P. Müller, S. Filipp IBM Research GmbH, Zurich Research Laboratory, Säumerstrasse 4, 8803 Rüschlikon, Switzerland (Dated: April 2, 2019) Improving coherence times of quantum bits is a fundamental challenge in the field of quantum computing. With long-lived qubits it becomes, however, inefficient to wait until the qubits have relaxed to their ground state after completion of an experiment. Moreover, for error-correction schemes it is important to rapidly re-initialize syndrome qubits. We present a simple pulsed qubit reset protocol based on a two-pulse sequence. A first pulse transfers the excited state population to a higher excited qubit state and a second pulse into a lossy environment provided by a low-Q transmission line resonator, which is also used for qubit readout. We show that the remaining excited state population can be suppressed to 1:7 ± 0:1% and that this figure may be reduced by further improving the pulse calibration. INTRODUCTION rapidly tuned into resonance [16], a scheme that is also used for generating traveling single-photon Fock-states Building a fully operational and useful quantum com- [17, 18]. When the qubit frequency cannot be tuned in- puter requires many good, high-coherence qubits along situ [19] and the coupling between qubits and other cir- with high-fidelity gates. An equally important require- cuits is fixed, coherent microwave pulses provide the only ment is the ability to (re-)initialize qubits in their ground way to manipulate the system.
    [Show full text]