<<

Entanglement Stabilization using Parity Detection and Real-Time Feedback in Superconducting Circuits Science Team: C. Andersen, S. Balasiu, J.-C. Besse, M. Collodo, J. Heinsoo, J. Herrmann, S. Krinner, P. Kurpiers, P. Magnard, G. Norris, A. Remm, P. Scarlino, T. Walter, C. Eichler, A. Wallraff (ETH Zurich) B. Royer, and A. Blais (Université de Sherbrooke) Technical Team: A. Akin, M. Frey, M. Gabureac, J. Luetolf

Andreas Wallraff, Quantum Device Lab | 29-Apr-19 | 13 Acknowledgements www.qudev.ethz.ch

Former group members now K. Juliusson (CEA Saclay) Collaborations (last 5 years) Faculty/PostDoc/PhD/Industry C. Lang (Radionor) with groups of A. Abdumalikov (Gorba AG) P. Leek (Oxford) A. Bachtold (ICFO Barcelona) E. Solano (UPV/EHU) M. Allan (Leiden) P. Maurer (Chicago) A. Blais (Sherbrooke) H. Tureci (Princeton) M. Baur (ABB) J. Mlynek (Siemens) A. Chin (Cambridge) W. Wegscheider (ETH Zurich) J. Basset (U. Paris Sud) M. Mondal (IACS Kolkata) M. Delgado (UC Madrid) S. Berger (AWK Group) M. Oppliger L. DiCarlo (TU Delft) R. Bianchetti (ABB) M. Pechal (Stanford) P. Domokos (WRC Budapest) D. Bozyigit (MIT) A. Potocnik (imec), K. Ensslin (ETH Zurich) A. Fedorov (UQ Brisbane) G. Puebla (IBM Zurich) J. Faist (ETH Zurich) A. Fragner (Yale) A. Safavi-Naeini (Stanford) A. Fedorov (Brisbane) S. Filipp (IBM Zurich) Y. Salathe (Zurich Inst.) K. Hammerer (Hannover) J. Fink (IST Austria) M. Stammeier (Huba Control) M. Hartmann (Hariot Watt) T. Frey (Bosch) L. Steffen (AWK Group) T. Ihn (ETH Zurich) S. Garcia (College de France) A. Stockklauser (Rigetti) F. Merkt (ETH Zurich) S. Gasparinetti (Chalmers) T. Thiele (UC Boulder, JILA) L. Novotny (ETH Zurich) M. Goppl (Sensirion) A. van Loo (Oxford) M. A. Martin-Delgado (Madrid) J. Govenius (Aalto) D. van Woerkom (Microsoft) T. J. Osborne (Hannover) L. Huthmacher (Cambridge) S. Zeytinoğlu (ETH Zurich) S. Schmidt (ETH Zurich) D.-D. Jarausch (Cambridge) C. Schoenenberger (Basel)

Andreas Wallraff, Quantum Device Lab | 29-Apr-19 | 21 Superconducting Circuits as Components for a Quantum Computer constructing quantum harmonic LC oscillator: electronic circuits from basic circuit elements: electronic photon

anharmonic oscillator:

electronic artificial atom Josephson junction: a non-dissipative nonlinear element (inductor)

Review: M. H. Devoret, A. Wallraff and J. M. Martinis, condmat/0411172 (2004) Andreas Wallraff, Quantum Device Lab | 29-Apr-19 | 84 A Single Architecture …

… for fast, high fidelity single shot readout … for parity check with feedback and reset F ~ 98.25 (99.2) % at 48 (88) ns integration time and C. Andersen, A. Remm, S. Balasiu et al., arXiv:1902.06946 resonator population n ~ 2.2 with (2019) . Optimized sample design . Low-noise phase-sensitive Josephson parametric amplifier … for remote entanglement and state transfer, with time-bin encoding against photon loss T. Walter, P. Kurpiers et al., Phys. Rev. Applied 7, 054020 (2017) . Deterministic, 50 kHz rate . ~ 80% transfer and entanglement fidelity … for unconditional reset P. Kurpiers, P. Magnard et al., 558, 264 (2018) . 99% reset fidelity in < 300 ns P. Kurpiers, M. Pechal et al., arXiv:1811.07604 (2018) P. Magnard et al., Phys. Rev. Lett. 121, 060502 (2018) … for QND single-shot single photon detection … that is multiplexable . 71% internal detection fidelity . Single feedline for 8 (nodes) . 13% dark count probability . Reduced cross-talk using Purcell filters . 16% detection inefficiency J. Heinsoo et al., Phys. Rev. Applied 10, 034040 (2018) J.-C. Besse et al., Phys. Rev. X 8, 021003 (2018)

Andreas Wallraff, Quantum Device Lab | 29-Apr-19 | 317 Quantum Device Lab ETH Zurich (2018)

Andreas Wallraff, Quantum Device Lab | 29-Apr-19 | 318 Parity Reset and Correction

Quantum error correction . Encode quantum information in multiple qubits . Measure multi- stabilizers . Correct errors based on stabilizer measurements

Surface code . Stabilizers are weigth-4 XXXX- and ZZZZ-parity measurements . At edge of surface: weight-2 XX- and ZZ- parity measurements

Demonstrating parity measurements and feedback is a step towards realizing .

Versluis et al., Phys. Rev. Applied 8, 034021 (2017)

Andreas Wallraff, Quantum Device Lab | 29-Apr-19 | 400 Parity Reset and Correction: Prior Work

With superconducting circuits: With trapped ions: . Bit-flip code with weight-2 parity checks . 50 repetitions of interleaved XX and ZZ Riste et al, Nat Comm 6, 6983 (2015) detection and feedback for Bell state Kelly et at, Nature 519, 66–69 (2015) stabilization Negnevitsky et al., Nature 563, 527–531 (2018) . Simultaneous XX and ZZ checks Corcoles et al, Nat Comm 6, 6979 (2015)

. Weight-4 parity check Takita et al, PRL 117, 210505 (2016)

. Feedback with superconducting qubits Goal for superconducting qubits: Steffen et al, Nature 500, 319–322 (2013) . Riste et al, Nature 502, 350–354 (2013) Repeated parity correction in a multi-qubit architecture using feedback . Demonstration of a general programmable feedback architecture

Andreas Wallraff, Quantum Device Lab | 29-Apr-19 | 401 Parity Measurements and Quantum Error Correction

Parity of 2-qubit Bell states

. Measure parity using ancilla qubit . Single-qubit Pauli operators , and do not commute , = . Stabilize selected parity sub-space . Two-qubit parity operators 𝑋𝑋 𝑌𝑌and 𝑍𝑍 . here ZZ = +1 and XX = +1 commute 𝑋𝑋 𝑍𝑍 , 2𝑖𝑖𝑖𝑖 = 0 . resulting in Φ+ 1 2 1 2 . XX and ZZ have a set of common𝑋𝑋 𝑋𝑋 eigenstates𝑍𝑍 𝑍𝑍 𝑋𝑋1𝑋𝑋2 𝑍𝑍1𝑍𝑍2

Andreas Wallraff, Quantum Device Lab | 29-Apr-19 | 404 4 Qubit Device with Improved Parameters

Qubits Readout resonators Purcell filters Coupling Bus resonators Charge lines Flux lines Feed line Andreas Wallraff, Quantum Device Lab | 29-Apr-19 | 405 C. Andersen, A. Remm, S. Balasiu et al., arXiv:1902.06946 (2019) Qubit Design and Performance Qubit 2 QB1 QB2 QB3 QB4 /2 Maximum qubit frequency, , 5.721 5.530 5.160 (GHz) 𝑄𝑄 max 5.210 𝜔𝜔 /2𝜋𝜋 Minimum qubit frequency, , 5.083 4.880 4.386 (GHz) 𝜔𝜔𝑄𝑄 min 𝜋𝜋 Qubit lifetime, (µs) 19.7 10.3 23.6 43.1 (µs) 14.3 11.3 14.2 10.7 Ramsey coherence time, 1 𝑇𝑇∗ (µs) 19.3 12.1 19.5 20.2 Echo coherence time, 2 𝑇𝑇e 𝑇𝑇2 • Coherence times are measured at the boldfaced frequencies • Qubits have asymmetric SQUIDs (ratio 1:8) for decreased flux noise sensitivity 100 um

Andreas Wallraff, Quantum Device Lab | 29-Apr-19 | 407 C. Andersen, A. Remm, S. Balasiu et al., arXiv:1902.06946 (2019) Single Qubit Gate Fidelity

Randomized benchmarking (RB) . 50 ns DRAG pulses with 10 ns . . Clifford decomposition in terms of X rotations and virtual Z gates.𝜎𝜎 . Gate error at limit, .

1 𝑐𝑐𝑐𝑐푐−𝑙𝑙𝑙𝑙𝑙𝑙 Average Error per𝑇𝑇 Clifford,𝑟𝑟

(measured) simulated𝑟𝑟𝐶𝐶𝐶𝐶 (T1, T2 errors) 𝑟𝑟𝐶𝐶𝐶𝐶 𝑟𝑟𝐶𝐶𝐶𝐶 QB1 0.31% ± 0.07% 0.31%

QB2 0.35% ± 0.05% 0.40%

QB3 0.37% ± 0.08% 0.32%

QB4 0.40% ± 0.14% 0.27%

Epstein et al., Phys. Rev. A 89, 062321 (2014) Andreas Wallraff, Quantum Device Lab McKay et al., Phys. Rev. A 96, 022330 (2017) | 29-Apr-19 | 409 Two Qubit Gate Fidelity

C-PHASE gate (|ee>, |gf>) Quantum process tomography . 100 ns square flux pulse with 40 ns buffers . matrices for average gate fidelity . Finite (FIR) and infinite impulse response (IIR) . Simulation with measured coherence times filters 𝜒𝜒 measured simulated (T1, T2) QB1-QB2 98.76% 99.17% 𝐹𝐹 𝐹𝐹 QB1-QB2 QB2-QB3 QB2-QB3 99.43% 99.5%

Andreas Wallraff, Quantum Device Lab | 29-Apr-19 | 411 Multiplexed Readout

Readout parameters: QB1 QB2 QB3 QB4 • Readout pulse length: 200 ns • Integration time: 400 ns • Detection efficiency: 25% - 35%

• Dispersive shift: 1.6 MHz – 3.9 MHz • Effective readout linewidth: 1.5 MHz – 6.1 MHz

Readout Assignment Fidelities: QB1 QB2 QB3 QB4 Individual readout 99.23% 98.59% 99.05% 99.40% Multiplexed readout, 99.22% 98.72% 98.81% 99.32% other qubits in | QB1 Multiplexed readout, QB2 avg. over other qubits𝑔𝑔〉 99.15% 98.72% 99.01% 99.38% QB3 QB4 prep. states

Excited state Ground state C. Andersen, A. Remm, S. Balasiu et al., arXiv:1902.06946 (2019) Heinsoo et al., Phys. Rev. Applied 10, 034040 (2018). Andreas Wallraff, Quantum Device Lab | 29-Apr-19 | 413 Repeated Weight-2 ZZ- & XX-Parity Measurements

Circuit Diagram • |++> state preparation of data qubits D1 and D2 • ZZ parity measurements with coherent operations between D1, D2 and ancilla qubit A followed by readout of A • Subspace stabilization by feedback pulse conditioned on A measurement outcome • pulse if |e> • No pulse if |g> 𝜋𝜋 • Active reset of ancilla qubit • Verification • XX parity measurements with basis changes

• Repeated XX-ZZ protocol deterministically stabilizes the Bell state: |00> + |11>

Andreas Wallraff, Quantum Device Lab | 29-Apr-19 | 414 C. Andersen, A. Remm, S. Balasiu et al., arXiv:1902.06946 (2019) Coherent Dynamics of Weight-2 ZZ-Parity Measurement

Pulse sequence Measured density matrix and Pauli sets

• 50 ns DRAG pulses • CZ gates: • 96 ns QB1-QB2 • 105 ns QB2-QB3 • 40 ns buffers • 200 ns RO pulses Fidelity: • 20 ns Gaussian filters • Experiment F = 94.2% • Compare to 3-qubit GHZ F = 96.0% in • Simulation F = 92.8% Barends et al. Nature 508, 500 (2014) C. Andersen, A. Remm, S. Balasiu et al., • 97.6% overlap Andreas Wallraff, Quantum Device Lab | 29-Apr-19 | 416 arXiv:1902.06946 (2019) Weight-2 ZZ-Parity Measurements Post Selected on Ancilla Msrmnt

Pulse sequence Positive ZZ parity Ancilla detected in |

𝑔𝑔〉

Fidelity • Experiment F = 93.8% • Simulation F = 91.1% No tomography pulse on ancilla • 50 ns DRAG pulses Negative ZZ parity • CZ gates: Ancilla detected in | • 96 ns QB1-QB2 105 ns QB2-QB3 • 𝑒𝑒〉 • 40 ns buffers • 200 ns RO pulses • 20 ns Gaussian filters Fidelity • Experiment F = 92.9% • Simulation F = 91.9%

Andreas Wallraff, Quantum Device Lab | 29-Apr-19 | 417 C. Andersen, A. Remm, S. Balasiu et al., arXiv:1902.06946 (2019) Weight-2 ZZ-, ZZ- & XX-Parity Measurements with Feedback

Pulse sequence Positive ZZ parity stabilized (FB)

Fidelity • Experiment F = 86.7% • Simulation F = 81.4% • Overlap F = 98.1%

Positive ZZ & XX parity stabilized (FB)

Fidelity • Experiment F = 74.5% • Simulation F = 75.6% • Overlap F = 97.7% Andreas Wallraff, Quantum Device Lab | 29-Apr-19 | 418 C. Andersen, A. Remm, S. Balasiu et al., arXiv:1902.06946 (2019) Repeated (6x) Weight-2 ZZ & XX Parity Measurements with Feedback

Pulse sequence Measured density matrix and Pauli sets

× 6

12 feedback rounds in total

Fidelity: • Experiment F = 74.5% • Simulation F = 76.6% • Overlap F = 95.5% Andreas Wallraff, Quantum Device Lab | 29-Apr-19 | 419 C. Andersen, A. Remm, S. Balasiu et al., arXiv:1902.06946 (2019) Repeated (6x) Weight-2 ZZ- & XX-Parity Msrmnts with Feedback

• Bell state fidelity decays when only repeating ZZ stabilization. • For only ZZ stabilization, decays as • Bell state fidelity is preserved for up to 18 us when expected from simulations stabilizing ZZ- & XX-parity.

Andreas Wallraff, Quantum Device Lab | 29-Apr-19 | 420 C. Andersen, A. Remm, S. Balasiu et al., arXiv:1902.06946 (2019) Entanglement Stabilization with Parity Measurements and Feedback

Results . Demonstrated weight-2 parity measurement of ZZ and XX. . Bell state stabilized for 12 rounds of ZZ- & XX- parity stabilization with 74% fidelity. . Realizes important element for future quantum error correction schemes. . performance currently limited by feedback latency

in relation to T1 and T2

Outlook . Extend toward surface code . Next step: weight-4 parity checks with feedback . Surface 7 and Surface 17 codes

Andreas Wallraff, Quantum Device Lab C. Andersen, A. Remm, S. Balasiu et al., arXiv:1902.06946 (2019) | 29-Apr-19 | 421 A Single Architecture …

… for fast, high fidelity single shot readout … for parity check with feedback and reset F ~ 98.25 (99.2) % at 48 (88) ns integration time and C. Andersen, A. Remm, S. Balasiu et al., arXiv:1902.06946 resonator population n ~ 2.2 with (2019) . Optimized sample design . Low-noise phase-sensitive Josephson parametric amplifier … for remote entanglement and state transfer, with time-bin encoding against photon loss T. Walter, P. Kurpiers et al., Phys. Rev. Applied 7, 054020 (2017) . Deterministic, 50 kHz rate . ~ 80% transfer and entanglement fidelity … for unconditional reset P. Kurpiers, P. Magnard et al., Nature 558, 264 (2018) . 99% reset fidelity in < 300 ns P. Kurpiers, M. Pechal et al., arXiv:1811.07604 (2018) P. Magnard et al., Phys. Rev. Lett. 121, 060502 (2018)

… that is multiplexable . Single feedline for 8 qubits (nodes) . Reduced cross-talk using Purcell filters J. Heinsoo et al., Phys. Rev. Applied 10, 034040 (2018)

Andreas Wallraff, Quantum Device Lab | 29-Apr-19 | 422 Networks for Quantum Communication and Distributed Computing

Nodes of Applications Desired properties of channel . Store … . Expanding quantum processors . Coherent . Process … by connecting modules . Deterministic . Send … . Performing error correction . High data rate . Receive … across different nodes … quantum information . Generating distributed entanglement for communication using repeaters A. Fowler et al., Phys. Rev. Lett., 104, 180503 (2010) L.-M. Duan and C. Monroe, Rev. Mod. Phys. 82, 1209 (2010) Andreas Wallraff, Quantum Device Lab | 29-Apr-19 | 423 Reiserer and G. Rempe, Rev. Mod. Phys. 87, 1379 (2015) Deterministic Remote Entanglement with Microwave Photons Mediated by Blue-Sideband: 3D Mediated by Parametric Conversion: 3D P. Campagne-Ibarcq et al., Phys. Rev. Lett. C. Axline et al., Nature Physics 14, 705 (2018) 120, 200501 (2018)

Mediated by Multimodal Channel with tunable coupling: 2D N. Leung et al., arXiv:1804.02028 (2018) Y. Zhong et al., arXiv:1808.03000 (2018)

Mediated by Raman Process: 2D P. Kurpiers, P. Magnard et al., Nature 558, 264 (2018)

Andreas Wallraff, Quantum Device Lab | 29-Apr-19 | 428 Process Tomography of Transfer transfer . Prepare qubit A in six mutually unbiased input states | . Quantum state tomography on qubit B 𝜙𝜙〉 QST

Input state: Output state: i = . Average state fidelity 1 . = | | ( + i ) 2 =𝑠𝑠86.0 1± 0.1 % >2/3 ℱavg 6 ∑〈𝜙𝜙 𝜌𝜌m 𝜙𝜙〉 𝑔𝑔 𝑒𝑒

| = 87.9 ± 0.1 % 𝑠𝑠 ℱ i〉 Transfer Process Matrix: | . Process fidelity . = Tr = 80.02 ± 0.07 % >1/2 | = 66𝑒𝑒.8〉 ± 0.1 % 𝑠𝑠 . trace𝑝𝑝 distance from MES Tr[ ] = 0.014 ℱ e〉 ℱ 𝜒𝜒𝜒𝜒ideal Andreas Wallraff, Quantum Device Lab | 229-Apr-19 | 450 𝜒𝜒m − 𝜒𝜒sim Generation of Remote Entanglement

entangle Protocol: . Use entanglement scheme 2 qt QST . Perform full 2-qutrit state tomography

2-qubit subspace of 2-qutrit system Density matrix of qubit pair: . Bell-state = ( , + , )/ 2 . Fidelity =+ | | = 78.9 ± 0.1 % 𝜓𝜓 𝑒𝑒 𝑔𝑔 𝑔𝑔 𝑒𝑒 √ . Concurrence𝑠𝑠 + = 0.747+ ± 0.004 ℱavg 〈𝜓𝜓 𝜌𝜌m 𝜓𝜓 〉 m Master Equation 𝒞𝒞Simulation:𝜌𝜌 . Infidelity: 1 = 21.1 % from . ~ 10.5 % photon𝑠𝑠 loss − ℱavg . ~ 9 % finite coherence times . ~ 1.5 % imperfect absorption or pulse truncation

Andreas Wallraff, Quantum Device Lab | 29-Apr-19 | 458 P. Kurpiers, P. Magnard et al., Nature 558, 264 (2018) Performance Metric Summary and Next Steps RoomSchemes for improvementsto realize remote (verified interaction: in simulations) • .measurementWith reduced induced photon (triangles) loss and advances in qutrit • singlecoherence:- (crosses) or • two-photon (squares) interference and detection . = 18 MHz , 12% photon loss, T = T ~ direct transfer (pentagons) • 𝜅𝜅 direct. transfer= with shaped ~photons93% (circles) • 2𝜋𝜋 1 2 𝟑𝟑𝟑𝟑 𝛍𝛍𝛍𝛍 + + Implementations:ℱ𝑠𝑠𝑠𝑠𝑠𝑠 𝜓𝜓 𝜌𝜌𝑠𝑠𝑠𝑠𝑠𝑠 𝜓𝜓 • probabilistic unheralded (red) • probabilistic heralded (blue) • fully deterministic (green) • deterministic delivered (yellow)

. state transfer rate: Γ = 50kHz . concurrence of remote entanglement protocol: . Further improvements C = 0.75 expected by heralding . deterministic (un-heralded) remote entanglement P. Kurpiers, M. Pechal et al., arXiv:1811.07604 (2018) fidelity: F = 0.80 Andreas Wallraff, Quantum Device Lab | 29-Apr-19 | 459 P. Kurpiers, P. Magnard et al., Nature 558, 264 (2018) A Single Architecture …

… for fast, high fidelity single shot readout … for parity check with feedback and reset F ~ 98.25 (99.2) % at 48 (88) ns integration time and C. Andersen, A. Remm, S. Balasiu et al., arXiv:1902.06946 resonator population n ~ 2.2 with (2019) . Optimized sample design . Low-noise phase-sensitive Josephson parametric amplifier … for remote entanglement and state transfer, with time-bin encoding against photon loss T. Walter, P. Kurpiers et al., Phys. Rev. Applied 7, 054020 (2017) . Deterministic, 50 kHz rate . ~ 80% transfer and entanglement fidelity … for unconditional reset P. Kurpiers, P. Magnard et al., Nature 558, 264 (2018) . 99% reset fidelity in < 300 ns P. Kurpiers, M. Pechal et al., arXiv:1811.07604 (2018) P. Magnard et al., Phys. Rev. Lett. 121, 060502 (2018) … for QND single-shot single photon detection … that is multiplexable . 71% internal detection fidelity . Single feedline for 8 qubits (nodes) . 13% dark count probability . Reduced cross-talk using Purcell filters . 16% detection inefficiency J. Heinsoo et al., Phys. Rev. Applied 10, 034040 (2018) J.-C. Besse et al., Phys. Rev. X 8, 021003 (2018)

Andreas Wallraff, Quantum Device Lab | 29-Apr-19 | 465 The ETH Zurich Quantum Device Lab incl. undergrad and summer students

Andreas Wallraff, Quantum Device Lab | 29-Apr-19 | 481 Challenges and Open Questions …

… scaling and coherence: Increasing circuit … viable NISQ era applications: realistic complexity (scaling) while enhancing device requirements for coherence . Quantum chemistry . 3D integration . Drug design . Low loss materials . Optimization . Surface passivation … new collaboration models: Is a quantum CERN … tunable couplings and improved gates: needed? . 2-qubit gates with large on/off ratios . Publicly funded long-term program (10-20 . Reduced cross-talk years) . Long-term research and development staff . Developing engineering expertise … targeted error correction schemes . Target implementation specific error syndromes … education . Leakage detection . Quantum engineering

Andreas Wallraff, Quantum Device Lab | 29-Apr-19 | 485